paddleclas.py 21.3 KB
Newer Older
T
Tingquan Gao 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
C
chenziheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
__dir__ = os.path.dirname(__file__)
T
Tingquan Gao 已提交
18 19 20
sys.path.append(os.path.join(__dir__, ""))
sys.path.append(os.path.join(__dir__, "deploy"))

21
from typing import Union, Generator
T
Tingquan Gao 已提交
22 23
import argparse
import shutil
T
Tingquan Gao 已提交
24
import textwrap
T
Tingquan Gao 已提交
25 26 27 28
import tarfile
import requests
import warnings
from functools import partial
T
Tingquan Gao 已提交
29
from difflib import SequenceMatcher
C
chenziheng 已提交
30 31 32 33

import cv2
import numpy as np
from tqdm import tqdm
T
Tingquan Gao 已提交
34 35 36 37 38 39 40
from prettytable import PrettyTable

from deploy.python.predict_cls import ClsPredictor
from deploy.utils.get_image_list import get_image_list
from deploy.utils import config

from ppcls.arch.backbone import *
G
gaotingquan 已提交
41
from ppcls.utils.logger import init_logger
T
Tingquan Gao 已提交
42 43

__all__ = ["PaddleClas"]
T
Tingquan Gao 已提交
44

C
chenziheng 已提交
45
BASE_DIR = os.path.expanduser("~/.paddleclas/")
T
Tingquan Gao 已提交
46 47 48 49
BASE_INFERENCE_MODEL_DIR = os.path.join(BASE_DIR, "inference_model")
BASE_IMAGES_DIR = os.path.join(BASE_DIR, "images")
BASE_DOWNLOAD_URL = "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/{}_infer.tar"
MODEL_SERIES = {
T
Tingquan Gao 已提交
50 51 52
    "AlexNet": ["AlexNet"],
    "DarkNet": ["DarkNet53"],
    "DeiT": [
T
Tingquan Gao 已提交
53 54 55 56
        "DeiT_base_distilled_patch16_224", "DeiT_base_distilled_patch16_384",
        "DeiT_base_patch16_224", "DeiT_base_patch16_384",
        "DeiT_small_distilled_patch16_224", "DeiT_small_patch16_224",
        "DeiT_tiny_distilled_patch16_224", "DeiT_tiny_patch16_224"
T
Tingquan Gao 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    ],
    "DenseNet": [
        "DenseNet121", "DenseNet161", "DenseNet169", "DenseNet201",
        "DenseNet264"
    ],
    "DPN": ["DPN68", "DPN92", "DPN98", "DPN107", "DPN131"],
    "EfficientNet": [
        "EfficientNetB0", "EfficientNetB0_small", "EfficientNetB1",
        "EfficientNetB2", "EfficientNetB3", "EfficientNetB4", "EfficientNetB5",
        "EfficientNetB6", "EfficientNetB7"
    ],
    "GhostNet":
    ["GhostNet_x0_5", "GhostNet_x1_0", "GhostNet_x1_3", "GhostNet_x1_3_ssld"],
    "HRNet": [
        "HRNet_W18_C", "HRNet_W30_C", "HRNet_W32_C", "HRNet_W40_C",
        "HRNet_W44_C", "HRNet_W48_C", "HRNet_W64_C", "HRNet_W18_C_ssld",
        "HRNet_W48_C_ssld"
    ],
    "Inception": ["GoogLeNet", "InceptionV3", "InceptionV4"],
    "MobileNetV1": [
        "MobileNetV1_x0_25", "MobileNetV1_x0_5", "MobileNetV1_x0_75",
        "MobileNetV1", "MobileNetV1_ssld"
    ],
    "MobileNetV2": [
        "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
        "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0",
        "MobileNetV2_ssld"
    ],
    "MobileNetV3": [
        "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
        "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
        "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
        "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
