tensor_util.cc 53.3 KB
Newer Older
Y
Yang Yu 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14

C
chengduoZH 已提交
15 16
#include <algorithm>
#include <limits>
C
chengduo 已提交
17
#include <memory>
18
#include <string>
C
chengduo 已提交
19
#include <utility>
C
chengduoZH 已提交
20
#include <vector>
21

Y
yuyang18 已提交
22
#include "paddle/fluid/framework/data_type.h"
S
Steffy-zxf 已提交
23
#include "paddle/fluid/framework/tensor_util.h"
24
#include "paddle/fluid/platform/complex.h"
25
#include "paddle/fluid/platform/profiler.h"
26 27 28

#include "paddle/pten/core/dense_tensor.h"

29
#ifdef PADDLE_WITH_MKLDNN
30
#include "dnnl_debug.h"  // NOLINT
31
#endif
Y
Yang Yu 已提交
32 33 34

namespace paddle {
namespace framework {
Y
Yi Wang 已提交
35

36 37 38
template <typename TENSOR>
void TensorCopyImpl(const TENSOR& src, const platform::Place& dst_place,
                    const platform::DeviceContext& ctx, TENSOR* dst) {
39 40
  if (&src == dst) {
    auto src_copy = src;
41
    TensorCopyImpl(src_copy, dst_place, ctx, dst);
42 43 44
    return;
  }

M
minqiyang 已提交
45 46
  VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
          << dst_place;
Y
Yi Wang 已提交
47 48 49 50
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
51
  auto src_ptr = src.data();
52 53 54 55 56 57 58 59 60
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
  // oneDNN tensors due to padding may be of bigger size
  // than numel()*size(type())
  auto dst_ptr =
      src.layout() == DataLayout::kMKLDNN
          ? dst->mutable_data(dst_place, src.type(), src.memory_size())
          : dst->mutable_data(dst_place, src.type());
#else
Y
Yi Wang 已提交
61
  auto dst_ptr = dst->mutable_data(dst_place, src.type());
62
#endif
63 64 65 66 67
  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data async from " << src_place << " to "
            << dst_place;
    return;
  }
68
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
69

70 71 72 73 74
#ifdef PADDLE_WITH_MKLDNN
  auto size = src.layout() == DataLayout::kMKLDNN
                  ? src.memory_size()
                  : src.numel() * SizeOfType(src.type());
#else
Y
Yi Wang 已提交
75
  auto size = src.numel() * SizeOfType(src.type());
76
#endif
Y
Yi Wang 已提交
77 78

  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
79
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
Y
Yi Wang 已提交
80
  }
J
jianghaicheng 已提交
81 82 83
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
84
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
85 86
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_ipu_place(dst_place)) {
87
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
88 89
  } else if (platform::is_ipu_place(src_place) &&
             platform::is_ipu_place(dst_place)) {
90
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
91 92 93
  }
#endif

94 95 96
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
97
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
98 99
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
100
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
101 102 103 104 105 106 107
  } else if (platform::is_xpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
108
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
109 110 111 112 113
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
114 115 116 117 118 119
#ifdef PADDLE_WITH_ASCEND_CL
  // TODO(zhiqiu): handle different condition like CUDA code below
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
120
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
121 122 123
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
124 125 126 127 128 129
    //  1. cpu tensor -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(src.dims());
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data(npu_pinned_place, src.type());
130
    memory::Copy(npu_pinned_place, npu_pinned_ptr, src_place, src_ptr, size);
131 132 133

