tensor_util.cc 59.7 KB
Newer Older
Y
Yang Yu 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14

15 16
#include "paddle/fluid/framework/tensor_util.h"

C
chengduoZH 已提交
17 18
#include <algorithm>
#include <limits>
C
chengduo 已提交
19
#include <memory>
20
#include <string>
C
chengduo 已提交
21
#include <utility>
C
chengduoZH 已提交
22
#include <vector>
23

24
#include "paddle/fluid/framework/convert_utils.h"
Y
yuyang18 已提交
25
#include "paddle/fluid/framework/data_type.h"
26
#include "paddle/fluid/platform/complex.h"
27
#include "paddle/fluid/platform/profiler/event_tracing.h"
28
#include "paddle/phi/core/dense_tensor.h"
29

30
#ifdef PADDLE_WITH_MKLDNN
31
#include "dnnl_debug.h"  // NOLINT
32
#endif
Y
Yang Yu 已提交
33 34 35

namespace paddle {
namespace framework {
Y
Yi Wang 已提交
36

37
template <typename TENSOR>
38 39 40 41
void TensorCopyImpl(const TENSOR& src,
                    const platform::Place& dst_place,
                    const platform::DeviceContext& ctx,
                    TENSOR* dst) {
42 43
  if (&src == dst) {
    auto src_copy = src;
44
    TensorCopyImpl(src_copy, dst_place, ctx, dst);
45 46 47
    return;
  }

M
minqiyang 已提交
48 49
  VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
          << dst_place;
Y
Yi Wang 已提交
50 51 52 53
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
54
  auto src_ptr = src.data();
55
#ifdef PADDLE_WITH_MKLDNN
56
  dst->set_mem_desc(src.mem_desc());
57 58 59 60
  // oneDNN tensors due to padding may be of bigger size
  // than numel()*size(type())
  auto dst_ptr =
      src.layout() == DataLayout::kMKLDNN
61 62
          ? dst->mutable_data(dst_place, src.dtype(), src.memory_size())
          : dst->mutable_data(dst_place, src.dtype());
63
#else
64
  auto dst_ptr = dst->mutable_data(dst_place, src.dtype());
65
#endif
66
  dst->set_layout(src.layout());
67 68 69 70 71
  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data async from " << src_place << " to "
            << dst_place;
    return;
  }
72
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
73

74 75 76
#ifdef PADDLE_WITH_MKLDNN
  auto size = src.layout() == DataLayout::kMKLDNN
                  ? src.memory_size()
77
                  : src.numel() * framework::DataTypeSize(src.dtype());
78
#else
79
  auto size = src.numel() * framework::DataTypeSize(src.dtype());
80
#endif
Y
Yi Wang 已提交
81 82

  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
83
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
Y
Yi Wang 已提交
84
  }
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  } else if (platform::is_cpu_place(src_place) &&  // NOLINT
             platform::is_custom_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  } else if (platform::is_custom_place(src_place) &&  // NOLINT
             platform::is_custom_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::CustomDeviceContext&>(ctx).stream();
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
  }
#endif
108 109 110
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
111
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
112 113
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
114
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
115 116 117 118 119 120 121
  } else if (platform::is_xpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
122
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
123 124 125 126 127
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
128 129 130 131 132 133
#ifdef PADDLE_WITH_ASCEND_CL
  // TODO(zhiqiu): handle different condition like CUDA code below
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
134
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
135 136 137
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
138 139 140 141 142
    //  1. cpu tensor -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(src.dims());
    auto npu_pinned_ptr =
143
        npu_pinned_tensor.mutable_data(npu_pinned_place, src.dtype());
144
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);
145 146 147

