paddleclas.py 23.1 KB
Newer Older
G
gaotingquan 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
C
chenziheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
__dir__ = os.path.dirname(__file__)
T
Tingquan Gao 已提交
18 19 20
sys.path.append(os.path.join(__dir__, ""))
sys.path.append(os.path.join(__dir__, "deploy"))

21
from typing import Union, Generator
T
Tingquan Gao 已提交
22 23
import argparse
import shutil
T
Tingquan Gao 已提交
24
import textwrap
T
Tingquan Gao 已提交
25 26 27
import tarfile
import requests
from functools import partial
T
Tingquan Gao 已提交
28
from difflib import SequenceMatcher
C
chenziheng 已提交
29 30 31 32

import cv2
import numpy as np
from tqdm import tqdm
T
Tingquan Gao 已提交
33 34 35 36 37 38
from prettytable import PrettyTable

from deploy.python.predict_cls import ClsPredictor
from deploy.utils.get_image_list import get_image_list
from deploy.utils import config

39
import ppcls.arch.backbone as backbone
G
gaotingquan 已提交
40
from ppcls.utils import logger
T
Tingquan Gao 已提交
41

42
# for building model with loading pretrained weights from backbone
G
gaotingquan 已提交
43
logger.init_logger()
44

T
Tingquan Gao 已提交
45
__all__ = ["PaddleClas"]
T
Tingquan Gao 已提交
46

C
chenziheng 已提交
47
BASE_DIR = os.path.expanduser("~/.paddleclas/")
T
Tingquan Gao 已提交
48 49
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
50 51
IMN_MODEL_BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
IMN_MODEL_SERIES = {
T
Tingquan Gao 已提交
52 53 54
    "AlexNet": ["AlexNet"],
    "DarkNet": ["DarkNet53"],
    "DeiT": [
T
Tingquan Gao 已提交
55 56 57 58
        "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
        "DeiT_base_patch16_224", "DeiT_base_patch16_384",
        "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
        "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
T
Tingquan Gao 已提交
59 60 61 62 63
    ],
    "DenseNet": [
        "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
        "DenseNet264"
    ],
64 65 66 67
    "DLA": [
        "DLA46_c", "DLA60x_c", "DLA34", "DLA60", "DLA60x", "DLA102", "DLA102x",
        "DLA102x2", "DLA169"
    ],
T
Tingquan Gao 已提交
68 69 70 71 72 73
    "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
    "EfficientNet": [
        "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
        "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
        "EfficientNetB6", "EfficientNetB7"
    ],
G
gaotingquan 已提交
74
    "ESNet": ["ESNet_x0_25", "ESNet_x0_5", "ESNet_x0_75", "ESNet_x1_0"],
T
Tingquan Gao 已提交
75 76
    "GhostNet":
    ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
77
    "HarDNet": ["HarDNet39_ds", "HarDNet68_ds", "HarDNet68", "HarDNet85"],
T
Tingquan Gao 已提交
78 79 80 81 82 83
    "HRNet": [
        "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
        "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
        "HRNet_W48_C_ssld"
    ],
    "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
G
gaotingquan 已提交
84
    "MixNet": ["MixNet_S", "MixNet_M", "MixNet_L"],
T
Tingquan Gao 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    "MobileNetV1": [
        "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
        "MobileNetV1", "MobileNetV1_ssld"
    ],
    "MobileNetV2": [
        "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
        "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
        "MobileNetV2_ssld"
    ],
    "MobileNetV3": [
        "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
        "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
        "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
        "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
        "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
        "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
    ],
G
gaotingquan 已提交
102 103 104 105
    "PPLCNet": [
        "PPLCNet_x0_25", "PPLCNet_x0_35", "PPLCNet_x0_5", "PPLCNet_x0_75",
        "PPLCNet_x1_0", "PPLCNet_x1_5", "PPLCNet_x2_0", "PPLCNet_x2_5"
    ],
106
    "RedNet": ["RedNet26", "RedNet38", "RedNet50", "RedNet101", "RedNet152"],
T
Tingquan Gao 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    "RegNet": ["RegNetX_4GF"],
    "Res2Net": [
        "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
        "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
        "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
        "Res2Net200_vd_26w_4s_ssld"
    ],
    "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
    "ResNet": [
        "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
        "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
        "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
        "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
        "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
    ],
    "ResNeXt": [
        "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
        "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
        "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
        "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
        "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
        "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
        "ResNeXt152_vd_64x4d"
    ],
131 132
    "ReXNet":
    ["ReXNet_1_0", "ReXNet_1_3", "ReXNet_1_5", "ReXNet_2_0", "ReXNet_3_0"],
T
Tingquan Gao 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    "SENet": [
        "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
        "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
        "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
    ],
    "ShuffleNetV2": [
        "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
        "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
        "ShuffleNetV2_x2_0"
    ],
    "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
    "SwinTransformer": [
        "SwinTransformer_large_patch4_window7_224_22kto1k",
        "SwinTransformer_large_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window7_224_22kto1k",
        "SwinTransformer_base_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window12_384",
        "SwinTransformer_base_patch4_window7_224",
        "SwinTransformer_small_patch4_window7_224",
        "SwinTransformer_tiny_patch4_window7_224"
    ],
G
gaotingquan 已提交
154 155 156 157
    "Twins": [
        "pcpvt_small", "pcpvt_base", "pcpvt_large", "alt_gvt_small",
        "alt_gvt_base", "alt_gvt_large"
    ],
T
Tingquan Gao 已提交
158 159 160 161 162 163 164 165 166 167
    "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
    "VisionTransformer": [
        "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
        "ViT_large_patch16_224", "ViT_large_patch16_384",
        "ViT_large_patch32_384", "ViT_small_patch16_224"
    ],
    "Xception": [
        "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
        "Xception71"
    ]
C
chenziheng 已提交
168 169
}