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
134
        dst_place, dst_ptr, npu_pinned_place, npu_pinned_ptr, size,
135 136 137 138 139 140 141 142
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
143
    pten::Allocation* allocation = npu_pinned_tensor.Holder().get();
144 145 146
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
147 148 149 150 151 152 153 154 155 156
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
157
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, stream);
158
  }
W
WangXi 已提交
159 160
  else if (platform::is_npu_pinned_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {         /* npu_pinned->npu */
161 162
    auto src_npu_pinned_place = src_place;
    auto dst_npu_place = dst_place;
W
WangXi 已提交
163 164 165 166 167 168
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU Pinned memory to NPU memory, current "
                          "device context place should be NPU."));
169
    auto ctx_npu_place = ctx_place;
W
WangXi 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182
    PADDLE_ENFORCE_EQ(dst_npu_place, ctx_npu_place,
                      platform::errors::PreconditionNotMet(
                          "The target NPU device and current device context do "
                          "not match. The target NPU device number is %d, but "
                          "device context NPU number is %d.",
                          dst_npu_place.device, ctx_npu_place.device));
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(dst_npu_place, dst_ptr, src_npu_pinned_place, src_ptr, size,
                 stream);
  }
  else if (platform::is_npu_place(src_place) &&        // NOLINT
           platform::is_npu_pinned_place(dst_place)) { /* npu->npu_pinned */
183 184
    auto src_npu_place = src_place;
    auto dst_npu_pinned_place = dst_place;
W
WangXi 已提交
185 186 187 188 189 190
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU memory to NPU Pinned memory, current "
                          "device context place should be NPU."));
191
    auto ctx_npu_place = ctx_place;
W
WangXi 已提交
192 193 194 195 196 197 198 199 200 201 202
    PADDLE_ENFORCE_EQ(src_place, ctx_npu_place,
                      platform::errors::PreconditionNotMet(
                          "The source NPU device and current device context do "
                          "not match. The source NPU device number is %d, but "
                          "device context NPU number is %d.",
                          src_npu_place.device, ctx_npu_place.device));
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(dst_npu_pinned_place, dst_ptr, src_npu_place, src_ptr, size,
                 stream);
  }
203 204 205 206 207
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
208
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
209 210
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
211
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
212
  }
213
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
Y
Yi Wang 已提交
214
           platform::is_cpu_place(dst_place)) {
215
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
216 217 218
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
219
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
220 221 222
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
223 224
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
Y
Yi Wang 已提交
225
    auto ctx_place = ctx.GetPlace();
226 227 228 229 230
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
231
    auto ctx_gpu_place = ctx_place;
232 233 234 235 236
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Source place and context place do not match, source "
                          "place is %s, context place is %s.",
                          src_gpu_place, ctx_gpu_place));
237
    auto stream =
F
fengjiayi 已提交
238
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
239
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
240 241 242
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
243 244
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
245
    auto ctx_place = ctx.GetPlace();
246 247 248 249 250
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
251
    auto ctx_gpu_place = ctx_place;
252 253 254 255 256
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Destination place and context place do not match, "
                          "destination place is %s, context place is %s.",
                          dst_gpu_place, ctx_gpu_place));
257
    auto stream =
F
fengjiayi 已提交
258
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
259
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
260 261 262
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
263 264
    auto src_gpu_place = src_place;
    auto dst_cuda_pinned_place = dst_place;
265 266 267 268 269 270
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from GPU memory to CUDA Pinned memory, current "
                          "device context place should be GPU."));
271
    auto ctx_gpu_place = ctx_place;
272 273 274 275 276 277 278 279 280 281
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The source GPU device and current device context do "
                          "not match. The source GPU device number is %d, but "
                          "device context GPU number is %d.",
                          src_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_cuda_pinned_place, dst_ptr, src_gpu_place, src_ptr, size,
                 stream);
282 283 284
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
285 286
    auto src_cuda_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
287 288 289 290 291 292
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from CUDA Pinned memory to GPU memory, current "
                          "device context place should be GPU."));
293
    auto ctx_gpu_place = ctx_place;
294 295 296 297 298 299 300 301 302 303
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The target GPU device and current device context do "
                          "not match. The target GPU device number is %d, but "
                          "device context GPU number is %d.",
                          dst_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_gpu_place, dst_ptr, src_cuda_pinned_place, src_ptr, size,
                 stream);
304 305 306
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
307 308
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
Y
Yi Wang 已提交
309
    auto ctx_place = ctx.GetPlace();
310 311 312 313 314
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
315
    auto stream =
F
fengjiayi 已提交
316
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
C
chengduo 已提交
317 318 319 320 321 322 323
    if (platform::is_same_place(src_place, dst_place)) {
      memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                   stream);
    } else {
      if (platform::is_same_place(ctx_place, src_place)) {
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
C
chengduo 已提交
324
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
325
      } else if (platform::is_same_place(ctx_place, dst_place)) {
C
chengduo 已提交
326
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
327 328 329
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
      } else {
330 331
        PADDLE_THROW(platform::errors::Unavailable(
            "Context place dose not match the source and destination place."));
C
chengduo 已提交
332 333
      }
    }
334 335
  }
  else {  // NOLINT
336 337
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
Y
Yi Wang 已提交
338 339
  }
#endif
340 341 342
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
343 344
    auto src_mlu_place = src_place;
    auto dst_cpu_place = dst_place;
345 346 347 348 349 350
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_cpu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
351 352
    auto src_cpu_place = src_place;
    auto dst_mlu_place = dst_place;
353 354 355 356 357 358
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
359 360
    auto src_mlu_place = src_place;
    auto dst_mlu_place = dst_place;
361 362 363 364 365 366 367 368 369
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
Y
Yi Wang 已提交
370 371
}

