paddleclas.py 21.3 KB
Newer Older
T
Tingquan Gao 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
C
chenziheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
__dir__ = os.path.dirname(__file__)
T
Tingquan Gao 已提交
18 19 20
sys.path.append(os.path.join(__dir__, ""))
sys.path.append(os.path.join(__dir__, "deploy"))

21
from typing import Union, Generator
T
Tingquan Gao 已提交
22 23
import argparse
import shutil
T
Tingquan Gao 已提交
24
import textwrap
T
Tingquan Gao 已提交
25 26 27 28
import tarfile
import requests
import warnings
from functools import partial
T
Tingquan Gao 已提交
29
from difflib import SequenceMatcher
C
chenziheng 已提交
30 31 32 33

import cv2
import numpy as np
from tqdm import tqdm
T
Tingquan Gao 已提交
34 35 36 37 38 39 40
from prettytable import PrettyTable

from deploy.python.predict_cls import ClsPredictor
from deploy.utils.get_image_list import get_image_list
from deploy.utils import config

from ppcls.arch.backbone import *
G
gaotingquan 已提交
41
from ppcls.utils.logger import init_logger
T
Tingquan Gao 已提交
42

43 44 45
# for building model with loading pretrained weights from backbone
init_logger()

T
Tingquan Gao 已提交
46
__all__ = ["PaddleClas"]
T
Tingquan Gao 已提交
47

C
chenziheng 已提交
48
BASE_DIR = os.path.expanduser("~/.paddleclas/")
T
Tingquan Gao 已提交
49 50 51 52
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
MODEL_SERIES = {
T
Tingquan Gao 已提交
53 54 55
    "AlexNet": ["AlexNet"],
    "DarkNet": ["DarkNet53"],
    "DeiT": [
T
Tingquan Gao 已提交
56 57 58 59
        "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
        "DeiT_base_patch16_224", "DeiT_base_patch16_384",
        "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
        "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
T
Tingquan Gao 已提交
60 61 62 63 64 65 66 67 68 69 70
    ],
    "DenseNet": [
        "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
        "DenseNet264"
    ],
    "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
    "EfficientNet": [
        "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
        "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
        "EfficientNetB6", "EfficientNetB7"
    ],
G
gaotingquan 已提交
71
    "ESNet": ["ESNet_x0_25", "ESNet_x0_5", "ESNet_x0_75", "ESNet_x1_0"],
T
Tingquan Gao 已提交
72 73 74 75 76 77 78 79
    "GhostNet":
    ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
    "HRNet": [
        "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
        "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
        "HRNet_W48_C_ssld"
    ],
    "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
G
gaotingquan 已提交
80
    "MixNet": ["MixNet_S", "MixNet_M", "MixNet_L"],
T
Tingquan Gao 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    "MobileNetV1": [
        "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
        "MobileNetV1", "MobileNetV1_ssld"
    ],
    "MobileNetV2": [
        "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
        "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
        "MobileNetV2_ssld"
    ],
    "MobileNetV3": [
        "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
        "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
        "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
        "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
        "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
        "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
    ],
G
gaotingquan 已提交
98 99 100 101
    "PPLCNet": [
        "PPLCNet_x0_25", "PPLCNet_x0_35", "PPLCNet_x0_5", "PPLCNet_x0_75",
        "PPLCNet_x1_0", "PPLCNet_x1_5", "PPLCNet_x2_0", "PPLCNet_x2_5"
    ],
T
Tingquan Gao 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    "RegNet": ["RegNetX_4GF"],
    "Res2Net": [
        "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
        "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
        "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
        "Res2Net200_vd_26w_4s_ssld"
    ],
    "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
    "ResNet": [
        "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
        "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
        "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
        "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
        "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
    ],
    "ResNeXt": [
        "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
        "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
        "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
        "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
        "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
        "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
        "ResNeXt152_vd_64x4d"
    ],
    "SENet": [
        "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
        "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
        "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
    ],
    "ShuffleNetV2": [
        "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
        "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
        "ShuffleNetV2_x2_0"
    ],
    "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
    "SwinTransformer": [
        "SwinTransformer_large_patch4_window7_224_22kto1k",
        "SwinTransformer_large_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window7_224_22kto1k",
        "SwinTransformer_base_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window12_384",
        "SwinTransformer_base_patch4_window7_224",
        "SwinTransformer_small_patch4_window7_224",
        "SwinTransformer_tiny_patch4_window7_224"
    ],
G
gaotingquan 已提交
147 148 149 150
    "Twins": [
        "pcpvt_small", "pcpvt_base", "pcpvt_large", "alt_gvt_small",
        "alt_gvt_base", "alt_gvt_large"
    ],
T
Tingquan Gao 已提交
151 152 153 154 155 156 157 158 159 160
    "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
    "VisionTransformer": [
        "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
        "ViT_large_patch16_224", "ViT_large_patch16_384",
        "ViT_large_patch32_384", "ViT_small_patch16_224"
    ],
    "Xception": [
        "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
        "Xception71"
    ]
C
chenziheng 已提交
161 162 163
}