170 171 172
PULC_MODEL_BASE_DOWNLOAD_URL = "https://paddleclas.bj.bcebos.com/models/PULC/{}_infer.tar"
PULC_MODELS = [
    "person_exists", "person_attribute", "safety_helmet", "traffic_sign",
G
gaotingquan 已提交
173 174
    "vehicle_exists", "vehicle_attr", "textline_orientation",
    "text_image_orientation", "language_classification"
175 176
]

C
chenziheng 已提交
177

T
Tingquan Gao 已提交
178 179
class ImageTypeError(Exception):
    """ImageTypeError.
T
Tingquan Gao 已提交
180 181
    """

T
Tingquan Gao 已提交
182
    def __init__(self, message=""):
T
Tingquan Gao 已提交
183 184 185
        super().__init__(message)


T
Tingquan Gao 已提交
186 187 188 189 190 191 192 193
class InputModelError(Exception):
    """InputModelError.
    """

    def __init__(self, message=""):
        super().__init__(message)


194 195 196
def init_config(model_type, model_name, inference_model_dir, **kwargs):

    cfg_path = f"deploy/configs/PULC/{model_name}/inference_{model_name}.yaml" if model_type == "pulc" else "deploy/configs/inference_cls.yaml"
G
gaotingquan 已提交
197
    cfg_path = os.path.join(__dir__, cfg_path)
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    cfg = config.get_config(cfg_path, show=False)

    cfg.Global.inference_model_dir = inference_model_dir

    if "batch_size" in kwargs and kwargs["batch_size"]:
        cfg.Global.batch_size = kwargs["batch_size"]
    if "use_gpu" in kwargs and kwargs["use_gpu"]:
        cfg.Global.use_gpu = kwargs["use_gpu"]

