tensor_util.cc 24.3 KB
Newer Older
Y
Yang Yu 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/tensor_util.h"
C
chengduoZH 已提交
16 17
#include <algorithm>
#include <limits>
C
chengduo 已提交
18 19
#include <memory>
#include <utility>
C
chengduoZH 已提交
20
#include <vector>
Y
yuyang18 已提交
21
#include "paddle/fluid/framework/data_type.h"
22
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
23 24 25

namespace paddle {
namespace framework {
Y
Yi Wang 已提交
26 27

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
F
fengjiayi 已提交
28
                const platform::DeviceContext& ctx, Tensor* dst) {
29 30 31 32 33 34
  if (&src == dst) {
    auto src_copy = src;
    TensorCopy(src_copy, dst_place, ctx, dst);
    return;
  }

M
minqiyang 已提交
35 36
  VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
          << dst_place;
Y
Yi Wang 已提交
37 38 39 40 41 42 43 44
  src.check_memory_size();

  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
  auto src_ptr = src.data<void>();
  auto dst_ptr = dst->mutable_data(dst_place, src.type());

45 46 47 48 49 50
  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data async from " << src_place << " to "
            << dst_place;
    return;
  }

Y
Yi Wang 已提交
51 52 53
  auto size = src.numel() * SizeOfType(src.type());

  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
54 55
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
Y
Yi Wang 已提交
56 57 58 59
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
60 61
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_cpu_place = BOOST_GET_CONST(platform::CPUPlace, dst_place);
Y
Yi Wang 已提交
62
    auto ctx_place = ctx.GetPlace();
63
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true);
64
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
Y
Yi Wang 已提交
65
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place);
66
    auto stream =
F
fengjiayi 已提交
67
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
68
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
Y
Yi Wang 已提交
69 70
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
71 72
    auto src_cpu_place = BOOST_GET_CONST(platform::CPUPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
Y
Yi Wang 已提交
73
    auto ctx_place = ctx.GetPlace();
74
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true);
75
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
Y
Yi Wang 已提交
76
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place);
77
    auto stream =
F
fengjiayi 已提交
78
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
79
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
Y
Yi Wang 已提交
80 81
  } else if (platform::is_gpu_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
82 83
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
Y
Yi Wang 已提交
84
    auto ctx_place = ctx.GetPlace();
85
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true);
86
    auto stream =
F
fengjiayi 已提交
87
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
C
chengduo 已提交
88 89 90 91 92 93 94
    if (platform::is_same_place(src_place, dst_place)) {
      memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                   stream);
    } else {
      if (platform::is_same_place(ctx_place, src_place)) {
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
C
chengduo 已提交
95
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
96
      } else if (platform::is_same_place(ctx_place, dst_place)) {
C
chengduo 已提交
97
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
98 99 100 101 102 103
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
      } else {
        PADDLE_THROW("ctx is not belong to dst_gpu_place or src_gpu_place.");
      }
    }
104 105
  } else {
    PADDLE_THROW("Copy from %s to %s is not supported.", src_place, dst_place);
Y
Yi Wang 已提交
106 107 108 109 110 111 112 113
  }
#endif
}

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
C
chengduo 已提交
114
  if (platform::is_gpu_place(dst_place)) {
Y
Yi Wang 已提交
115
    dev_ctx = pool.Get(dst_place);
C
chengduo 已提交
116 117
  } else {
    dev_ctx = pool.Get(src.place());
Y
Yi Wang 已提交
118 119 120 121
  }
  TensorCopy(src, dst_place, *dev_ctx, dst);
}

F
fengjiayi 已提交
122 123
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst) {
124 125 126 127 128 129
  if (&src == dst) {
    auto src_copy = src;
    TensorCopySync(src_copy, dst_place, dst);
    return;
  }

M
minqiyang 已提交
130 131
  VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
          << " to " << dst_place;
F
fengjiayi 已提交
132 133 134 135 136 137
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
  auto src_ptr = src.data<void>();
  auto dst_ptr = dst->mutable_data(dst_place, src.type());
138 139 140 141 142 143 144

  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data from " << src_place << " to "
            << dst_place;
    return;
  }

F
fengjiayi 已提交
145 146
  auto size = src.numel() * SizeOfType(src.type());
  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
147 148
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
F
fengjiayi 已提交
149 150 151 152
  }
#ifdef PADDLE_WITH_CUDA
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
153 154
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_cpu_place = BOOST_GET_CONST(platform::CPUPlace, dst_place);
F
fengjiayi 已提交
155 156 157
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
158 159
    auto src_cpu_place = BOOST_GET_CONST(platform::CPUPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
F
fengjiayi 已提交
160 161 162
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
  } else if (platform::is_gpu_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
163 164
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
F
fengjiayi 已提交
165
    memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
W
Wu Yi 已提交
166 167
  } else if (platform::is_cuda_pinned_place(src_place) &&
             platform::is_gpu_place(dst_place)) {
168 169 170
    auto src_pinned_place =
        BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
W
Wu Yi 已提交
171 172
    memory::Copy(dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size,
                 nullptr);
173 174
  } else {
    PADDLE_THROW("Copy from %s to %s is not supported.", src_place, dst_place);
F
fengjiayi 已提交
175 176 177 178
  }
#endif
}