T
Tingquan Gao 已提交
164 165
class ImageTypeError(Exception):
    """ImageTypeError.
T
Tingquan Gao 已提交
166 167
    """

T
Tingquan Gao 已提交
168
    def __init__(self, message=""):
T
Tingquan Gao 已提交
169 170 171
        super().__init__(message)


T
Tingquan Gao 已提交
172 173 174 175 176 177 178 179
class InputModelError(Exception):
    """InputModelError.
    """

    def __init__(self, message=""):
        super().__init__(message)


T
Tingquan Gao 已提交
180 181 182 183 184 185 186 187 188
def init_config(model_name,
                inference_model_dir,
                use_gpu=True,
                batch_size=1,
                topk=5,
                **kwargs):
    imagenet1k_map_path = os.path.join(
        os.path.abspath(__dir__), "ppcls/utils/imagenet1k_label_list.txt")
    cfg = {
T
Tingquan Gao 已提交
189
        "Global": {
T
Tingquan Gao 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
            "infer_imgs": kwargs["infer_imgs"]
            if "infer_imgs" in kwargs else False,
            "model_name": model_name,
            "inference_model_dir": inference_model_dir,
            "batch_size": batch_size,
            "use_gpu": use_gpu,
            "enable_mkldnn": kwargs["enable_mkldnn"]
            if "enable_mkldnn" in kwargs else False,
            "cpu_num_threads": kwargs["cpu_num_threads"]
            if "cpu_num_threads" in kwargs else 1,
            "enable_benchmark": False,
            "use_fp16": kwargs["use_fp16"] if "use_fp16" in kwargs else False,
            "ir_optim": True,
            "use_tensorrt": kwargs["use_tensorrt"]
            if "use_tensorrt" in kwargs else False,
            "gpu_mem": kwargs["gpu_mem"] if "gpu_mem" in kwargs else 8000,
T
Tingquan Gao 已提交
206 207 208 209 210
            "enable_profile": False
        },
        "PreProcess": {
            "transform_ops": [{
                "ResizeImage": {
T
Tingquan Gao 已提交
211 212
                    "resize_short": kwargs["resize_short"]
                    if "resize_short" in kwargs else 256
T
Tingquan Gao 已提交
213 214 215
                }
            }, {
                "CropImage": {
T
Tingquan Gao 已提交
216 217
                    "size": kwargs["crop_size"]
                    if "crop_size" in kwargs else 224
T
Tingquan Gao 已提交
218 219 220 221 222 223
                }
            }, {
                "NormalizeImage": {
                    "scale": 0.00392157,
                    "mean": [0.485, 0.456, 0.406],
                    "std": [0.229, 0.224, 0.225],
T
Tingquan Gao 已提交
224
                    "order": ''
T
Tingquan Gao 已提交
225 226 227 228 229 230
                }
            }, {
                "ToCHWImage": None
            }]
        },
        "PostProcess": {
T
Tingquan Gao 已提交
231 232 233 234 235
            "main_indicator": "Topk",
            "Topk": {
                "topk": topk,
                "class_id_map_file": imagenet1k_map_path
            }
T
Tingquan Gao 已提交
236 237
        }
    }
T
Tingquan Gao 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    if "save_dir" in kwargs:
        if kwargs["save_dir"] is not None:
            cfg["PostProcess"]["SavePreLabel"] = {
                "save_dir": kwargs["save_dir"]
            }
    if "class_id_map_file" in kwargs:
        if kwargs["class_id_map_file"] is not None:
            cfg["PostProcess"]["Topk"]["class_id_map_file"] = kwargs[
                "class_id_map_file"]