372 373 374
template <typename TENSOR>
void TensorCopyImpl(const TENSOR& src, const platform::Place& dst_place,
                    TENSOR* dst) {
Y
Yi Wang 已提交
375 376
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
377 378
  if (platform::is_gpu_place(dst_place) || platform::is_npu_place(dst_place) ||
      platform::is_mlu_place(dst_place)) {
Y
Yi Wang 已提交
379
    dev_ctx = pool.Get(dst_place);
C
chengduo 已提交
380 381
  } else {
    dev_ctx = pool.Get(src.place());
Y
Yi Wang 已提交
382
  }
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
  TensorCopyImpl(src, dst_place, *dev_ctx, dst);
}

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, dst);
}
void TensorCopy(const pten::DenseTensor& src, const platform::Place& dst_place,
                pten::DenseTensor* dst) {
  TensorCopyImpl<pten::DenseTensor>(src, dst_place, dst);
}
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                const platform::DeviceContext& ctx, Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, ctx, dst);
}
void TensorCopy(const pten::DenseTensor& src, const platform::Place& dst_place,
                const platform::DeviceContext& ctx, pten::DenseTensor* dst) {
  TensorCopyImpl<pten::DenseTensor>(src, dst_place, ctx, dst);
Y
Yi Wang 已提交
401 402
}

F
fengjiayi 已提交
403 404
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst) {
405 406 407 408 409 410
  if (&src == dst) {
    auto src_copy = src;
    TensorCopySync(src_copy, dst_place, dst);
    return;
  }

M
minqiyang 已提交
411 412
  VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
          << " to " << dst_place;
F
fengjiayi 已提交
413 414 415
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
J
Jacek Czaja 已提交
416 417 418
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
#endif
F
fengjiayi 已提交
419
  auto src_place = src.place();
420
  auto src_ptr = src.data();
F
fengjiayi 已提交
421
  auto dst_ptr = dst->mutable_data(dst_place, src.type());
422
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
423 424 425 426 427 428 429

  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data from " << src_place << " to "
            << dst_place;
    return;
  }