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
148 149 150 151 152
        dst_place,
        dst_ptr,
        npu_pinned_place,
        npu_pinned_ptr,
        size,
153 154 155 156 157 158 159 160
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
161
    phi::Allocation* allocation = npu_pinned_tensor.Holder().get();
162 163 164
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
165 166 167 168 169 170 171 172 173 174
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
175
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
176
  }
W
WangXi 已提交
177 178
  else if (platform::is_npu_pinned_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {         /* npu_pinned->npu */
179 180
    auto src_npu_pinned_place = src_place;
    auto dst_npu_place = dst_place;
W
WangXi 已提交
181
    auto ctx_place = ctx.GetPlace();
182 183
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place),
                      true,
W
WangXi 已提交
184 185 186 187
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU Pinned memory to NPU memory, current "
                          "device context place should be NPU."));
188
    auto ctx_npu_place = ctx_place;
189 190
    PADDLE_ENFORCE_EQ(dst_npu_place,
                      ctx_npu_place,
W
WangXi 已提交
191 192 193 194
                      platform::errors::PreconditionNotMet(
                          "The target NPU device and current device context do "
                          "not match. The target NPU device number is %d, but "
                          "device context NPU number is %d.",
195 196
                          dst_npu_place.device,
                          ctx_npu_place.device));
W
WangXi 已提交
197 198
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
199 200
    memory::Copy(
        dst_npu_place, dst_ptr, src_npu_pinned_place, src_ptr, size, stream);
W
WangXi 已提交
201 202 203
  }
  else if (platform::is_npu_place(src_place) &&        // NOLINT
           platform::is_npu_pinned_place(dst_place)) { /* npu->npu_pinned */
204 205
    auto src_npu_place = src_place;
    auto dst_npu_pinned_place = dst_place;
W
WangXi 已提交
206
    auto ctx_place = ctx.GetPlace();
207 208
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place),
                      true,
W
WangXi 已提交
209 210 211 212
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU memory to NPU Pinned memory, current "
                          "device context place should be NPU."));
213
    auto ctx_npu_place = ctx_place;
214 215
    PADDLE_ENFORCE_EQ(src_place,
                      ctx_npu_place,
W
WangXi 已提交
216 217 218 219
                      platform::errors::PreconditionNotMet(
                          "The source NPU device and current device context do "
                          "not match. The source NPU device number is %d, but "
                          "device context NPU number is %d.",
220 221
                          src_npu_place.device,
                          ctx_npu_place.device));
W
WangXi 已提交
222 223
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
224 225
    memory::Copy(
        dst_npu_pinned_place, dst_ptr, src_npu_place, src_ptr, size, stream);
W
WangXi 已提交
226
  }
227 228 229 230 231
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
232
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
233 234
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
235
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
236
  }
237
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
Y
Yi Wang 已提交
238
           platform::is_cpu_place(dst_place)) {
239
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
240 241 242
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
243
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
244 245 246
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
247 248
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
Y
Yi Wang 已提交
249
    auto ctx_place = ctx.GetPlace();
250
    PADDLE_ENFORCE_EQ(
251 252
        platform::is_gpu_place(ctx_place),
        true,
253 254 255
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
256
    auto ctx_gpu_place = ctx_place;
257 258
    PADDLE_ENFORCE_EQ(src_gpu_place,
                      ctx_gpu_place,
259 260 261
                      platform::errors::Unavailable(
                          "Source place and context place do not match, source "
                          "place is %s, context place is %s.",
262 263
                          src_gpu_place,
                          ctx_gpu_place));
264
    auto stream =
F
fengjiayi 已提交
265
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
266
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
267 268 269
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
270 271
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
272
    auto ctx_place = ctx.GetPlace();
273
    PADDLE_ENFORCE_EQ(
274 275
        platform::is_gpu_place(ctx_place),
        true,
276 277 278
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
279
    auto ctx_gpu_place = ctx_place;
280 281
    PADDLE_ENFORCE_EQ(dst_gpu_place,
                      ctx_gpu_place,
282 283 284
                      platform::errors::Unavailable(
                          "Destination place and context place do not match, "
                          "destination place is %s, context place is %s.",
285 286
                          dst_gpu_place,
                          ctx_gpu_place));
287
    auto stream =
F
fengjiayi 已提交
288
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
289
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
290 291 292
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
293 294
    auto src_gpu_place = src_place;
    auto dst_cuda_pinned_place = dst_place;
295
    auto ctx_place = ctx.GetPlace();
296 297
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place),
                      true,
298 299 300 301
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from GPU memory to CUDA Pinned memory, current "
                          "device context place should be GPU."));
302
    auto ctx_gpu_place = ctx_place;
303 304
    PADDLE_ENFORCE_EQ(src_gpu_place,
                      ctx_gpu_place,
305 306 307 308
                      platform::errors::PreconditionNotMet(
                          "The source GPU device and current device context do "
                          "not match. The source GPU device number is %d, but "
                          "device context GPU number is %d.",
309 310
                          src_gpu_place.device,
                          ctx_gpu_place.device));
311 312
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
313 314
    memory::Copy(
        dst_cuda_pinned_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
315 316 317
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
318 319
    auto src_cuda_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
320
    auto ctx_place = ctx.GetPlace();
321 322
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place),
                      true,
323 324 325 326
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from CUDA Pinned memory to GPU memory, current "
                          "device context place should be GPU."));
327
    auto ctx_gpu_place = ctx_place;
328 329
    PADDLE_ENFORCE_EQ(dst_gpu_place,
                      ctx_gpu_place,
330 331 332 333
                      platform::errors::PreconditionNotMet(
                          "The target GPU device and current device context do "
                          "not match. The target GPU device number is %d, but "
                          "device context GPU number is %d.",
334 335
                          dst_gpu_place.device,
                          ctx_gpu_place.device));
336 337
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
338 339
    memory::Copy(
        dst_gpu_place, dst_ptr, src_cuda_pinned_place, src_ptr, size, stream);
340 341 342
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
343 344
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
345
    auto ctx_place = ctx.GetPlace();
346
    PADDLE_ENFORCE_EQ(
347 348
        platform::is_gpu_place(ctx_place),
        true,
349 350 351
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
352
    auto stream =
F
fengjiayi 已提交
353
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
C
chengduo 已提交
354
    if (platform::is_same_place(src_place, dst_place)) {
355 356
      memory::Copy(
          dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
C
chengduo 已提交
357 358
    } else {
      if (platform::is_same_place(ctx_place, src_place)) {
359 360
        memory::Copy(
            dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
C
chengduo 已提交
361
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
362
      } else if (platform::is_same_place(ctx_place, dst_place)) {
C
chengduo 已提交
363
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
364 365
        memory::Copy(
            dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
C
chengduo 已提交
366
      } else {
367 368
        PADDLE_THROW(platform::errors::Unavailable(
            "Context place dose not match the source and destination place."));
C
chengduo 已提交
369 370
      }
    }
371 372
  }
  else {  // NOLINT
373 374
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
Y
Yi Wang 已提交
375 376
  }
#endif
377 378 379
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
380 381
    auto src_mlu_place = src_place;
    auto dst_cpu_place = dst_place;
382 383 384 385 386 387
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_cpu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
388 389
    auto src_cpu_place = src_place;
    auto dst_mlu_place = dst_place;
390 391 392 393 394 395
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
396 397
    auto src_mlu_place = src_place;
    auto dst_mlu_place = dst_place;
398 399 400 401 402 403 404 405 406
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
A
Allen Guo 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
Y
Yi Wang 已提交
430 431
}