        "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25",
        "MobileNetV3_small_x1_0_ssld", "MobileNetV3_large_x1_0_ssld"
    ],
G
gaotingquan 已提交
93 94 95 96
    "PPLCNet": [
        "PPLCNet_x0_25", "PPLCNet_x0_35", "PPLCNet_x0_5", "PPLCNet_x0_75",
        "PPLCNet_x1_0", "PPLCNet_x1_5", "PPLCNet_x2_0", "PPLCNet_x2_5"
    ],
T
Tingquan Gao 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    "RegNet": ["RegNetX_4GF"],
    "Res2Net": [
        "Res2Net50_14w_8s", "Res2Net50_26w_4s", "Res2Net50_vd_26w_4s",
        "Res2Net200_vd_26w_4s", "Res2Net101_vd_26w_4s",
        "Res2Net50_vd_26w_4s_ssld", "Res2Net101_vd_26w_4s_ssld",
        "Res2Net200_vd_26w_4s_ssld"
    ],
    "ResNeSt": ["ResNeSt50", "ResNeSt50_fast_1s1x64d"],
    "ResNet": [
        "ResNet18", "ResNet18_vd", "ResNet34", "ResNet34_vd", "ResNet50",
        "ResNet50_vc", "ResNet50_vd", "ResNet50_vd_v2", "ResNet101",
        "ResNet101_vd", "ResNet152", "ResNet152_vd", "ResNet200_vd",
        "ResNet34_vd_ssld", "ResNet50_vd_ssld", "ResNet50_vd_ssld_v2",
        "ResNet101_vd_ssld", "Fix_ResNet50_vd_ssld_v2", "ResNet50_ACNet_deploy"
    ],
    "ResNeXt": [
        "ResNeXt50_32x4d", "ResNeXt50_vd_32x4d", "ResNeXt50_64x4d",
        "ResNeXt50_vd_64x4d", "ResNeXt101_32x4d", "ResNeXt101_vd_32x4d",
        "ResNeXt101_32x8d_wsl", "ResNeXt101_32x16d_wsl",
        "ResNeXt101_32x32d_wsl", "ResNeXt101_32x48d_wsl",
        "Fix_ResNeXt101_32x48d_wsl", "ResNeXt101_64x4d", "ResNeXt101_vd_64x4d",
        "ResNeXt152_32x4d", "ResNeXt152_vd_32x4d", "ResNeXt152_64x4d",
        "ResNeXt152_vd_64x4d"
    ],
    "SENet": [
        "SENet154_vd", "SE_HRNet_W64_C_ssld", "SE_ResNet18_vd",
        "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNeXt50_32x4d",
        "SE_ResNeXt50_vd_32x4d", "SE_ResNeXt101_32x4d"
    ],
    "ShuffleNetV2": [
        "ShuffleNetV2_swish", "ShuffleNetV2_x0_25", "ShuffleNetV2_x0_33",
        "ShuffleNetV2_x0_5", "ShuffleNetV2_x1_0", "ShuffleNetV2_x1_5",
        "ShuffleNetV2_x2_0"
    ],
    "SqueezeNet": ["SqueezeNet1_0", "SqueezeNet1_1"],
    "SwinTransformer": [
        "SwinTransformer_large_patch4_window7_224_22kto1k",
        "SwinTransformer_large_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window7_224_22kto1k",
        "SwinTransformer_base_patch4_window12_384_22kto1k",
        "SwinTransformer_base_patch4_window12_384",
        "SwinTransformer_base_patch4_window7_224",
        "SwinTransformer_small_patch4_window7_224",
        "SwinTransformer_tiny_patch4_window7_224"
    ],
G
gaotingquan 已提交
142 143 144 145
    "Twins": [
        "pcpvt_small", "pcpvt_base", "pcpvt_large", "alt_gvt_small",
        "alt_gvt_base", "alt_gvt_large"
    ],
T
Tingquan Gao 已提交
146 147 148 149 150 151 152 153 154 155
    "VGG": ["VGG11", "VGG13", "VGG16", "VGG19"],
    "VisionTransformer": [
        "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
        "ViT_large_patch16_224", "ViT_large_patch16_384",
        "ViT_large_patch32_384", "ViT_small_patch16_224"
    ],
    "Xception": [
        "Xception41", "Xception41_deeplab", "Xception65", "Xception65_deeplab",
        "Xception71"
    ]
C
chenziheng 已提交
156 157 158
}