F
fengjiayi 已提交
430 431
  auto size = src.numel() * SizeOfType(src.type());
  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
432
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
F
fengjiayi 已提交
433
  }
J
jianghaicheng 已提交
434 435 436
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
437
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
438 439
  } else if (platform::is_cpu_place(src_place) &&  // NOLINT
             platform::is_ipu_place(dst_place)) {
440
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
441 442 443 444 445
  } else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
446 447 448
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
449
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
450 451 452
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
453
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
J
jianghaicheng 已提交
454 455 456
  }
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
457 458 459 460 461
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
462 463 464
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
    platform::XPUPlace xpu_dst_place = dst_place;
    platform::XPUPlace xpu_src_place = src_place;
465 466 467 468
    if (xpu_dst_place.device == xpu_src_place.device) {
      auto xpu_ctx = platform::DeviceContextPool::Instance().Get(xpu_dst_place);
      xpu_ctx->Wait();
    }
J
jianghaicheng 已提交
469 470
  }
  else {  // NOLINT
471 472 473 474
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
475 476 477
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {  /* npu -> cpu*/
478
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
479 480 481
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* cpu -> npu*/
482
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
483 484 485 486 487 488 489 490
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* npu -> npu*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
491
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
492 493 494 495 496 497
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
498
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
499 500
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
501
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
502
  }
503
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
F
fengjiayi 已提交
504
           platform::is_cpu_place(dst_place)) {
505
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
506 507 508
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
509
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
510 511 512
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
513
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
514 515 516
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
517 518
    auto src_gpu_place = src_place;
    auto dst_cpu_place = dst_place;
F
fengjiayi 已提交
519
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
520 521 522
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
523 524
    auto src_cpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
525
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
526 527 528
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
529 530
    auto src_gpu_place = src_place;
    auto dst_gpu_place = dst_place;
F
fengjiayi 已提交
531
    memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
532 533 534
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
535 536
    auto src_pinned_place = src_place;
    auto dst_gpu_place = dst_place;
W
Wu Yi 已提交
537 538
    memory::Copy(dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size,
                 nullptr);
539 540
  }
  else {  // NOLINT
541 542
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
F
fengjiayi 已提交
543 544
  }
#endif
545 546 547
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
548
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
549 550 551
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
552
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
553 554 555 556 557 558 559 560
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
561
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size, nullptr);
562 563 564 565 566 567
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
F
fengjiayi 已提交
568 569
}

Y
Yang Yu 已提交
570 571 572 573 574 575 576 577 578 579 580 581
template <typename Predicate, typename DevCtx>
struct AnyDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AnyDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
D
dzhwinter 已提交
582
  void apply() const {
Y
Yang Yu 已提交
583 584
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenScalar<bool>::From(*out_);
Y
Yang Yu 已提交
585
    // return any of predicate_(t) is true.
Y
Yang Yu 已提交
586 587 588 589 590 591 592
    o.device(*ctx_.eigen_device()) = predicate_(t).any();
  }
};

template <typename Predicate, typename DevCtx>
inline void AnyImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
Y
Yu Yang 已提交
593 594
  VisitDataType(tensor.type(), AnyDTypeVisitor<Predicate, DevCtx>(
                                   predicate, tensor, ctx, out));
Y
Yang Yu 已提交
595 596 597
}

template <typename Predicate>
598 599
class AnyVisitor : public boost::static_visitor<bool> {
 private:
Y
Yang Yu 已提交
600 601 602
  const framework::Tensor& tensor_;
  Predicate predicate_;

603 604 605 606 607 608 609 610 611 612 613 614 615
  bool GetResultHelper(const framework::Tensor& out,
                       const platform::Place& place) const {
    platform::CPUPlace cpu;
    framework::Tensor tmp;
    tmp.Resize({1});
    tmp.mutable_data<bool>(cpu);
    auto ctx = platform::DeviceContextPool::Instance().Get(place);
    ctx->Wait();
    TensorCopy(out, cpu, *ctx, &tmp);
    ctx->Wait();
    return GetResult(tmp, cpu);
  }

616
 public:
Y
Yang Yu 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629
  AnyVisitor(const framework::Tensor& tensor, Predicate predicate)
      : tensor_(tensor), predicate_(std::move(predicate)) {}

  template <typename Place>
  bool operator()(const Place& place) const {
    framework::Tensor out;
    out.Resize({1});
    out.mutable_data<bool>(place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    AnyImpl(predicate_, tensor_, *ctx, &out);
    return this->GetResult(out, place);
  }