    cfg = config.AttrDict(cfg)
    config.create_attr_dict(cfg)
    return cfg


def args_cfg():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--infer_imgs",
        type=str,
        required=True,
        help="The image(s) to be predicted.")
    parser.add_argument(
        "--model_name", type=str, help="The model name to be used.")
    parser.add_argument(
        "--inference_model_dir",
        type=str,
        help="The directory of model files. Valid when model_name not specifed."
    )
    parser.add_argument(
        "--use_gpu", type=str, default=True, help="Whether use GPU.")
    parser.add_argument("--gpu_mem", type=int, default=8000, help="")
    parser.add_argument(
        "--enable_mkldnn",
        type=str2bool,
        default=False,
        help="Whether use MKLDNN. Valid when use_gpu is False")
    parser.add_argument("--cpu_num_threads", type=int, default=1, help="")
    parser.add_argument(
        "--use_tensorrt", type=str2bool, default=False, help="")
    parser.add_argument("--use_fp16", type=str2bool, default=False, help="")
    parser.add_argument(
        "--batch_size", type=int, default=1, help="Batch size. Default by 1.")
    parser.add_argument(
        "--topk",
        type=int,
        default=5,
        help="Return topk score(s) and corresponding results. Default by 5.")
    parser.add_argument(
        "--class_id_map_file",
        type=str,
        help="The path of file that map class_id and label.")
    parser.add_argument(
        "--save_dir",
        type=str,
        help="The directory to save prediction results as pre-label.")
G
gaotingquan 已提交
297 298 299 300 301 302 303
    parser.add_argument(
        "--resize_short",
        type=int,
        default=256,
        help="Resize according to short size.")
    parser.add_argument(
        "--crop_size", type=int, default=224, help="Centor crop size.")
T
Tingquan Gao 已提交
304 305 306

    args = parser.parse_args()
    return vars(args)
T
Tingquan Gao 已提交
307 308


T
Tingquan Gao 已提交
309
def print_info():
T
Tingquan Gao 已提交
310 311 312
    """Print list of supported models in formatted.
    """
    table = PrettyTable(["Series", "Name"])
T
Tingquan Gao 已提交
313 314 315 316 317
    try:
        sz = os.get_terminal_size()
        width = sz.columns - 30 if sz.columns > 50 else 10
    except OSError:
        width = 100
T
Tingquan Gao 已提交
318 319
    for series in MODEL_SERIES:
        names = textwrap.fill("  ".join(MODEL_SERIES[series]), width=width)
T
Tingquan Gao 已提交
320
        table.add_row([series, names])
T
Tingquan Gao 已提交
321 322 323
    width = len(str(table).split("\n")[0])
    print("{}".format("-" * width))
    print("Models supported by PaddleClas".center(width))
T
Tingquan Gao 已提交
324
    print(table)
T
Tingquan Gao 已提交
325 326
    print("Powered by PaddlePaddle!".rjust(width))
    print("{}".format("-" * width))
T
Tingquan Gao 已提交
327 328 329


def get_model_names():
T
Tingquan Gao 已提交
330 331
    """Get the model names list.
    """
T
Tingquan Gao 已提交
332
    model_names = []
T
Tingquan Gao 已提交
333 334
    for series in MODEL_SERIES:
        model_names += (MODEL_SERIES[series])
T
Tingquan Gao 已提交
335 336 337
    return model_names


T
Tingquan Gao 已提交
338 339
def similar_architectures(name="", names=[], thresh=0.1, topk=10):
    """Find the most similar topk model names.
T
Tingquan Gao 已提交
340 341 342
    """
    scores = []
    for idx, n in enumerate(names):
T
Tingquan Gao 已提交
343
        if n.startswith("__"):
T
Tingquan Gao 已提交
344 345 346 347 348 349 350 351 352
            continue
        score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
        if score > thresh:
            scores.append((idx, score))
    scores.sort(key=lambda x: x[1], reverse=True)
    similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
    return similar_names


C
chenziheng 已提交
353
def download_with_progressbar(url, save_path):
T
Tingquan Gao 已提交
354 355 356 357
    """Download from url with progressbar.
    """
    if os.path.isfile(save_path):
        os.remove(save_path)
C
chenziheng 已提交
358
    response = requests.get(url, stream=True)
T
Tingquan Gao 已提交
359
    total_size_in_bytes = int(response.headers.get("content-length", 0))
C
chenziheng 已提交
360
    block_size = 1024  # 1 Kibibyte
T
Tingquan Gao 已提交
361 362
    progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
    with open(save_path, "wb") as file:
C
chenziheng 已提交
363 364 365 366
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
T
Tingquan Gao 已提交
367 368
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
            save_path):
T
Tingquan Gao 已提交
369
        raise Exception(
T
Tingquan Gao 已提交
370
            f"Something went wrong while downloading file from {url}")
C
chenziheng 已提交
371 372