    if "infer_imgs" in kwargs and kwargs["infer_imgs"]:
        cfg.Global.infer_imgs = kwargs["infer_imgs"]
    if "enable_mkldnn" in kwargs and kwargs["enable_mkldnn"]:
        cfg.Global.enable_mkldnn = kwargs["enable_mkldnn"]
    if "cpu_num_threads" in kwargs and kwargs["cpu_num_threads"]:
        cfg.Global.cpu_num_threads = kwargs["cpu_num_threads"]
    if "use_fp16" in kwargs and kwargs["use_fp16"]:
        cfg.Global.use_fp16 = kwargs["use_fp16"]
    if "use_tensorrt" in kwargs and kwargs["use_tensorrt"]:
        cfg.Global.use_tensorrt = kwargs["use_tensorrt"]
    if "gpu_mem" in kwargs and kwargs["gpu_mem"]:
        cfg.Global.gpu_mem = kwargs["gpu_mem"]
    if "resize_short" in kwargs and kwargs["resize_short"]:
        cfg.PreProcess.transform_ops[0]["ResizeImage"][
            "resize_short"] = kwargs["resize_short"]
    if "crop_size" in kwargs and kwargs["crop_size"]:
        cfg.PreProcess.transform_ops[1]["CropImage"]["size"] = kwargs[
            "crop_size"]

    # TODO(gaotingquan): not robust
    if "thresh" in kwargs and kwargs[
            "thresh"] and "ThreshOutput" in cfg.PostProcess:
        cfg.PostProcess.ThreshOutput.thresh = kwargs["thresh"]
    if "Topk" in cfg.PostProcess:
        if "topk" in kwargs and kwargs["topk"]:
            cfg.PostProcess.Topk.topk = kwargs["topk"]
        if "class_id_map_file" in kwargs and kwargs["class_id_map_file"]:
            cfg.PostProcess.Topk.class_id_map_file = kwargs[
T
Tingquan Gao 已提交
235
                "class_id_map_file"]
236 237 238 239 240 241 242 243 244 245 246 247 248
        else:
            cfg.PostProcess.Topk.class_id_map_file = os.path.relpath(
                cfg.PostProcess.Topk.class_id_map_file, "../")
    if "VehicleAttribute" in cfg.PostProcess:
        if "color_threshold" in kwargs and kwargs["color_threshold"]:
            cfg.PostProcess.VehicleAttribute.color_threshold = kwargs[
                "color_threshold"]
        if "type_threshold" in kwargs and kwargs["type_threshold"]:
            cfg.PostProcess.VehicleAttribute.type_threshold = kwargs[
                "type_threshold"]

    if "save_dir" in kwargs and kwargs["save_dir"]:
        cfg.PostProcess.SavePreLabel.save_dir = kwargs["save_dir"]
T
Tingquan Gao 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

    return cfg


def args_cfg():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--infer_imgs",
        type=str,
        required=True,
        help="The image(s) to be predicted.")
    parser.add_argument(
        "--model_name", type=str, help="The model name to be used.")
    parser.add_argument(
        "--inference_model_dir",
        type=str,
        help="The directory of model files. Valid when model_name not specifed."
    )
270
    parser.add_argument("--use_gpu", type=str, help="Whether use GPU.")
T
Tingquan Gao 已提交
271 272 273 274 275 276 277 278 279 280
    parser.add_argument("--gpu_mem", type=int, default=8000, help="")
    parser.add_argument(
        "--enable_mkldnn",
        type=str2bool,
        default=False,
        help="Whether use MKLDNN. Valid when use_gpu is False")
    parser.add_argument("--cpu_num_threads", type=int, default=1, help="")
    parser.add_argument(
        "--use_tensorrt", type=str2bool, default=False, help="")
    parser.add_argument("--use_fp16", type=str2bool, default=False, help="")
281
    parser.add_argument("--batch_size", type=int, help="Batch size.")
T
Tingquan Gao 已提交
282 283 284
    parser.add_argument(
        "--topk",
        type=int,
285 286
        help="Return topk score(s) and corresponding results when Topk postprocess is used."
    )
T
Tingquan Gao 已提交
287 288 289 290
    parser.add_argument(
        "--class_id_map_file",
        type=str,
        help="The path of file that map class_id and label.")
291 292 293 294 295 296
    parser.add_argument(
        "--threshold",
        type=float,
        help="The threshold of ThreshOutput when postprocess is used.")
    parser.add_argument("--color_threshold", type=float, help="")
    parser.add_argument("--type_threshold", type=float, help="")
T
Tingquan Gao 已提交
297 298 299 300
    parser.add_argument(
        "--save_dir",
        type=str,
        help="The directory to save prediction results as pre-label.")
G
gaotingquan 已提交
301
    parser.add_argument(
302 303
        "--resize_short", type=int, help="Resize according to short size.")
    parser.add_argument("--crop_size", type=int, help="Centor crop size.")
T
Tingquan Gao 已提交
304 305 306