630 631 632 633 634
  bool GetResult(const framework::Tensor& out,
                 const platform::XPUPlace& xpu) const {
    return GetResultHelper(out, xpu);
  }

F
fwenguang 已提交
635 636 637 638 639 640 641
  bool GetResult(const framework::Tensor& out,
                 const platform::MLUPlace& mlu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", mlu));
    return true;
  }

Y
Yang Yu 已提交
642 643
  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPlace& gpu) const {
644
    return GetResultHelper(out, gpu);
Y
Yang Yu 已提交
645 646
  }

647 648 649 650 651 652
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPlace& npu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", npu));
    // return GetResultHelper(out, npu);
  }
J
jianghaicheng 已提交
653 654 655 656 657
  bool GetResult(const framework::Tensor& out,
                 const platform::IPUPlace& ipu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", ipu));
  }
658

659 660 661 662 663
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPinnedPlace& cpu) const {
    return *out.data<bool>();
  }

Y
Yang Yu 已提交
664 665 666 667
  bool GetResult(const framework::Tensor& out,
                 const platform::CPUPlace& cpu) const {
    return *out.data<bool>();
  }
C
chengduoZH 已提交
668 669 670 671 672

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPinnedPlace& cpu) const {
    return *out.data<bool>();
  }
Y
Yang Yu 已提交
673 674
};

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
template <typename Predicate>
class AnyOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AnyOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(std::move(predicate)) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize({1});
    out_->mutable_data<bool>(place);
    AnyImpl(predicate_, tensor_, *ctx, out_);
  }
};

Y
Yang Yu 已提交
696 697 698 699 700 701 702
template <typename Predicate>
inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
  AnyVisitor<Predicate> visitor(tensor, predicate);
  auto place = tensor.place();
  return platform::VisitPlace(place, visitor);
}

703 704 705 706 707 708 709 710
template <typename Predicate>
inline void Any(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AnyOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
template <typename Predicate, typename DevCtx>
struct AllDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AllDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
  void apply() const {
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenVector<bool>::Flatten(*out_);
    o.device(*ctx_.eigen_device()) = predicate_(t);
  }
};

template <typename Predicate, typename DevCtx>
inline void AllImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
  VisitDataType(tensor.type(), AllDTypeVisitor<Predicate, DevCtx>(
                                   predicate, tensor, ctx, out));
}

template <typename Predicate>
class AllOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AllOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(predicate) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize(tensor_.dims());
    out_->mutable_data<bool>(place);
    AllImpl(predicate_, tensor_, *ctx, out_);
  }
};

template <typename Predicate>
inline void All(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AllOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
766
struct ContainsNANPredicate {
Y
Yang Yu 已提交
767 768 769
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isnan()) {
Y
Yang Yu 已提交
770
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
771 772 773 774
    return eigen_vec.isnan();
  }
};

Y
Yi Wang 已提交
775 776
bool TensorContainsNAN(const framework::Tensor& tensor) {
  ContainsNANPredicate predicate;
Y
Yang Yu 已提交
777 778 779
  return Any(tensor, predicate);
}

780 781 782 783 784 785
void TensorContainsNAN(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsNANPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
786 787 788 789 790 791
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsNANPredicate predicate;
  All(tensor, predicate, out);
}

Y
Yi Wang 已提交
792
struct ContainsInfPredicate {
Y
Yang Yu 已提交
793 794 795
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isinf()) {
Y
Yang Yu 已提交
796
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
797 798 799 800
    return eigen_vec.isinf();
  }
};

Y
Yi Wang 已提交
801 802
bool TensorContainsInf(const framework::Tensor& tensor) {
  ContainsInfPredicate predicate;
Y
Yang Yu 已提交
803 804 805
  return Any(tensor, predicate);
}