T
Tingquan Gao 已提交
373
def check_model_file(model_name):
374
    """Check the model files exist and download and untar when no exist.
T
Tingquan Gao 已提交
375 376 377 378 379
    """
    storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                model_name)
    url = BASE_DOWNLOAD_URL.format(model_name)

C
chenziheng 已提交
380
    tar_file_name_list = [
T
Tingquan Gao 已提交
381
        "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
C
chenziheng 已提交
382
    ]
T
Tingquan Gao 已提交
383 384 385 386 387 388 389
    model_file_path = storage_directory("inference.pdmodel")
    params_file_path = storage_directory("inference.pdiparams")
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        tmp_path = storage_directory(url.split("/")[-1])
        print(f"download {url} to {tmp_path}")
        os.makedirs(storage_directory(), exist_ok=True)
C
chenziheng 已提交
390
        download_with_progressbar(url, tmp_path)
T
Tingquan Gao 已提交
391
        with tarfile.open(tmp_path, "r") as tarObj:
C
chenziheng 已提交
392 393 394 395 396 397 398 399
            for member in tarObj.getmembers():
                filename = None
                for tar_file_name in tar_file_name_list:
                    if tar_file_name in member.name:
                        filename = tar_file_name
                if filename is None:
                    continue
                file = tarObj.extractfile(member)
T
Tingquan Gao 已提交
400
                with open(storage_directory(filename), "wb") as f:
C
chenziheng 已提交
401 402
                    f.write(file.read())
        os.remove(tmp_path)
T
Tingquan Gao 已提交
403 404 405 406 407
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        raise Exception(
            f"Something went wrong while praparing the model[{model_name}] files!"
        )
C
chenziheng 已提交
408

T
Tingquan Gao 已提交
409
    return storage_directory()
C
chenziheng 已提交
410

T
Tingquan Gao 已提交
411

C
chenziheng 已提交
412
class PaddleClas(object):
T
Tingquan Gao 已提交
413 414 415
    """PaddleClas.
    """

T
Tingquan Gao 已提交
416
    print_info()
C
chenziheng 已提交
417

T
Tingquan Gao 已提交
418 419 420
    def __init__(self,
                 model_name: str=None,
                 inference_model_dir: str=None,
T
Tingquan Gao 已提交
421 422 423 424
                 use_gpu: bool=True,
                 batch_size: int=1,
                 topk: int=5,
                 **kwargs):
T
Tingquan Gao 已提交
425
        """Init PaddleClas with config.
T
Tingquan Gao 已提交
426

T
Tingquan Gao 已提交
427
        Args:
428 429 430 431 432
            model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None.
            inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None.
            use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True.
            batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1.
            topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5.
T
Tingquan Gao 已提交
433 434
        """
        super().__init__()
T
Tingquan Gao 已提交
435 436
        self._config = init_config(model_name, inference_model_dir, use_gpu,
                                   batch_size, topk, **kwargs)
T
Tingquan Gao 已提交
437 438 439 440 441
        self._check_input_model()
        self.cls_predictor = ClsPredictor(self._config)

    def get_config(self):
        """Get the config.
C
chenziheng 已提交
442
        """
T
Tingquan Gao 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456
        return self._config

    def _check_input_model(self):
        """Check input model name or model files.
        """
        candidate_model_names = get_model_names()
        input_model_name = self._config.Global.get("model_name", None)
        inference_model_dir = self._config.Global.get("inference_model_dir",
                                                      None)
        if input_model_name is not None:
            similar_names = similar_architectures(input_model_name,
                                                  candidate_model_names)
            similar_names_str = ", ".join(similar_names)
            if input_model_name not in candidate_model_names:
T
Tingquan Gao 已提交
457
                err = f"{input_model_name} is not provided by PaddleClas. \nMaybe you want: [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!"
T
Tingquan Gao 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
                raise InputModelError(err)
            self._config.Global.inference_model_dir = check_model_file(
                input_model_name)
            return
        elif inference_model_dir is not None:
            model_file_path = os.path.join(inference_model_dir,
                                           "inference.pdmodel")
            params_file_path = os.path.join(inference_model_dir,
                                            "inference.pdiparams")
            if not os.path.isfile(model_file_path) or not os.path.isfile(
                    params_file_path):
                err = f"There is no model file or params file in this directory: {inference_model_dir}"
                raise InputModelError(err)
            return
        else:
T
Tingquan Gao 已提交
473
            err = f"Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)."
T
Tingquan Gao 已提交
474 475 476
            raise InputModelError(err)
        return