Y
Yang Yu 已提交
179 180 181 182 183 184 185 186 187 188 189 190
template <typename Predicate, typename DevCtx>
struct AnyDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AnyDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
D
dzhwinter 已提交
191
  void apply() const {
Y
Yang Yu 已提交
192 193
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenScalar<bool>::From(*out_);
Y
Yang Yu 已提交
194
    // return any of predicate_(t) is true.
Y
Yang Yu 已提交
195 196 197 198 199 200 201
    o.device(*ctx_.eigen_device()) = predicate_(t).any();
  }
};

template <typename Predicate, typename DevCtx>
inline void AnyImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
Y
Yu Yang 已提交
202 203
  VisitDataType(tensor.type(), AnyDTypeVisitor<Predicate, DevCtx>(
                                   predicate, tensor, ctx, out));
Y
Yang Yu 已提交
204 205 206
}

template <typename Predicate>
207 208
class AnyVisitor : public boost::static_visitor<bool> {
 private:
Y
Yang Yu 已提交
209 210 211
  const framework::Tensor& tensor_;
  Predicate predicate_;

212
 public:
Y
Yang Yu 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  AnyVisitor(const framework::Tensor& tensor, Predicate predicate)
      : tensor_(tensor), predicate_(std::move(predicate)) {}

  template <typename Place>
  bool operator()(const Place& place) const {
    framework::Tensor out;
    out.Resize({1});
    out.mutable_data<bool>(place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    AnyImpl(predicate_, tensor_, *ctx, &out);
    return this->GetResult(out, place);
  }

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPlace& gpu) const {
    platform::CPUPlace cpu;
    framework::Tensor tmp;
    tmp.Resize({1});
    tmp.mutable_data<bool>(cpu);
Y
Yang Yu 已提交
232 233
    auto gpuctx = platform::DeviceContextPool::Instance().Get(gpu);
    gpuctx->Wait();
Y
Yi Wang 已提交
234
    TensorCopy(out, cpu, *gpuctx, &tmp);
Y
Yang Yu 已提交
235
    gpuctx->Wait();
Y
Yang Yu 已提交
236 237 238 239 240 241 242
    return GetResult(tmp, cpu);
  }

  bool GetResult(const framework::Tensor& out,
                 const platform::CPUPlace& cpu) const {
    return *out.data<bool>();
  }
C
chengduoZH 已提交
243 244 245 246 247

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPinnedPlace& cpu) const {
    return *out.data<bool>();
  }
Y
Yang Yu 已提交
248 249
};

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
template <typename Predicate>
class AnyOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AnyOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(std::move(predicate)) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize({1});
    out_->mutable_data<bool>(place);
    AnyImpl(predicate_, tensor_, *ctx, out_);
  }
};

Y
Yang Yu 已提交
271 272 273 274 275 276 277
template <typename Predicate>
inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
  AnyVisitor<Predicate> visitor(tensor, predicate);
  auto place = tensor.place();
  return platform::VisitPlace(place, visitor);
}

278 279 280 281 282 283 284 285
template <typename Predicate>
inline void Any(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AnyOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
286
struct ContainsNANPredicate {
Y
Yang Yu 已提交
287 288 289
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isnan()) {
Y
Yang Yu 已提交
290
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
291 292 293 294
    return eigen_vec.isnan();
  }
};

Y
Yi Wang 已提交
295 296
bool TensorContainsNAN(const framework::Tensor& tensor) {
  ContainsNANPredicate predicate;
Y
Yang Yu 已提交
297 298 299
  return Any(tensor, predicate);
}

300 301 302 303 304 305
void TensorContainsNAN(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsNANPredicate predicate;
  Any(tensor, predicate, out);
}

Y
Yi Wang 已提交
306
struct ContainsInfPredicate {
Y
Yang Yu 已提交
307 308 309
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isinf()) {
Y
Yang Yu 已提交
310
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
311 312 313 314
    return eigen_vec.isinf();
  }
};

Y
Yi Wang 已提交
315 316
bool TensorContainsInf(const framework::Tensor& tensor) {
  ContainsInfPredicate predicate;
Y
Yang Yu 已提交
317 318 319
  return Any(tensor, predicate);
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
void TensorContainsInf(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsInfPredicate predicate;
  Any(tensor, predicate, out);
}