806 807 808 809 810 811
void TensorContainsInf(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsInfPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
812 813 814 815 816 817
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsInfPredicate predicate;
  All(tensor, predicate, out);
}

818 819 820 821 822 823 824 825 826 827
// NOTE(dzhwinter):
// Isfinite need a AllVisitor to loop through all the elements.
// We choose two cuda call instead of one allvisitor. The AllVisitor
// should be implemented if the performance hurts.
bool TensorIsfinite(const framework::Tensor& tensor) {
  ContainsInfPredicate pred_inf;
  ContainsNANPredicate pred_nan;
  return !Any(tensor, pred_inf) && !Any(tensor, pred_nan);
}

828
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
829
template <typename T>
J
Jack Zhou 已提交
830 831
static inline void __global__ BothFalse(const T* cmp, T* out, int element_num) {
  CUDA_KERNEL_LOOP(i, element_num) { out[i] = (!cmp[i]) && (!out[i]); }
832 833 834 835 836 837 838 839 840 841 842 843 844 845
}
#endif

struct BothFalseVisitor : public boost::static_visitor<> {
  const framework::Tensor& in_;
  mutable framework::Tensor* out_;
  BothFalseVisitor(const framework::Tensor& in, framework::Tensor* out)
      : in_(in), out_(out) {}

  template <typename Place>
  void operator()(const Place& place) const {
    VisitorImpl(place);
  }

846 847 848
  void VisitorImpl(const platform::XPUPlace& xpu) const {
    PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
  }
J
jianghaicheng 已提交
849 850 851
  void VisitorImpl(const platform::IPUPlace& ipu) const {
    PADDLE_THROW(platform::errors::Unimplemented("IPUPlace is not supported"));
  }
852

853
  void VisitorImpl(const platform::CUDAPlace& gpu) const {
854
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
855
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(gpu);
J
Jack Zhou 已提交
856 857 858 859 860 861 862 863 864 865
    constexpr int MAX_BLOCK_DIM = 512;
    const int MAX_GRID_DIM = ctx->GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int element_num = in_.numel();
    int block_size = (element_num >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(element_num)));
    int grid_size = element_num / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
    BothFalse<bool><<<grid_size, block_size, 0, ctx->stream()>>>(
        in_.data<bool>(), out_->mutable_data<bool>(gpu), element_num);
866 867 868
#endif
  }

869 870 871 872
  void VisitorImpl(const platform::NPUPlace& npu) const {
    // TODO(zhiqiu)
  }

F
fwenguang 已提交
873 874 875 876
  void VisitorImpl(const platform::MLUPlace& mlu) const {
    PADDLE_THROW(platform::errors::Unimplemented("MLUPlace is not supported"));
  }

877
  void VisitorImpl(const platform::CPUPlace& cpu) const {
J
Jack Zhou 已提交
878 879 880 881 882 883 884 885
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
886 887 888 889
  }

  void VisitorImpl(
      const platform::CUDAPinnedPlace& cpu /* equals to cpu*/) const {
J
Jack Zhou 已提交
890 891 892 893 894 895 896 897
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
898
  }
899 900 901 902 903 904 905 906 907 908 909 910

  void VisitorImpl(
      const platform::NPUPinnedPlace& cpu /* equals to cpu*/) const {
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
  }
911 912 913 914 915 916 917 918 919 920 921
};

void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInf(tensor, &tmp);
  TensorContainsNAN(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
922 923 924 925 926 927 928 929 930
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInfV2(tensor, &tmp);
  TensorContainsNANV2(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
931 932 933 934 935 936 937 938 939 940
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {  // the 2nd field, tensor description
     // int32_t  size
     // void*    protobuf message
    proto::VarType::TensorDesc desc;
Y
Yu Yang 已提交
941
    desc.set_data_type(tensor.type());
Y
Yi Wang 已提交
942 943 944 945 946 947 948 949 950 951
    auto dims = framework::vectorize(tensor.dims());
    auto* pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    std::copy(dims.begin(), dims.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
Y
yuyang18 已提交
952 953
    uint64_t size = tensor.numel() * framework::SizeOfType(tensor.type());