432
template <typename TENSOR>
433 434
void TensorCopyImpl(const TENSOR& src,
                    const platform::Place& dst_place,
435
                    TENSOR* dst) {
Y
Yi Wang 已提交
436 437
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
438
  if (platform::is_gpu_place(dst_place) || platform::is_npu_place(dst_place) ||
439 440
      platform::is_mlu_place(dst_place) ||
      platform::is_custom_place(dst_place)) {
Y
Yi Wang 已提交
441
    dev_ctx = pool.Get(dst_place);
C
chengduo 已提交
442 443
  } else {
    dev_ctx = pool.Get(src.place());
Y
Yi Wang 已提交
444
  }
445 446 447
  TensorCopyImpl(src, dst_place, *dev_ctx, dst);
}

448 449
void TensorCopy(const Tensor& src,
                const platform::Place& dst_place,
450 451 452
                Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, dst);
}
453 454 455 456
void TensorCopy(const Tensor& src,
                const platform::Place& dst_place,
                const platform::DeviceContext& ctx,
                Tensor* dst) {
457 458
  TensorCopyImpl<Tensor>(src, dst_place, ctx, dst);
}
Y
Yi Wang 已提交
459

460 461
void TensorCopySync(const Tensor& src,
                    const platform::Place& dst_place,
F
fengjiayi 已提交
462
                    Tensor* dst) {
463 464 465 466 467 468
  if (&src == dst) {
    auto src_copy = src;
    TensorCopySync(src_copy, dst_place, dst);
    return;
  }

M
minqiyang 已提交
469 470
  VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
          << " to " << dst_place;
F
fengjiayi 已提交
471 472 473
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
J
Jacek Czaja 已提交
474 475 476
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
#endif
F
fengjiayi 已提交
477
  auto src_place = src.place();
478
  auto src_ptr = src.data();
479
  auto dst_ptr = dst->mutable_data(dst_place, src.dtype());
480
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
481 482 483 484 485 486 487

  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data from " << src_place << " to "
            << dst_place;
    return;
  }

488
  auto size = src.numel() * framework::DataTypeSize(src.dtype());
F
fengjiayi 已提交
489
  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
490
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
F
fengjiayi 已提交
491
  }
492 493 494 495
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {     /* custom_device -> cpu*/
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
A
Allen Guo 已提交
496
  }                                                // NOLINT
497 498 499
  else if (platform::is_cpu_place(src_place) &&    // NOLINT
           platform::is_custom_place(dst_place)) { /* cpu -> custom_device*/
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
A
Allen Guo 已提交
500
  }                                                 // NOLINT
501 502 503 504 505 506 507 508 509 510 511
  else if (platform::is_custom_place(src_place) &&  // NOLINT
           platform::is_custom_place(
               dst_place)) { /* custom_device -> custom_device*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
  }
#endif
512 513 514
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
515
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
A
Allen Guo 已提交
516
  }                                              // NOLINT
J
jianghaicheng 已提交
517 518
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
519
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
A
Allen Guo 已提交
520
  }                                              // NOLINT
J
jianghaicheng 已提交
521 522
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
523 524 525 526 527
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
528 529 530
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
    platform::XPUPlace xpu_dst_place = dst_place;
    platform::XPUPlace xpu_src_place = src_place;
531 532 533 534
    if (xpu_dst_place.device == xpu_src_place.device) {
      auto xpu_ctx = platform::DeviceContextPool::Instance().Get(xpu_dst_place);
      xpu_ctx->Wait();
    }
A
Allen Guo 已提交
535
  }       // NOLINT
J
jianghaicheng 已提交
536
  else {  // NOLINT
537 538 539 540
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
541 542 543
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {  /* npu -> cpu*/
544
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
545 546 547
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* cpu -> npu*/
548
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
549 550 551 552 553 554 555 556
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* npu -> npu*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
557
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
558 559 560 561 562 563
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
564
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
565 566
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
567
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
568
  }
569
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
F
fengjiayi 已提交
570
           platform::is_cpu_place(dst_place)) {
571
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
572 573 574
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
575
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
576 577 578
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
579
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
580 581 582
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
583 584
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
F
fengjiayi 已提交
585
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
586 587 588
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
589 590
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
591
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
592 593 594
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
595 596
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
597
    memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
598 599 600
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
601 602
    auto src_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
603 604
    memory::Copy(
        dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size, nullptr);
605 606
  }
  else {  // NOLINT
607 608
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
F
fengjiayi 已提交
609 610
  }
#endif
611 612 613
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
614
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
615 616 617
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
618
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
619 620 621 622 623 624 625 626
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
627
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
628 629 630 631 632 633
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
A
Allen Guo 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_ipu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
F
fengjiayi 已提交
657 658
}

Y
Yang Yu 已提交
659 660 661 662 663 664 665
template <typename Predicate, typename DevCtx>
struct AnyDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