    args = parser.parse_args()
    return vars(args)
T
Tingquan Gao 已提交
307 308


T
Tingquan Gao 已提交
309
def print_info():
T
Tingquan Gao 已提交
310 311
    """Print list of supported models in formatted.
    """
312 313
    imn_table = PrettyTable(["IMN Model Series", "Model Name"])
    pulc_table = PrettyTable(["PULC Models"])
T
Tingquan Gao 已提交
314 315
    try:
        sz = os.get_terminal_size()
316 317 318
        total_width = sz.columns
        first_width = 30
        second_width = total_width - first_width if total_width > 50 else 10
T
Tingquan Gao 已提交
319
    except OSError:
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
        second_width = 100
    for series in IMN_MODEL_SERIES:
        names = textwrap.fill(
            "  ".join(IMN_MODEL_SERIES[series]), width=second_width)
        imn_table.add_row([series, names])

    table_width = len(str(imn_table).split("\n")[0])
    pulc_table.add_row([
        textwrap.fill(
            "  ".join(PULC_MODELS), width=total_width).center(table_width - 4)
    ])

    print("{}".format("-" * table_width))
    print("Models supported by PaddleClas".center(table_width))
    print(imn_table)
    print(pulc_table)
    print("Powered by PaddlePaddle!".rjust(table_width))
    print("{}".format("-" * table_width))


def get_imn_model_names():
T
Tingquan Gao 已提交
341 342
    """Get the model names list.
    """
T
Tingquan Gao 已提交
343
    model_names = []
344 345
    for series in IMN_MODEL_SERIES:
        model_names += (IMN_MODEL_SERIES[series])
T
Tingquan Gao 已提交
346 347 348
    return model_names


349
def similar_model_names(name="", names=[], thresh=0.1, topk=5):
T
Tingquan Gao 已提交
350
    """Find the most similar topk model names.
T
Tingquan Gao 已提交
351 352 353
    """
    scores = []
    for idx, n in enumerate(names):
T
Tingquan Gao 已提交
354
        if n.startswith("__"):
T
Tingquan Gao 已提交
355 356 357 358 359 360 361 362 363
            continue
        score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
        if score > thresh:
            scores.append((idx, score))
    scores.sort(key=lambda x: x[1], reverse=True)
    similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
    return similar_names


C
chenziheng 已提交
364
def download_with_progressbar(url, save_path):
T
Tingquan Gao 已提交
365 366 367 368
    """Download from url with progressbar.
    """
    if os.path.isfile(save_path):
        os.remove(save_path)
C
chenziheng 已提交
369
    response = requests.get(url, stream=True)
T
Tingquan Gao 已提交
370
    total_size_in_bytes = int(response.headers.get("content-length", 0))
C
chenziheng 已提交
371
    block_size = 1024  # 1 Kibibyte
T
Tingquan Gao 已提交
372 373
    progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
    with open(save_path, "wb") as file:
C
chenziheng 已提交
374 375 376 377
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
T
Tingquan Gao 已提交
378 379
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
            save_path):
T
Tingquan Gao 已提交
380
        raise Exception(
T
Tingquan Gao 已提交
381
            f"Something went wrong while downloading file from {url}")
C
chenziheng 已提交
382 383


384
def check_model_file(model_type, model_name):
385
    """Check the model files exist and download and untar when no exist.
T
Tingquan Gao 已提交
386
    """
387 388 389 390 391 392 393 394
    if model_type == "pulc":
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "PULC", model_name)
        url = PULC_MODEL_BASE_DOWNLOAD_URL.format(model_name)
    else:
        storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                    "IMN", model_name)
        url = IMN_MODEL_BASE_DOWNLOAD_URL.format(model_name)
T
Tingquan Gao 已提交
395