954
    auto* data_ptr = tensor.data();
W
wanghuancoder 已提交
955
    PADDLE_ENFORCE_LT(size, (std::numeric_limits<std::streamsize>::max)(),
T
tangwei12 已提交
956 957
                      platform::errors::ResourceExhausted(
                          "tensor size %d overflow when writing tensor", size));
Y
Yi Wang 已提交
958
    if (platform::is_gpu_place(tensor.place())) {
959
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yi Wang 已提交
960 961 962 963 964 965 966 967
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& gpu_dev_ctx =
          static_cast<const platform::CUDADeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
968
        memory::Copy(cpu, buf.get(), tensor.place(),
Y
Yi Wang 已提交
969 970 971 972 973 974 975 976
                     reinterpret_cast<const void*>(data), size_to_write,
                     gpu_dev_ctx.stream());
        gpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
T
tangwei12 已提交
977 978
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
979 980 981 982 983 984 985 986 987 988 989
#endif
    } else if (platform::is_xpu_place(tensor.place())) {
#ifdef PADDLE_WITH_XPU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& xpu_dev_ctx =
          static_cast<const platform::XPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
990
        memory::Copy(cpu, buf.get(), tensor.place(),
991 992 993 994 995 996 997 998 999
                     reinterpret_cast<const void*>(data), size_to_write);
        xpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "XPUPlace is not supported when not compiled with XPU"));
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
#endif
    } else if (platform::is_mlu_place(tensor.place())) {
#ifdef PADDLE_WITH_MLU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& mlu_dev_ctx =
          static_cast<const platform::MLUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1011
        memory::Copy(cpu, buf.get(), tensor.place(),
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
                     reinterpret_cast<const void*>(data), size_to_write,
                     mlu_dev_ctx.stream());
        mlu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "MLUPlace is not supported when not compiled with MLU"));
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
#endif
    } else if (platform::is_npu_place(tensor.place())) {
#ifdef PADDLE_WITH_ASCEND_CL
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& npu_dev_ctx =
          static_cast<const platform::NPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
1033
        memory::Copy(cpu, buf.get(), tensor.place(),
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
                     reinterpret_cast<const void*>(data), size_to_write,
                     npu_dev_ctx.stream());
        npu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported when not compiled with NPU"));
Y
Yi Wang 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
#endif
    } else {
      os.write(static_cast<const char*>(data_ptr),
               static_cast<std::streamsize>(size));
    }
  }
}

struct DeserializedDataFunctor {
  DeserializedDataFunctor(void** buf, Tensor* tensor,
                          const platform::Place& place)
      : buf_(buf), tensor_(tensor), place_(place) {}

  template <typename T>
D
dzhwinter 已提交
1058
  void apply() {
Y
Yi Wang 已提交
1059 1060 1061 1062 1063 1064 1065 1066
    *buf_ = tensor_->mutable_data<T>(place_);
  }

  void** buf_;
  Tensor* tensor_;
  platform::Place place_;
};

T
tangwei12 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));

  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));

  proto::VarType::TensorDesc desc;
  {  // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
  }
  {  // read tensor
    tensor->Resize(framework::make_ddim(shape));
    size_t seekg = seek * framework::SizeOfType(desc.data_type());
    is.seekg(seekg, is.cur);

    void* buf;
    auto ctx = platform::CPUDeviceContext();
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1098
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1099
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1100
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1101
        platform::is_npu_place(dev_ctx.GetPlace())) {
1102
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1103 1104
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
    defined(PADDLE_WITH_ASCEND_CL)
T
tangwei12 已提交
1105 1106 1107 1108 1109 1110 1111 1112
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(shape));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1113 1114 1115
      if (platform::is_npu_place(dev_ctx.GetPlace())) {
        dev_ctx.Wait();
      }
T
tangwei12 已提交
1116
#else
1117 1118 1119
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1120
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1121 1122
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1123 1124 1125
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1126 1127 1128
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1129
      }
T
tangwei12 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
    }
  }
}