T
Tingquan Gao 已提交
159 160
class ImageTypeError(Exception):
    """ImageTypeError.
T
Tingquan Gao 已提交
161 162
    """

T
Tingquan Gao 已提交
163
    def __init__(self, message=""):
T
Tingquan Gao 已提交
164 165 166
        super().__init__(message)


T
Tingquan Gao 已提交
167 168 169 170 171 172 173 174
class InputModelError(Exception):
    """InputModelError.
    """

    def __init__(self, message=""):
        super().__init__(message)


T
Tingquan Gao 已提交
175 176 177 178 179 180 181 182 183
def init_config(model_name,
                inference_model_dir,
                use_gpu=True,
                batch_size=1,
                topk=5,
                **kwargs):
    imagenet1k_map_path = os.path.join(
        os.path.abspath(__dir__), "ppcls/utils/imagenet1k_label_list.txt")
    cfg = {
T
Tingquan Gao 已提交
184
        "Global": {
T
Tingquan Gao 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
            "infer_imgs": kwargs["infer_imgs"]
            if "infer_imgs" in kwargs else False,
            "model_name": model_name,
            "inference_model_dir": inference_model_dir,
            "batch_size": batch_size,
            "use_gpu": use_gpu,
            "enable_mkldnn": kwargs["enable_mkldnn"]
            if "enable_mkldnn" in kwargs else False,
            "cpu_num_threads": kwargs["cpu_num_threads"]
            if "cpu_num_threads" in kwargs else 1,
            "enable_benchmark": False,
            "use_fp16": kwargs["use_fp16"] if "use_fp16" in kwargs else False,
            "ir_optim": True,
            "use_tensorrt": kwargs["use_tensorrt"]
            if "use_tensorrt" in kwargs else False,
            "gpu_mem": kwargs["gpu_mem"] if "gpu_mem" in kwargs else 8000,
T
Tingquan Gao 已提交
201 202 203 204 205
            "enable_profile": False
        },
        "PreProcess": {
            "transform_ops": [{
                "ResizeImage": {
T
Tingquan Gao 已提交
206 207
                    "resize_short": kwargs["resize_short"]
                    if "resize_short" in kwargs else 256
T
Tingquan Gao 已提交
208 209 210
                }
            }, {
                "CropImage": {
T
Tingquan Gao 已提交
211 212
                    "size": kwargs["crop_size"]
                    if "crop_size" in kwargs else 224
T
Tingquan Gao 已提交
213 214 215 216 217 218
                }
            }, {
                "NormalizeImage": {
                    "scale": 0.00392157,
                    "mean": [0.485, 0.456, 0.406],
                    "std": [0.229, 0.224, 0.225],
T
Tingquan Gao 已提交
219
                    "order": ''
T
Tingquan Gao 已提交
220 221 222 223 224 225
                }
            }, {
                "ToCHWImage": None
            }]
        },
        "PostProcess": {
T
Tingquan Gao 已提交
226 227 228 229 230
            "main_indicator": "Topk",
            "Topk": {
                "topk": topk,
                "class_id_map_file": imagenet1k_map_path
            }
T
Tingquan Gao 已提交
231 232
        }
    }
T
Tingquan Gao 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    if "save_dir" in kwargs:
        if kwargs["save_dir"] is not None:
            cfg["PostProcess"]["SavePreLabel"] = {
                "save_dir": kwargs["save_dir"]
            }
    if "class_id_map_file" in kwargs:
        if kwargs["class_id_map_file"] is not None:
            cfg["PostProcess"]["Topk"]["class_id_map_file"] = kwargs[
                "class_id_map_file"]