477 478
    def predict(self, input_data: Union[str, np.array],
                print_pred: bool=False) -> Generator[list, None, None]:
T
Tingquan Gao 已提交
479 480
        """Predict input_data.

C
chenziheng 已提交
481
        Args:
G
gaotingquan 已提交
482
            input_data (Union[str, np.array]):
483 484
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
G
gaotingquan 已提交
485
            print_pred (bool, optional): Whether print the prediction result. Defaults to False.
T
Tingquan Gao 已提交
486 487 488 489 490

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
G
gaotingquan 已提交
491 492 493
            Generator[list, None, None]:
                The prediction result(s) of input_data by batch_size. For every one image,
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
G
gaotingquan 已提交
494
                The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
C
chenziheng 已提交
495
        """
496

T
Tingquan Gao 已提交
497
        if isinstance(input_data, np.ndarray):
G
gaotingquan 已提交
498
            yield self.cls_predictor.predict(input_data)
T
Tingquan Gao 已提交
499
        elif isinstance(input_data, str):
T
Tingquan Gao 已提交
500
            if input_data.startswith("http") or input_data.startswith("https"):
T
Tingquan Gao 已提交
501 502 503 504 505 506 507 508 509 510 511 512
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
                input_data = image_save_path
                warnings.warn(
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
            image_list = get_image_list(input_data)

            batch_size = self._config.Global.get("batch_size", 1)
G
gaotingquan 已提交
513
            topk = self._config.PostProcess.Topk.get('topk', 1)
T
Tingquan Gao 已提交
514 515

            img_list = []
T
Tingquan Gao 已提交
516 517 518 519 520
            img_path_list = []
            cnt = 0
            for idx, img_path in enumerate(image_list):
                img = cv2.imread(img_path)
                if img is None:
T
Tingquan Gao 已提交
521 522 523
                    warnings.warn(
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
T
Tingquan Gao 已提交
524
                    continue
525
                img = img[:, :, ::-1]
T
Tingquan Gao 已提交
526 527 528 529 530
                img_list.append(img)
                img_path_list.append(img_path)
                cnt += 1

                if cnt % batch_size == 0 or (idx + 1) == len(image_list):
G
gaotingquan 已提交
531 532
                    preds = self.cls_predictor.predict(img_list)

T
Tingquan Gao 已提交
533
                    if print_pred and preds:
G
gaotingquan 已提交
534
                        for idx, pred in enumerate(preds):
T
Tingquan Gao 已提交
535 536 537
                            pred_str = ", ".join(
                                [f"{k}: {pred[k]}" for k in pred])
                            print(
G
gaotingquan 已提交
538 539
                                f"filename: {img_path_list[idx]}, top-{topk}, {pred_str}"
                            )
T
Tingquan Gao 已提交
540

T
Tingquan Gao 已提交
541
                    img_list = []
T
Tingquan Gao 已提交
542
                    img_path_list = []
T
Tingquan Gao 已提交
543
                    yield preds
C
chenziheng 已提交
544
        else:
T
Tingquan Gao 已提交
545 546 547
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return
C
chenziheng 已提交
548 549


T
Tingquan Gao 已提交
550
# for CLI
C
chenziheng 已提交
551
def main():
T
Tingquan Gao 已提交
552 553 554
    """Function API used for commad line.
    """
    cfg = args_cfg()
T
Tingquan Gao 已提交
555 556 557 558 559
    clas_engine = PaddleClas(**cfg)
    res = clas_engine.predict(cfg["infer_imgs"], print_pred=True)
    for _ in res:
        pass
    print("Predict complete!")
T
Tingquan Gao 已提交
560
    return
C
chenziheng 已提交
561 562


T
Tingquan Gao 已提交
563
if __name__ == "__main__":
C
chenziheng 已提交
564
    main()