// NOTE(dzhwinter):
// Isfinite need a AllVisitor to loop through all the elements.
// We choose two cuda call instead of one allvisitor. The AllVisitor
// should be implemented if the performance hurts.
bool TensorIsfinite(const framework::Tensor& tensor) {
  ContainsInfPredicate pred_inf;
  ContainsNANPredicate pred_nan;
  return !Any(tensor, pred_inf) && !Any(tensor, pred_nan);
}

#ifdef PADDLE_WITH_CUDA
template <typename T>
static inline void __global__ BothFalse(const T* cmp, T* out) {
  out[0] = (!cmp[0]) && (!out[0]);
}
#endif

struct BothFalseVisitor : public boost::static_visitor<> {
  const framework::Tensor& in_;
  mutable framework::Tensor* out_;
  BothFalseVisitor(const framework::Tensor& in, framework::Tensor* out)
      : in_(in), out_(out) {}

  template <typename Place>
  void operator()(const Place& place) const {
    VisitorImpl(place);
  }

  void VisitorImpl(const platform::CUDAPlace& gpu) const {
#ifdef PADDLE_WITH_CUDA
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(gpu);
    BothFalse<bool><<<1, 1, 0, ctx->stream()>>>(in_.data<bool>(),
                                                out_->mutable_data<bool>(gpu));
#endif
  }

  void VisitorImpl(const platform::CPUPlace& cpu) const {
    bool lhs = !in_.data<bool>()[0];
    bool rhs = !out_->mutable_data<bool>(cpu)[0];
    out_->mutable_data<bool>(cpu)[0] = lhs && rhs;
  }

  void VisitorImpl(
      const platform::CUDAPinnedPlace& cpu /* equals to cpu*/) const {
    bool lhs = !in_.data<bool>()[0];
    bool rhs = !out_->mutable_data<bool>(cpu)[0];
    out_->mutable_data<bool>(cpu)[0] = lhs && rhs;
  }
};

void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInf(tensor, &tmp);
  TensorContainsNAN(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
385 386 387 388 389 390 391 392 393 394
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {  // the 2nd field, tensor description
     // int32_t  size
     // void*    protobuf message
    proto::VarType::TensorDesc desc;
Y
Yu Yang 已提交
395
    desc.set_data_type(tensor.type());
Y
Yi Wang 已提交
396 397 398 399 400 401 402 403 404 405
    auto dims = framework::vectorize(tensor.dims());
    auto* pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    std::copy(dims.begin(), dims.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
Y
yuyang18 已提交
406 407
    uint64_t size = tensor.numel() * framework::SizeOfType(tensor.type());

Y
Yi Wang 已提交
408
    auto* data_ptr = tensor.data<void>();
T
tangwei12 已提交
409 410 411
    PADDLE_ENFORCE_LT(size, std::numeric_limits<std::streamsize>::max(),
                      platform::errors::ResourceExhausted(
                          "tensor size %d overflow when writing tensor", size));
Y
Yi Wang 已提交
412 413 414 415 416 417 418 419 420 421 422
    if (platform::is_gpu_place(tensor.place())) {
#ifdef PADDLE_WITH_CUDA
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& gpu_dev_ctx =
          static_cast<const platform::CUDADeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(),
423
                     BOOST_GET_CONST(platform::CUDAPlace, tensor.place()),
Y
Yi Wang 已提交
424 425 426 427 428 429 430 431
                     reinterpret_cast<const void*>(data), size_to_write,
                     gpu_dev_ctx.stream());
        gpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
T
tangwei12 已提交
432 433
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
Y
Yi Wang 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447
#endif
    } else {
      os.write(static_cast<const char*>(data_ptr),
               static_cast<std::streamsize>(size));
    }
  }
}

struct DeserializedDataFunctor {
  DeserializedDataFunctor(void** buf, Tensor* tensor,
                          const platform::Place& place)
      : buf_(buf), tensor_(tensor), place_(place) {}

  template <typename T>
D
dzhwinter 已提交
448
  void apply() {
Y
Yi Wang 已提交
449 450 451 452 453 454 455 456
    *buf_ = tensor_->mutable_data<T>(place_);
  }

  void** buf_;
  Tensor* tensor_;
  platform::Place place_;
};

T
tangwei12 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));

  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));

  proto::VarType::TensorDesc desc;
  {  // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
  }
  {  // read tensor
    tensor->Resize(framework::make_ddim(shape));
    size_t seekg = seek * framework::SizeOfType(desc.data_type());
    is.seekg(seekg, is.cur);

    void* buf;
    auto ctx = platform::CPUDeviceContext();
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
    if (platform::is_gpu_place(dev_ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(shape));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
    }
  }
}