    cfg = config.AttrDict(cfg)
    config.create_attr_dict(cfg)
    return cfg


def args_cfg():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--infer_imgs",
        type=str,
        required=True,
        help="The image(s) to be predicted.")
    parser.add_argument(
        "--model_name", type=str, help="The model name to be used.")
    parser.add_argument(
        "--inference_model_dir",
        type=str,
        help="The directory of model files. Valid when model_name not specifed."
    )
    parser.add_argument(
        "--use_gpu", type=str, default=True, help="Whether use GPU.")
    parser.add_argument("--gpu_mem", type=int, default=8000, help="")
    parser.add_argument(
        "--enable_mkldnn",
        type=str2bool,
        default=False,
        help="Whether use MKLDNN. Valid when use_gpu is False")
    parser.add_argument("--cpu_num_threads", type=int, default=1, help="")
    parser.add_argument(
        "--use_tensorrt", type=str2bool, default=False, help="")
    parser.add_argument("--use_fp16", type=str2bool, default=False, help="")
    parser.add_argument(
        "--batch_size", type=int, default=1, help="Batch size. Default by 1.")
    parser.add_argument(
        "--topk",
        type=int,
        default=5,
        help="Return topk score(s) and corresponding results. Default by 5.")
    parser.add_argument(
        "--class_id_map_file",
        type=str,
        help="The path of file that map class_id and label.")
    parser.add_argument(
        "--save_dir",
        type=str,
        help="The directory to save prediction results as pre-label.")
G
gaotingquan 已提交
292 293 294 295 296 297 298
    parser.add_argument(
        "--resize_short",
        type=int,
        default=256,
        help="Resize according to short size.")
    parser.add_argument(
        "--crop_size", type=int, default=224, help="Centor crop size.")
T
Tingquan Gao 已提交
299 300 301

    args = parser.parse_args()
    return vars(args)
T
Tingquan Gao 已提交
302 303


T
Tingquan Gao 已提交
304
def print_info():
T
Tingquan Gao 已提交
305 306 307
    """Print list of supported models in formatted.
    """
    table = PrettyTable(["Series", "Name"])
T
Tingquan Gao 已提交
308 309 310 311 312
    try:
        sz = os.get_terminal_size()
        width = sz.columns - 30 if sz.columns > 50 else 10
    except OSError:
        width = 100
T
Tingquan Gao 已提交
313 314
    for series in MODEL_SERIES:
        names = textwrap.fill("  ".join(MODEL_SERIES[series]), width=width)
T
Tingquan Gao 已提交
315
        table.add_row([series, names])
T
Tingquan Gao 已提交
316 317 318
    width = len(str(table).split("\n")[0])
    print("{}".format("-" * width))
    print("Models supported by PaddleClas".center(width))
T
Tingquan Gao 已提交
319
    print(table)
T
Tingquan Gao 已提交
320 321
    print("Powered by PaddlePaddle!".rjust(width))
    print("{}".format("-" * width))
T
Tingquan Gao 已提交
322 323 324


def get_model_names():
T
Tingquan Gao 已提交
325 326
    """Get the model names list.
    """
T
Tingquan Gao 已提交
327
    model_names = []
T
Tingquan Gao 已提交
328 329
    for series in MODEL_SERIES:
        model_names += (MODEL_SERIES[series])
T
Tingquan Gao 已提交
330 331 332
    return model_names