C
chenziheng 已提交
396
    tar_file_name_list = [
T
Tingquan Gao 已提交
397
        "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
C
chenziheng 已提交
398
    ]
T
Tingquan Gao 已提交
399 400 401 402 403
    model_file_path = storage_directory("inference.pdmodel")
    params_file_path = storage_directory("inference.pdiparams")
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        tmp_path = storage_directory(url.split("/")[-1])
G
gaotingquan 已提交
404
        logger.info(f"download {url} to {tmp_path}")
T
Tingquan Gao 已提交
405
        os.makedirs(storage_directory(), exist_ok=True)
C
chenziheng 已提交
406
        download_with_progressbar(url, tmp_path)
T
Tingquan Gao 已提交
407
        with tarfile.open(tmp_path, "r") as tarObj:
C
chenziheng 已提交
408 409 410 411 412 413 414 415
            for member in tarObj.getmembers():
                filename = None
                for tar_file_name in tar_file_name_list:
                    if tar_file_name in member.name:
                        filename = tar_file_name
                if filename is None:
                    continue
                file = tarObj.extractfile(member)
T
Tingquan Gao 已提交
416
                with open(storage_directory(filename), "wb") as f:
C
chenziheng 已提交
417 418
                    f.write(file.read())
        os.remove(tmp_path)
T
Tingquan Gao 已提交
419 420 421 422 423
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        raise Exception(
            f"Something went wrong while praparing the model[{model_name}] files!"
        )
C
chenziheng 已提交
424

T
Tingquan Gao 已提交
425
    return storage_directory()
C
chenziheng 已提交
426

T
Tingquan Gao 已提交
427

C
chenziheng 已提交
428
class PaddleClas(object):
T
Tingquan Gao 已提交
429 430 431
    """PaddleClas.
    """

T
Tingquan Gao 已提交
432
    print_info()
C
chenziheng 已提交
433

T
Tingquan Gao 已提交
434 435 436
    def __init__(self,
                 model_name: str=None,
                 inference_model_dir: str=None,
T
Tingquan Gao 已提交
437
                 **kwargs):
T
Tingquan Gao 已提交
438
        """Init PaddleClas with config.
T
Tingquan Gao 已提交
439

T
Tingquan Gao 已提交
440
        Args:
441 442 443 444 445
            model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None.
            inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None.
            use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True.
            batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1.
            topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5.
T
Tingquan Gao 已提交
446 447
        """
        super().__init__()
448 449 450 451 452
        self.model_type, inference_model_dir = self._check_input_model(
            model_name, inference_model_dir)
        self._config = init_config(self.model_type, model_name,
                                   inference_model_dir, **kwargs)

T
Tingquan Gao 已提交
453 454 455 456
        self.cls_predictor = ClsPredictor(self._config)

    def get_config(self):
        """Get the config.
C
chenziheng 已提交
457
        """
T
Tingquan Gao 已提交
458 459
        return self._config

460
    def _check_input_model(self, model_name, inference_model_dir):
T
Tingquan Gao 已提交
461 462
        """Check input model name or model files.
        """
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
        all_imn_model_names = get_imn_model_names()
        all_pulc_model_names = PULC_MODELS

        if model_name:
            if model_name in all_imn_model_names:
                inference_model_dir = check_model_file("imn", model_name)
                return "imn", inference_model_dir
            elif model_name in all_pulc_model_names:
                inference_model_dir = check_model_file("pulc", model_name)
                return "pulc", inference_model_dir
            else:
                similar_imn_names = similar_model_names(model_name,
                                                        all_imn_model_names)
                similar_pulc_names = similar_model_names(model_name,
                                                         all_pulc_model_names)
                similar_names_str = ", ".join(similar_imn_names +
                                              similar_pulc_names)
                err = f"{model_name} is not provided by PaddleClas. \nMaybe you want the : [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!"
T
Tingquan Gao 已提交
481
                raise InputModelError(err)
482
        elif inference_model_dir:
T
Tingquan Gao 已提交
483 484 485 486 487 488 489 490
            model_file_path = os.path.join(inference_model_dir,
                                           "inference.pdmodel")
            params_file_path = os.path.join(inference_model_dir,
                                            "inference.pdiparams")
            if not os.path.isfile(model_file_path) or not os.path.isfile(
                    params_file_path):
                err = f"There is no model file or params file in this directory: {inference_model_dir}"
                raise InputModelError(err)
491
            return "custom", inference_model_dir
T
Tingquan Gao 已提交
492
        else:
T
Tingquan Gao 已提交
493
            err = f"Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)."
T
Tingquan Gao 已提交
494
            raise InputModelError(err)
495
        return None
T
Tingquan Gao 已提交
496

497 498
    def predict(self, input_data: Union[str, np.array],
                print_pred: bool=False) -> Generator[list, None, None]:
T
Tingquan Gao 已提交
499 500
        """Predict input_data.