666 667 668
  AnyDTypeVisitor(Predicate predicate,
                  const Tensor& tensor,
                  const DevCtx& ctx,
Y
Yang Yu 已提交
669 670 671 672
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
D
dzhwinter 已提交
673
  void apply() const {
Y
Yang Yu 已提交
674 675
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenScalar<bool>::From(*out_);
Y
Yang Yu 已提交
676
    // return any of predicate_(t) is true.
Y
Yang Yu 已提交
677 678 679 680 681
    o.device(*ctx_.eigen_device()) = predicate_(t).any();
  }
};

template <typename Predicate, typename DevCtx>
682 683 684 685
inline void AnyImpl(Predicate predicate,
                    const framework::Tensor& tensor,
                    const DevCtx& ctx,
                    framework::Tensor* out) {
686 687 688
  VisitDataType(
      framework::TransToProtoVarType(tensor.dtype()),
      AnyDTypeVisitor<Predicate, DevCtx>(predicate, tensor, ctx, out));
Y
Yang Yu 已提交
689 690 691
}

template <typename Predicate>
692
class AnyVisitor : public std::unary_function<const Place&, bool> {
693
 private:
Y
Yang Yu 已提交
694 695 696
  const framework::Tensor& tensor_;
  Predicate predicate_;

697 698 699 700 701 702 703 704 705 706 707 708 709
  bool GetResultHelper(const framework::Tensor& out,
                       const platform::Place& place) const {
    platform::CPUPlace cpu;
    framework::Tensor tmp;
    tmp.Resize({1});
    tmp.mutable_data<bool>(cpu);
    auto ctx = platform::DeviceContextPool::Instance().Get(place);
    ctx->Wait();
    TensorCopy(out, cpu, *ctx, &tmp);
    ctx->Wait();
    return GetResult(tmp, cpu);
  }

710
 public:
Y
Yang Yu 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723
  AnyVisitor(const framework::Tensor& tensor, Predicate predicate)
      : tensor_(tensor), predicate_(std::move(predicate)) {}

  template <typename Place>
  bool operator()(const Place& place) const {
    framework::Tensor out;
    out.Resize({1});
    out.mutable_data<bool>(place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    AnyImpl(predicate_, tensor_, *ctx, &out);
    return this->GetResult(out, place);
  }

724 725 726 727 728
  bool GetResult(const framework::Tensor& out,
                 const platform::XPUPlace& xpu) const {
    return GetResultHelper(out, xpu);
  }

F
fwenguang 已提交
729 730 731 732 733 734 735
  bool GetResult(const framework::Tensor& out,
                 const platform::MLUPlace& mlu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", mlu));
    return true;
  }

Y
Yang Yu 已提交
736 737
  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPlace& gpu) const {
738
    return GetResultHelper(out, gpu);
Y
Yang Yu 已提交
739 740
  }

741 742 743 744 745 746
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPlace& npu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", npu));
    // return GetResultHelper(out, npu);
  }
J
jianghaicheng 已提交
747 748 749 750 751
  bool GetResult(const framework::Tensor& out,
                 const platform::IPUPlace& ipu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", ipu));
  }
752

753 754 755 756 757
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPinnedPlace& cpu) const {
    return *out.data<bool>();
  }

Y
Yang Yu 已提交
758 759 760 761
  bool GetResult(const framework::Tensor& out,
                 const platform::CPUPlace& cpu) const {
    return *out.data<bool>();
  }
C
chengduoZH 已提交
762 763 764 765 766

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPinnedPlace& cpu) const {
    return *out.data<bool>();
  }
767 768 769 770 771 772 773

  bool GetResult(const framework::Tensor& out,
                 const platform::CustomPlace& custom_dev) const {
    PADDLE_THROW(platform::errors::Unimplemented("Not supported on place (%s) ",
                                                 custom_dev));
    return false;
  }
Y
Yang Yu 已提交
774 775
};

776
template <typename Predicate>
777
class AnyOutVisitor : public std::unary_function<const Place&, void> {
778 779 780 781 782 783
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
784 785
  AnyOutVisitor(const framework::Tensor& tensor,
                Predicate predicate,
786 787 788 789 790 791 792 793 794 795 796 797
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(std::move(predicate)) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize({1});
    out_->mutable_data<bool>(place);
    AnyImpl(predicate_, tensor_, *ctx, out_);
  }
};

Y
Yang Yu 已提交
798 799 800 801 802 803 804
template <typename Predicate>
inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
  AnyVisitor<Predicate> visitor(tensor, predicate);
  auto place = tensor.place();
  return platform::VisitPlace(place, visitor);
}

805
template <typename Predicate>
806 807
inline void Any(const framework::Tensor& tensor,
                Predicate predicate,
808 809 810 811 812 813
                framework::Tensor* out) {
  AnyOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
814 815 816 817 818 819 820
template <typename Predicate, typename DevCtx>
struct AllDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

821 822 823
  AllDTypeVisitor(Predicate predicate,
                  const Tensor& tensor,
                  const DevCtx& ctx,
J
Jack Zhou 已提交
824 825 826 827 828 829 830 831 832 833 834 835
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
  void apply() const {
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenVector<bool>::Flatten(*out_);
    o.device(*ctx_.eigen_device()) = predicate_(t);
  }
};

template <typename Predicate, typename DevCtx>
836 837 838 839
inline void AllImpl(Predicate predicate,
                    const framework::Tensor& tensor,
                    const DevCtx& ctx,
                    framework::Tensor* out) {
840 841 842
  VisitDataType(
      framework::TransToProtoVarType(tensor.dtype()),
      AllDTypeVisitor<Predicate, DevCtx>(predicate, tensor, ctx, out));
J
Jack Zhou 已提交
843 844 845
}

template <typename Predicate>
846
class AllOutVisitor : public std::unary_function<const Place&, void> {
J
Jack Zhou 已提交
847 848 849 850 851 852
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
853 854
  AllOutVisitor(const framework::Tensor& tensor,
                Predicate predicate,
J
Jack Zhou 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(predicate) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize(tensor_.dims());
    out_->mutable_data<bool>(place);
    AllImpl(predicate_, tensor_, *ctx, out_);
  }
};

template <typename Predicate>
868 869
inline void All(const framework::Tensor& tensor,
                Predicate predicate,
J
Jack Zhou 已提交
870 871 872 873 874 875
                framework::Tensor* out) {
  AllOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
876
struct ContainsNANPredicate {
Y
Yang Yu 已提交
877 878 879
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isnan()) {
Y
Yang Yu 已提交
880
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
881 882 883 884
    return eigen_vec.isnan();
  }
};