T
Tingquan Gao 已提交
333 334
def similar_architectures(name="", names=[], thresh=0.1, topk=10):
    """Find the most similar topk model names.
T
Tingquan Gao 已提交
335 336 337
    """
    scores = []
    for idx, n in enumerate(names):
T
Tingquan Gao 已提交
338
        if n.startswith("__"):
T
Tingquan Gao 已提交
339 340 341 342 343 344 345 346 347
            continue
        score = SequenceMatcher(None, n.lower(), name.lower()).quick_ratio()
        if score > thresh:
            scores.append((idx, score))
    scores.sort(key=lambda x: x[1], reverse=True)
    similar_names = [names[s[0]] for s in scores[:min(topk, len(scores))]]
    return similar_names


C
chenziheng 已提交
348
def download_with_progressbar(url, save_path):
T
Tingquan Gao 已提交
349 350 351 352
    """Download from url with progressbar.
    """
    if os.path.isfile(save_path):
        os.remove(save_path)
C
chenziheng 已提交
353
    response = requests.get(url, stream=True)
T
Tingquan Gao 已提交
354
    total_size_in_bytes = int(response.headers.get("content-length", 0))
C
chenziheng 已提交
355
    block_size = 1024  # 1 Kibibyte
T
Tingquan Gao 已提交
356 357
    progress_bar = tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
    with open(save_path, "wb") as file:
C
chenziheng 已提交
358 359 360 361
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
T
Tingquan Gao 已提交
362 363
    if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes or not os.path.isfile(
            save_path):
T
Tingquan Gao 已提交
364
        raise Exception(
T
Tingquan Gao 已提交
365
            f"Something went wrong while downloading file from {url}")
C
chenziheng 已提交
366 367


T
Tingquan Gao 已提交
368
def check_model_file(model_name):
369
    """Check the model files exist and download and untar when no exist.
T
Tingquan Gao 已提交
370 371 372 373 374
    """
    storage_directory = partial(os.path.join, BASE_INFERENCE_MODEL_DIR,
                                model_name)
    url = BASE_DOWNLOAD_URL.format(model_name)

C
chenziheng 已提交
375
    tar_file_name_list = [
T
Tingquan Gao 已提交
376
        "inference.pdiparams", "inference.pdiparams.info", "inference.pdmodel"
C
chenziheng 已提交
377
    ]
T
Tingquan Gao 已提交
378 379 380 381 382 383 384
    model_file_path = storage_directory("inference.pdmodel")
    params_file_path = storage_directory("inference.pdiparams")
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        tmp_path = storage_directory(url.split("/")[-1])
        print(f"download {url} to {tmp_path}")
        os.makedirs(storage_directory(), exist_ok=True)
C
chenziheng 已提交
385
        download_with_progressbar(url, tmp_path)
T
Tingquan Gao 已提交
386
        with tarfile.open(tmp_path, "r") as tarObj:
C
chenziheng 已提交
387 388 389 390 391 392 393 394
            for member in tarObj.getmembers():
                filename = None
                for tar_file_name in tar_file_name_list:
                    if tar_file_name in member.name:
                        filename = tar_file_name
                if filename is None:
                    continue
                file = tarObj.extractfile(member)
T
Tingquan Gao 已提交
395
                with open(storage_directory(filename), "wb") as f:
C
chenziheng 已提交
396 397
                    f.write(file.read())
        os.remove(tmp_path)
T
Tingquan Gao 已提交
398 399 400 401 402
    if not os.path.exists(model_file_path) or not os.path.exists(
            params_file_path):
        raise Exception(
            f"Something went wrong while praparing the model[{model_name}] files!"
        )
C
chenziheng 已提交
403

T
Tingquan Gao 已提交
404
    return storage_directory()
C
chenziheng 已提交
405

T
Tingquan Gao 已提交
406

C
chenziheng 已提交
407
class PaddleClas(object):
T
Tingquan Gao 已提交
408 409 410
    """PaddleClas.
    """

G
gaotingquan 已提交
411
    init_logger(name='root')
T
Tingquan Gao 已提交
412
    print_info()
C
chenziheng 已提交
413