Y
Yi Wang 已提交
511 512 513 514
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));
T
tangwei12 已提交
515 516 517 518 519
  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));
Y
Yi Wang 已提交
520 521 522 523 524 525 526
  proto::VarType::TensorDesc desc;
  {  // int32_t size
     // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
T
tangwei12 已提交
527 528 529
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
Y
Yi Wang 已提交
530 531 532 533 534 535 536 537
  }
  {  // read tensor
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
    tensor->Resize(framework::make_ddim(dims));
    void* buf;
    auto ctx = platform::CPUDeviceContext();
Y
Yu Yang 已提交
538
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
Y
Yi Wang 已提交
539 540 541 542 543 544 545
    if (platform::is_gpu_place(dev_ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(dims));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
Y
yuyang18 已提交
546
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
547 548 549
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
#else
T
tangwei12 已提交
550 551
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
Y
Yi Wang 已提交
552 553 554 555 556
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
Y
yuyang18 已提交
557
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
558 559 560 561
    }
  }
}

6
633WHU 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
// get tensor data point by DLDataType
void* GetDstPtrByDLDataType(DLDataType type, framework::Tensor* dst,
                            const platform::Place& dst_place) {
  // vector types not currently supported
  PADDLE_ENFORCE_LE(type.lanes, 1, "vector types not currently supported");

  switch (type.bits) {
    case 8:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int8_t>(dst_place));
      if (type.code == kDLUInt)
        return static_cast<void*>(dst->mutable_data<uint8_t>(dst_place));
      PADDLE_THROW("There is no this type.code <%d> when type.bits is <%d>.",
                   type.code, type.bits);
    case 16:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int16_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::float16>(dst_place));
      PADDLE_THROW("There is no this type.code <%d> when type.bits is <%d>.",
                   type.code, type.bits);
    case 32:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int32_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<float>(dst_place));
      PADDLE_THROW("There is no this type.code <%d> when type.bits is <%d>.",
                   type.code, type.bits);
    case 64:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int64_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<double>(dst_place));
      PADDLE_THROW("There is no this type.code <%d> when type.bits is <%d>.",
                   type.code, type.bits);
    default:
      PADDLE_THROW("Unsupport type.bits %d", type.bits);
  }
}

void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst) {
  platform::CPUPlace dst_place = platform::CPUPlace();
  platform::CPUPlace src_place = platform::CPUPlace();

  std::vector<int64_t> vec;
  std::copy(dl_tensor.shape, dl_tensor.shape + dl_tensor.ndim,
            std::back_inserter(vec));

  framework::DDim vddim = framework::make_ddim(vec);

  dst->Resize(vddim);
  ::DLDataType type = dl_tensor.dtype;
  void* dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);

  auto src_ptr = static_cast<const void*>(dl_tensor.data);
  auto size = paddle::framework::product(vddim) * type.bits / 8;

  if (dl_tensor.ctx.device_type == kDLCPU) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
#ifdef PADDLE_WITH_CUDA
  if (dl_tensor.ctx.device_type == kDLGPU) {
    platform::CUDAPlace dst_place =
        platform::CUDAPlace(dl_tensor.ctx.device_id);
    platform::CUDAPlace src_place =
        platform::CUDAPlace(dl_tensor.ctx.device_id);
    dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(dst_place);
    memory::Copy(
        dst_place, dst_ptr, src_place, src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(*ctx).stream());
  }
#endif
}

638 639 640 641 642
template <typename T>
std::ostream& print_tensor(std::ostream& os, const framework::Tensor& tensor) {
  auto inspect = tensor.data<T>();
  auto element_num = tensor.numel();

643
  os << "  - data: [";
644 645 646 647 648 649 650 651 652 653 654
  if (element_num > 0) {
    os << inspect[0];
    for (int j = 1; j < element_num; ++j) {
      os << " " << inspect[j];
    }
  }
  os << "]";
  return os;
}

std::ostream& operator<<(std::ostream& os, const Tensor& t) {
655 656 657
  os << "  - place: " << t.place() << "\n";
  os << "  - shape: [" << t.dims() << "]\n";
  os << "  - layout: " << DataLayoutToString(t.layout()) << "\n";
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

  Tensor tensor;
  tensor.Resize(t.dims());
  if (platform::is_cpu_place(t.place())) {
    tensor.ShareDataWith(t);
  } else {
    platform::CPUPlace place;
    framework::TensorCopy(t, place, &tensor);
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();
  }

#define PrintTensorCallback(cpp_type, proto_type) \
  do {                                            \
    if (tensor.type() == proto_type) {            \
674
      os << "  - dtype: " << proto_type << "\n";  \
675 676 677 678 679 680 681 682 683 684
      print_tensor<cpp_type>(os, tensor);         \
      return os;                                  \
    }                                             \
  } while (0)

  _ForEachDataType_(PrintTensorCallback);
  VLOG(1) << "PrintVar: unrecognized data type:" << t.type();
  return os;
}

Y
Yang Yu 已提交
685 686
}  // namespace framework
}  // namespace paddle