Y
Yi Wang 已提交
885 886
bool TensorContainsNAN(const framework::Tensor& tensor) {
  ContainsNANPredicate predicate;
Y
Yang Yu 已提交
887 888 889
  return Any(tensor, predicate);
}

890 891 892 893 894 895
void TensorContainsNAN(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsNANPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
896 897 898 899 900 901
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsNANPredicate predicate;
  All(tensor, predicate, out);
}

Y
Yi Wang 已提交
902
struct ContainsInfPredicate {
Y
Yang Yu 已提交
903 904 905
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isinf()) {
Y
Yang Yu 已提交
906
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
907 908 909 910
    return eigen_vec.isinf();
  }
};

Y
Yi Wang 已提交
911 912
bool TensorContainsInf(const framework::Tensor& tensor) {
  ContainsInfPredicate predicate;
Y
Yang Yu 已提交
913 914 915
  return Any(tensor, predicate);
}

916 917 918 919 920 921
void TensorContainsInf(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsInfPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
922 923 924 925 926 927
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsInfPredicate predicate;
  All(tensor, predicate, out);
}

928 929 930 931 932 933 934 935 936 937
// NOTE(dzhwinter):
// Isfinite need a AllVisitor to loop through all the elements.
// We choose two cuda call instead of one allvisitor. The AllVisitor
// should be implemented if the performance hurts.
bool TensorIsfinite(const framework::Tensor& tensor) {
  ContainsInfPredicate pred_inf;
  ContainsNANPredicate pred_nan;
  return !Any(tensor, pred_inf) && !Any(tensor, pred_nan);
}

938
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
939
template <typename T>
J
Jack Zhou 已提交
940 941
static inline void __global__ BothFalse(const T* cmp, T* out, int element_num) {
  CUDA_KERNEL_LOOP(i, element_num) { out[i] = (!cmp[i]) && (!out[i]); }
942 943 944
}
#endif

945
struct BothFalseVisitor : public std::unary_function<const Place&, void> {
946 947 948 949 950 951 952 953 954 955
  const framework::Tensor& in_;
  mutable framework::Tensor* out_;
  BothFalseVisitor(const framework::Tensor& in, framework::Tensor* out)
      : in_(in), out_(out) {}

  template <typename Place>
  void operator()(const Place& place) const {
    VisitorImpl(place);
  }

956 957 958
  void VisitorImpl(const platform::XPUPlace& xpu) const {
    PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
  }
J
jianghaicheng 已提交
959 960 961
  void VisitorImpl(const platform::IPUPlace& ipu) const {
    PADDLE_THROW(platform::errors::Unimplemented("IPUPlace is not supported"));
  }
962

963
  void VisitorImpl(const platform::CUDAPlace& gpu) const {
964
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
965
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(gpu);
J
Jack Zhou 已提交
966 967 968 969 970 971 972 973 974 975
    constexpr int MAX_BLOCK_DIM = 512;
    const int MAX_GRID_DIM = ctx->GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int element_num = in_.numel();
    int block_size = (element_num >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(element_num)));
    int grid_size = element_num / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
    BothFalse<bool><<<grid_size, block_size, 0, ctx->stream()>>>(
        in_.data<bool>(), out_->mutable_data<bool>(gpu), element_num);
976 977 978
#endif
  }

979 980 981 982
  void VisitorImpl(const platform::NPUPlace& npu) const {
    // TODO(zhiqiu)
  }

F
fwenguang 已提交
983 984 985 986
  void VisitorImpl(const platform::MLUPlace& mlu) const {
    PADDLE_THROW(platform::errors::Unimplemented("MLUPlace is not supported"));
  }

987
  void VisitorImpl(const platform::CPUPlace& cpu) const {
J
Jack Zhou 已提交
988 989 990 991 992 993 994 995
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
996 997 998 999
  }

  void VisitorImpl(
      const platform::CUDAPinnedPlace& cpu /* equals to cpu*/) const {
J
Jack Zhou 已提交
1000 1001 1002 1003 1004 1005 1006 1007
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
1008
  }
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

  void VisitorImpl(
      const platform::NPUPinnedPlace& cpu /* equals to cpu*/) const {
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
  }
1021 1022 1023 1024 1025

  void VisitorImpl(const platform::CustomPlace& custom_dev) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("CustomPlace is not supported"));
  }
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
};

void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInf(tensor, &tmp);
  TensorContainsNAN(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInfV2(tensor, &tmp);
  TensorContainsNANV2(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