T
Tingquan Gao 已提交
414 415 416
    def __init__(self,
                 model_name: str=None,
                 inference_model_dir: str=None,
T
Tingquan Gao 已提交
417 418 419 420
                 use_gpu: bool=True,
                 batch_size: int=1,
                 topk: int=5,
                 **kwargs):
T
Tingquan Gao 已提交
421
        """Init PaddleClas with config.
T
Tingquan Gao 已提交
422

T
Tingquan Gao 已提交
423
        Args:
424 425 426 427 428
            model_name (str, optional): The model name supported by PaddleClas. If specified, override config. Defaults to None.
            inference_model_dir (str, optional): The directory that contained model file and params file to be used. If specified, override config. Defaults to None.
            use_gpu (bool, optional): Whether use GPU. If specified, override config. Defaults to True.
            batch_size (int, optional): The batch size to pridict. If specified, override config. Defaults to 1.
            topk (int, optional): Return the top k prediction results with the highest score. Defaults to 5.
T
Tingquan Gao 已提交
429 430
        """
        super().__init__()
T
Tingquan Gao 已提交
431 432
        self._config = init_config(model_name, inference_model_dir, use_gpu,
                                   batch_size, topk, **kwargs)
T
Tingquan Gao 已提交
433 434 435 436 437
        self._check_input_model()
        self.cls_predictor = ClsPredictor(self._config)

    def get_config(self):
        """Get the config.
C
chenziheng 已提交
438
        """
T
Tingquan Gao 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452
        return self._config

    def _check_input_model(self):
        """Check input model name or model files.
        """
        candidate_model_names = get_model_names()
        input_model_name = self._config.Global.get("model_name", None)
        inference_model_dir = self._config.Global.get("inference_model_dir",
                                                      None)
        if input_model_name is not None:
            similar_names = similar_architectures(input_model_name,
                                                  candidate_model_names)
            similar_names_str = ", ".join(similar_names)
            if input_model_name not in candidate_model_names:
T
Tingquan Gao 已提交
453
                err = f"{input_model_name} is not provided by PaddleClas. \nMaybe you want: [{similar_names_str}]. \nIf you want to use your own model, please specify inference_model_dir!"
T
Tingquan Gao 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
                raise InputModelError(err)
            self._config.Global.inference_model_dir = check_model_file(
                input_model_name)
            return
        elif inference_model_dir is not None:
            model_file_path = os.path.join(inference_model_dir,
                                           "inference.pdmodel")
            params_file_path = os.path.join(inference_model_dir,
                                            "inference.pdiparams")
            if not os.path.isfile(model_file_path) or not os.path.isfile(
                    params_file_path):
                err = f"There is no model file or params file in this directory: {inference_model_dir}"
                raise InputModelError(err)
            return
        else:
T
Tingquan Gao 已提交
469
            err = f"Please specify the model name supported by PaddleClas or directory contained model files(inference.pdmodel, inference.pdiparams)."
T
Tingquan Gao 已提交
470 471 472
            raise InputModelError(err)
        return

473 474
    def predict(self, input_data: Union[str, np.array],
                print_pred: bool=False) -> Generator[list, None, None]:
T
Tingquan Gao 已提交
475 476
        """Predict input_data.

C
chenziheng 已提交
477
        Args:
G
gaotingquan 已提交
478
            input_data (Union[str, np.array]):
479 480 481
                When the type is str, it is the path of image, or the directory containing images, or the URL of image from Internet.
                When the type is np.array, it is the image data whose channel order is RGB.
            print_pred (bool, optional): Whether print the prediction result. Defaults to False. Defaults to False.
T
Tingquan Gao 已提交
482 483 484 485 486

        Raises:
            ImageTypeError: Illegal input_data.