C
chenziheng 已提交
501
        Args:
G
gaotingquan 已提交
502
            input_data (Union[str, np.array]):
503 504
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
G
gaotingquan 已提交
505
            print_pred (bool, optional): Whether print the prediction result. Defaults to False.
T
Tingquan Gao 已提交
506 507 508 509 510

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
G
gaotingquan 已提交
511 512 513
            Generator[list, None, None]:
                The prediction result(s) of input_data by batch_size. For every one image,
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
G
gaotingquan 已提交
514
                The format of batch prediction result(s) is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
C
chenziheng 已提交
515
        """
516

T
Tingquan Gao 已提交
517
        if isinstance(input_data, np.ndarray):
G
gaotingquan 已提交
518
            yield self.cls_predictor.predict(input_data)
T
Tingquan Gao 已提交
519
        elif isinstance(input_data, str):
T
Tingquan Gao 已提交
520
            if input_data.startswith("http") or input_data.startswith("https"):
T
Tingquan Gao 已提交
521 522 523 524 525
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
G
gaotingquan 已提交
526
                logger.info(
T
Tingquan Gao 已提交
527 528
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
529
                input_data = image_save_path
T
Tingquan Gao 已提交
530 531 532 533 534
            image_list = get_image_list(input_data)

            batch_size = self._config.Global.get("batch_size", 1)

            img_list = []
T
Tingquan Gao 已提交
535 536
            img_path_list = []
            cnt = 0
537
            for idx_img, img_path in enumerate(image_list):
T
Tingquan Gao 已提交
538 539
                img = cv2.imread(img_path)
                if img is None:
G
gaotingquan 已提交
540
                    logger.warning(
T
Tingquan Gao 已提交
541 542
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
T
Tingquan Gao 已提交
543
                    continue
544
                img = img[:, :, ::-1]
T
Tingquan Gao 已提交
545 546 547 548
                img_list.append(img)
                img_path_list.append(img_path)
                cnt += 1

549
                if cnt % batch_size == 0 or (idx_img + 1) == len(image_list):
G
gaotingquan 已提交
550 551
                    preds = self.cls_predictor.predict(img_list)

552 553 554 555
                    if preds:
                        for idx_pred, pred in enumerate(preds):
                            pred["filename"] = img_path_list[idx_pred]
                            if print_pred:
G
gaotingquan 已提交
556
                                logger.info(", ".join(
557
                                    [f"{k}: {pred[k]}" for k in pred]))
T
Tingquan Gao 已提交
558

T
Tingquan Gao 已提交
559
                    img_list = []
T
Tingquan Gao 已提交
560
                    img_path_list = []
T
Tingquan Gao 已提交
561
                    yield preds
C
chenziheng 已提交
562
        else:
T
Tingquan Gao 已提交
563 564 565
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return
C
chenziheng 已提交
566 567


T
Tingquan Gao 已提交
568
# for CLI
C
chenziheng 已提交
569
def main():
T
Tingquan Gao 已提交
570 571 572
    """Function API used for commad line.
    """
    cfg = args_cfg()
T
Tingquan Gao 已提交
573 574 575 576
    clas_engine = PaddleClas(**cfg)
    res = clas_engine.predict(cfg["infer_imgs"], print_pred=True)
    for _ in res:
        pass
G
gaotingquan 已提交
577
    logger.info("Predict complete!")
T
Tingquan Gao 已提交
578
    return
C
chenziheng 已提交
579 580


T
Tingquan Gao 已提交
581
if __name__ == "__main__":
C
chenziheng 已提交
582
    main()