1046 1047
void TensorToStream(std::ostream& os,
                    const Tensor& tensor,
Y
Yi Wang 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056
                    const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {  // the 2nd field, tensor description
     // int32_t  size
     // void*    protobuf message
    proto::VarType::TensorDesc desc;
1057
    desc.set_data_type(framework::TransToProtoVarType(tensor.dtype()));
1058
    auto dims = phi::vectorize(tensor.dims());
Y
Yi Wang 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067
    auto* pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    std::copy(dims.begin(), dims.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
1068
    uint64_t size = tensor.numel() * framework::DataTypeSize(tensor.dtype());
Y
yuyang18 已提交
1069

1070
    auto* data_ptr = tensor.data();
1071 1072
    PADDLE_ENFORCE_LT(size,
                      (std::numeric_limits<std::streamsize>::max)(),
T
tangwei12 已提交
1073 1074
                      platform::errors::ResourceExhausted(
                          "tensor size %d overflow when writing tensor", size));
Y
Yi Wang 已提交
1075
    if (platform::is_gpu_place(tensor.place())) {
1076
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yi Wang 已提交
1077 1078 1079 1080 1081 1082 1083 1084
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& gpu_dev_ctx =
          static_cast<const platform::CUDADeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1085 1086 1087 1088 1089
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write,
Y
Yi Wang 已提交
1090 1091 1092 1093 1094 1095 1096
                     gpu_dev_ctx.stream());
        gpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
T
tangwei12 已提交
1097 1098
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
#endif
    } else if (platform::is_xpu_place(tensor.place())) {
#ifdef PADDLE_WITH_XPU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& xpu_dev_ctx =
          static_cast<const platform::XPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1110 1111 1112 1113 1114
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write);
1115 1116 1117 1118 1119 1120 1121 1122
        xpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "XPUPlace is not supported when not compiled with XPU"));
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
#endif
    } else if (platform::is_mlu_place(tensor.place())) {
#ifdef PADDLE_WITH_MLU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& mlu_dev_ctx =
          static_cast<const platform::MLUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1134 1135 1136 1137 1138
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write,
1139 1140 1141 1142 1143 1144 1145 1146 1147
                     mlu_dev_ctx.stream());
        mlu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "MLUPlace is not supported when not compiled with MLU"));
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
#endif
    } else if (platform::is_npu_place(tensor.place())) {
#ifdef PADDLE_WITH_ASCEND_CL
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& npu_dev_ctx =
          static_cast<const platform::NPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1159 1160 1161 1162 1163
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write,
1164 1165 1166 1167 1168 1169 1170 1171 1172
                     npu_dev_ctx.stream());
        npu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported when not compiled with NPU"));
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
#endif
    } else if (platform::is_custom_place(tensor.place())) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& custom_device_context =
          static_cast<const platform::CustomDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1184 1185 1186 1187 1188
        memory::Copy(cpu,
                     buf.get(),
                     tensor.place(),
                     reinterpret_cast<const void*>(data),
                     size_to_write,
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
                     custom_device_context.stream());
        custom_device_context.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "CustomPlace is not supported when not compiled with "
          "CustomDevice"));
Y
Yi Wang 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207
#endif
    } else {
      os.write(static_cast<const char*>(data_ptr),
               static_cast<std::streamsize>(size));
    }
  }
}

struct DeserializedDataFunctor {
1208 1209
  DeserializedDataFunctor(void** buf,
                          Tensor* tensor,
Y
Yi Wang 已提交
1210 1211 1212 1213
                          const platform::Place& place)
      : buf_(buf), tensor_(tensor), place_(place) {}

  template <typename T>
D
dzhwinter 已提交
1214
  void apply() {
Y
Yi Wang 已提交
1215 1216 1217 1218 1219 1220 1221 1222
    *buf_ = tensor_->mutable_data<T>(place_);
  }

  void** buf_;
  Tensor* tensor_;
  platform::Place place_;
};

1223 1224
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
T
tangwei12 已提交
1225
                      const platform::DeviceContext& dev_ctx,
1226 1227
                      const size_t& seek,
                      const std::vector<int64_t>& shape) {
T
tangwei12 已提交
1228 1229 1230 1231
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));

  PADDLE_ENFORCE_EQ(
1232 1233
      version,
      0U,
T
tangwei12 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));

  proto::VarType::TensorDesc desc;
  {  // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
    PADDLE_ENFORCE_EQ(
1246 1247
        desc.ParseFromArray(buf.get(), size),
        true,
T
tangwei12 已提交
1248 1249 1250
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
  }
  {  // read tensor
1251
    tensor->Resize(phi::make_ddim(shape));
T
tangwei12 已提交
1252 1253 1254 1255
    size_t seekg = seek * framework::SizeOfType(desc.data_type());
    is.seekg(seekg, is.cur);

    void* buf;
L
Leo Chen 已提交
1256
    phi::CPUContext ctx;
T
tangwei12 已提交
1257
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1258
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1259
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1260
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1261 1262
        platform::is_npu_place(dev_ctx.GetPlace()) ||
        platform::is_custom_place(dev_ctx.GetPlace())) {
1263
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1264
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
1265
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_CUSTOM_DEVICE)
T
tangwei12 已提交
1266
      Tensor cpu_tensor;
1267
      cpu_tensor.Resize(phi::make_ddim(shape));
T
tangwei12 已提交
1268 1269 1270 1271 1272 1273
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1274 1275
      if (platform::is_npu_place(dev_ctx.GetPlace()) ||
          platform::is_custom_place(dev_ctx.GetPlace())) {
1276 1277
        dev_ctx.Wait();
      }
T
tangwei12 已提交
1278
#else
1279 1280 1281
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1282
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1283 1284
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1285 1286 1287
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1288 1289 1290
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1291
      }
T
tangwei12 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
    }
  }
}