        Yields:
G
gaotingquan 已提交
487 488 489
            Generator[list, None, None]:
                The prediction result(s) of input_data by batch_size. For every one image,
                prediction result(s) is zipped as a dict, that includs topk "class_ids", "scores" and "label_names".
490
                The format is as follow: [{"class_ids": [...], "scores": [...], "label_names": [...]}, ...]
C
chenziheng 已提交
491
        """
492

T
Tingquan Gao 已提交
493
        if isinstance(input_data, np.ndarray):
T
Tingquan Gao 已提交
494 495
            outputs = self.cls_predictor.predict(input_data)
            yield self.cls_predictor.postprocess(outputs)
T
Tingquan Gao 已提交
496
        elif isinstance(input_data, str):
T
Tingquan Gao 已提交
497
            if input_data.startswith("http") or input_data.startswith("https"):
T
Tingquan Gao 已提交
498 499 500 501 502 503 504 505 506 507 508 509
                image_storage_dir = partial(os.path.join, BASE_IMAGES_DIR)
                if not os.path.exists(image_storage_dir()):
                    os.makedirs(image_storage_dir())
                image_save_path = image_storage_dir("tmp.jpg")
                download_with_progressbar(input_data, image_save_path)
                input_data = image_save_path
                warnings.warn(
                    f"Image to be predicted from Internet: {input_data}, has been saved to: {image_save_path}"
                )
            image_list = get_image_list(input_data)

            batch_size = self._config.Global.get("batch_size", 1)
T
Tingquan Gao 已提交
510
            topk = self._config.PostProcess.get('topk', 1)
T
Tingquan Gao 已提交
511 512

            img_list = []
T
Tingquan Gao 已提交
513 514 515 516 517
            img_path_list = []
            cnt = 0
            for idx, img_path in enumerate(image_list):
                img = cv2.imread(img_path)
                if img is None:
T
Tingquan Gao 已提交
518 519 520
                    warnings.warn(
                        f"Image file failed to read and has been skipped. The path: {img_path}"
                    )
T
Tingquan Gao 已提交
521
                    continue
522
                img = img[:, :, ::-1]
T
Tingquan Gao 已提交
523 524 525 526 527 528
                img_list.append(img)
                img_path_list.append(img_path)
                cnt += 1

                if cnt % batch_size == 0 or (idx + 1) == len(image_list):
                    outputs = self.cls_predictor.predict(img_list)
T
Tingquan Gao 已提交
529 530 531
                    preds = self.cls_predictor.postprocess(outputs,
                                                           img_path_list)
                    if print_pred and preds:
G
gaotingquan 已提交
532 533
                        for pred in preds:
                            filename = pred.pop("file_name")
T
Tingquan Gao 已提交
534 535 536
                            pred_str = ", ".join(
                                [f"{k}: {pred[k]}" for k in pred])
                            print(
G
gaotingquan 已提交
537
                                f"filename: {filename}, top-{topk}, {pred_str}")
T
Tingquan Gao 已提交
538

T
Tingquan Gao 已提交
539
                    img_list = []
T
Tingquan Gao 已提交
540
                    img_path_list = []
T
Tingquan Gao 已提交
541
                    yield preds
C
chenziheng 已提交
542
        else:
T
Tingquan Gao 已提交
543 544 545
            err = "Please input legal image! The type of image supported by PaddleClas are: NumPy.ndarray and string of local path or Ineternet URL"
            raise ImageTypeError(err)
        return
C
chenziheng 已提交
546 547


T
Tingquan Gao 已提交
548
# for CLI
C
chenziheng 已提交
549
def main():
T
Tingquan Gao 已提交
550 551 552
    """Function API used for commad line.
    """
    cfg = args_cfg()
T
Tingquan Gao 已提交
553 554 555 556 557
    clas_engine = PaddleClas(**cfg)
    res = clas_engine.predict(cfg["infer_imgs"], print_pred=True)
    for _ in res:
        pass
    print("Predict complete!")
T
Tingquan Gao 已提交
558
    return
C
chenziheng 已提交
559 560


T
Tingquan Gao 已提交
561
if __name__ == "__main__":
C
chenziheng 已提交
562
    main()