1302 1303
void TensorFromStream(std::istream& is,
                      Tensor* tensor,
Y
Yi Wang 已提交
1304 1305 1306
                      const platform::DeviceContext& dev_ctx) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));
T
tangwei12 已提交
1307
  PADDLE_ENFORCE_EQ(
1308 1309
      version,
      0U,
T
tangwei12 已提交
1310 1311 1312
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));
Y
Yi Wang 已提交
1313 1314 1315
  proto::VarType::TensorDesc desc;
  {  // int32_t size
     // proto buffer
Z
zlsh80826 已提交
1316
    int32_t size = -1;
Y
Yi Wang 已提交
1317
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
1318
    PADDLE_ENFORCE_EQ(
1319 1320
        is.good(),
        true,
1321 1322
        platform::errors::Unavailable("Cannot read tensor desc size"));
    PADDLE_ENFORCE_GE(
1323 1324
        size,
        0,
1325
        platform::errors::InvalidArgument("Tensor desc size should >= 0"));
Y
Yi Wang 已提交
1326 1327
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
T
tangwei12 已提交
1328
    PADDLE_ENFORCE_EQ(
1329 1330
        desc.ParseFromArray(buf.get(), size),
        true,
T
tangwei12 已提交
1331
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
Y
Yi Wang 已提交
1332 1333 1334 1335 1336
  }
  {  // read tensor
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
1337
    tensor->Resize(phi::make_ddim(dims));
Y
Yi Wang 已提交
1338
    void* buf;
L
Leo Chen 已提交
1339
    phi::CPUContext ctx;
Y
Yu Yang 已提交
1340
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1341
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1342
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1343
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1344 1345
        platform::is_npu_place(dev_ctx.GetPlace()) ||
        platform::is_custom_place(dev_ctx.GetPlace())) {
1346
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1347
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
1348
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_CUSTOM_DEVICE)
Y
Yi Wang 已提交
1349
      Tensor cpu_tensor;
1350
      cpu_tensor.Resize(phi::make_ddim(dims));
Y
Yi Wang 已提交
1351 1352 1353
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1354
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1355 1356
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1357 1358
      if (platform::is_npu_place(dev_ctx.GetPlace()) ||
          platform::is_custom_place(dev_ctx.GetPlace())) {
1359 1360
        dev_ctx.Wait();
      }
Y
Yi Wang 已提交
1361
#else
1362 1363 1364
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1365
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1366 1367
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1368 1369 1370
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1371
      } else if (platform::is_npu_place(dev_ctx.GetPlace())) {
1372 1373
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1374 1375 1376
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CutomPlace is not supported when not compiled with CustomDevice"));
1377
      }
Y
Yi Wang 已提交
1378 1379 1380 1381 1382
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1383
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1384 1385 1386 1387
    }
  }
}

6
633WHU 已提交
1388
// get tensor data point by DLDataType
1389 1390
void* GetDstPtrByDLDataType(DLDataType type,
                            framework::Tensor* dst,
6
633WHU 已提交
1391 1392
                            const platform::Place& dst_place) {
  // vector types not currently supported
1393 1394
  PADDLE_ENFORCE_LE(type.lanes,
                    1,
1395 1396
                    platform::errors::Unimplemented(
                        "Vector type is not supported currently."));
6
633WHU 已提交
1397 1398 1399 1400 1401 1402 1403

  switch (type.bits) {
    case 8:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int8_t>(dst_place));
      if (type.code == kDLUInt)
        return static_cast<void*>(dst->mutable_data<uint8_t>(dst_place));
1404 1405
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1406 1407
          type.code,
          type.bits));
6
633WHU 已提交
1408 1409 1410 1411 1412 1413
    case 16:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int16_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::float16>(dst_place));
S
Siming Dai 已提交
1414 1415 1416
      if (type.code == kDLBfloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::bfloat16>(dst_place));
1417 1418
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1419 1420
          type.code,
          type.bits));
6
633WHU 已提交
1421 1422 1423 1424 1425
    case 32:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int32_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<float>(dst_place));
1426 1427
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1428 1429
          type.code,
          type.bits));
6
633WHU 已提交
1430 1431 1432 1433 1434
    case 64:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int64_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<double>(dst_place));
S
Siming Dai 已提交
1435 1436 1437 1438 1439
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<float>>(dst_place));
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1440 1441
          type.code,
          type.bits));
S
Siming Dai 已提交
1442 1443 1444 1445
    case 128:
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<double>>(dst_place));
1446 1447
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
1448 1449
          type.code,
          type.bits));
6
633WHU 已提交
1450
    default:
1451 1452
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported DLDataType.bits %d.", type.bits));
6
633WHU 已提交
1453 1454 1455 1456 1457 1458 1459 1460
  }
}

void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst) {
  platform::CPUPlace dst_place = platform::CPUPlace();
  platform::CPUPlace src_place = platform::CPUPlace();

  std::vector<int64_t> vec;
1461 1462
  std::copy(dl_tensor.shape,
            dl_tensor.shape + dl_tensor.ndim,
6
633WHU 已提交
1463 1464
            std::back_inserter(vec));

1465
  framework::DDim vddim = phi::make_ddim(vec);
6
633WHU 已提交
1466 1467 1468 1469 1470 1471

  dst->Resize(vddim);
  ::DLDataType type = dl_tensor.dtype;
  void* dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);

  auto src_ptr = static_cast<const void*>(dl_tensor.data);
1472
  auto size = phi::product(vddim) * type.bits / 8;
6
633WHU 已提交
1473

S
Siming Dai 已提交
1474
  if (dl_tensor.device.device_type == kDLCPU) {
6
633WHU 已提交
1475 1476
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
1477
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
1478
  if (dl_tensor.device.device_type == kDLGPU) {
6
633WHU 已提交
1479
    platform::CUDAPlace dst_place =
S
Siming Dai 已提交
1480
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1481
    platform::CUDAPlace src_place =
S
Siming Dai 已提交
1482
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1483 1484 1485
    dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(dst_place);
    memory::Copy(
1486 1487 1488 1489 1490
        dst_place,
        dst_ptr,
        src_place,
        src_ptr,
        size,
6
633WHU 已提交
1491 1492 1493
        reinterpret_cast<const platform::CUDADeviceContext&>(*ctx).stream());
  }
#endif
1494 1495 1496
#ifdef PADDLE_WITH_XPU
  PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
#endif
6
633WHU 已提交
1497 1498
}

1499 1500 1501 1502 1503 1504
template <typename T>
std::string format_tensor(const framework::Tensor& tensor) {
  // TODO(zhiqiu): use the print option to format tensor.
  return "NOT IMPLEMENTED";
}

1505 1506 1507 1508 1509
template <typename T>
std::ostream& print_tensor(std::ostream& os, const framework::Tensor& tensor) {
  auto inspect = tensor.data<T>();
  auto element_num = tensor.numel();

1510
  os << "  - data: [";
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
  // Note: int8_t && uint8_t is typedf of char, ostream unable to print properly
  if (typeid(int8_t) == typeid(T) || typeid(uint8_t) == typeid(T)) {
    if (element_num > 0) {
      os << signed(inspect[0]);
      for (int j = 1; j < element_num; ++j) {
        os << " " << signed(inspect[j]);
      }
    }
  } else {
    if (element_num > 0) {
      os << inspect[0];
      for (int j = 1; j < element_num; ++j) {
        os << " " << inspect[j];
      }
1525 1526 1527 1528 1529 1530
    }
  }
  os << "]";
  return os;
}

1531
template <>
1532
std::ostream& print_tensor<paddle::platform::complex<float>>(
1533
    std::ostream& os, const framework::Tensor& tensor) {
1534
  auto inspect = tensor.data<paddle::platform::complex<float>>();
1535 1536 1537 1538
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1539
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1540
    for (int j = 1; j < element_num; ++j) {
1541 1542
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1543 1544 1545 1546 1547 1548 1549
    }
  }
  os << "]";
  return os;
}

template <>
1550
std::ostream& print_tensor<paddle::platform::complex<double>>(
1551
    std::ostream& os, const framework::Tensor& tensor) {
1552
  auto inspect = tensor.data<paddle::platform::complex<double>>();
1553 1554 1555 1556
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1557
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1558
    for (int j = 1; j < element_num; ++j) {
1559 1560
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1561 1562 1563 1564 1565 1566
    }
  }
  os << "]";
  return os;
}

1567
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
1568 1569
  // NOTE(xiongkun):
  // https://stackoverflow.com/questions/5195512/namespaces-and-operator-resolution
1570
  // if we don't redefine, the operator << of phi / framework LoD is not found.
1571
  paddle::string::operator<<(os, lod);
1572 1573 1574
  return os;
}

1575 1576 1577
}  // namespace framework
}  // namespace paddle

1578
namespace phi {
1579

1580 1581 1582 1583 1584
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
  paddle::string::operator<<(os, lod);
  return os;
}

1585
std::ostream& operator<<(std::ostream& os, const phi::DenseTensor& t) {
1586 1587 1588 1589
  if (t.lod().size() > 0) {
    os << "  - lod: " << t.lod() << "\n";
  }

1590 1591
  os << "  - place: " << t.place() << "\n";
  os << "  - shape: [" << t.dims() << "]\n";
1592 1593
  os << "  - layout: " << paddle::framework::DataLayoutToString(t.layout())
     << "\n";
1594

1595 1596 1597 1598 1599
#ifdef PADDLE_WITH_MKLDNN
  os << "  - format: "
     << dnnl_fmt_tag2str(static_cast<dnnl_format_tag_t>(t.format())) << "\n";
#endif

1600
  DenseTensor tensor;
1601
  tensor.Resize(t.dims());
1602
  if (paddle::platform::is_cpu_place(t.place())) {
1603 1604
    tensor.ShareDataWith(t);
  } else {
1605 1606 1607 1608
    paddle::platform::CPUPlace place;
    paddle::framework::TensorCopy(t, place, &tensor);
    paddle::platform::DeviceContextPool& pool =
        paddle::platform::DeviceContextPool::Instance();
1609 1610 1611 1612
    auto& dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();
  }

1613 1614 1615 1616 1617 1618 1619 1620
#define PrintTensorCallback(cpp_type, proto_type)                 \
  do {                                                            \
    if (paddle::framework::TransToProtoVarType(tensor.dtype()) == \
        proto_type) {                                             \
      os << "  - dtype: " << proto_type << "\n";                  \
      paddle::framework::print_tensor<cpp_type>(os, tensor);      \
      return os;                                                  \
    }                                                             \
1621 1622 1623 1624 1625 1626
  } while (0)

  _ForEachDataType_(PrintTensorCallback);
  VLOG(1) << "PrintVar: unrecognized data type:" << t.type();
  return os;
}
1627
}  // namespace phi