Y
Yi Wang 已提交
1140 1141 1142 1143
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));
T
tangwei12 已提交
1144 1145 1146 1147 1148
  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));
Y
Yi Wang 已提交
1149 1150 1151 1152 1153 1154 1155
  proto::VarType::TensorDesc desc;
  {  // int32_t size
     // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
T
tangwei12 已提交
1156 1157 1158
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
Y
Yi Wang 已提交
1159 1160 1161 1162 1163 1164 1165 1166
  }
  {  // read tensor
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
    tensor->Resize(framework::make_ddim(dims));
    void* buf;
    auto ctx = platform::CPUDeviceContext();
Y
Yu Yang 已提交
1167
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1168
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1169
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
1170
        platform::is_mlu_place(dev_ctx.GetPlace()) ||
1171
        platform::is_npu_place(dev_ctx.GetPlace())) {
1172
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1173 1174
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_MLU) ||  \
    defined(PADDLE_WITH_ASCEND_CL)
Y
Yi Wang 已提交
1175 1176 1177 1178 1179
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(dims));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1180
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1181 1182
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1183 1184 1185
      if (platform::is_npu_place(dev_ctx.GetPlace())) {
        dev_ctx.Wait();
      }
Y
Yi Wang 已提交
1186
#else
1187 1188 1189
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1190
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1191 1192
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1193 1194 1195
      } else if (platform::is_mlu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "MLUPlace is not supported when not compiled with MLU"));
1196 1197 1198
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1199
      }
Y
Yi Wang 已提交
1200 1201 1202 1203 1204
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1205
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1206 1207 1208 1209
    }
  }
}

6
633WHU 已提交
1210 1211 1212 1213
// get tensor data point by DLDataType
void* GetDstPtrByDLDataType(DLDataType type, framework::Tensor* dst,
                            const platform::Place& dst_place) {
  // vector types not currently supported
1214 1215 1216
  PADDLE_ENFORCE_LE(type.lanes, 1,
                    platform::errors::Unimplemented(
                        "Vector type is not supported currently."));
6
633WHU 已提交
1217 1218 1219 1220 1221 1222 1223

  switch (type.bits) {
    case 8:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int8_t>(dst_place));
      if (type.code == kDLUInt)
        return static_cast<void*>(dst->mutable_data<uint8_t>(dst_place));
1224 1225 1226
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1227 1228 1229 1230 1231 1232
    case 16:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int16_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::float16>(dst_place));
S
Siming Dai 已提交
1233 1234 1235
      if (type.code == kDLBfloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::bfloat16>(dst_place));
1236 1237 1238
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1239 1240 1241 1242 1243
    case 32:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int32_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<float>(dst_place));
1244 1245 1246
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1247 1248 1249 1250 1251
    case 64:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int64_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<double>(dst_place));
S
Siming Dai 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<float>>(dst_place));
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
    case 128:
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<double>>(dst_place));
1262 1263 1264
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1265
    default:
1266 1267
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported DLDataType.bits %d.", type.bits));
6
633WHU 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
  }
}

void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst) {
  platform::CPUPlace dst_place = platform::CPUPlace();
  platform::CPUPlace src_place = platform::CPUPlace();

  std::vector<int64_t> vec;
  std::copy(dl_tensor.shape, dl_tensor.shape + dl_tensor.ndim,
            std::back_inserter(vec));

  framework::DDim vddim = framework::make_ddim(vec);

  dst->Resize(vddim);
  ::DLDataType type = dl_tensor.dtype;
  void* dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);

  auto src_ptr = static_cast<const void*>(dl_tensor.data);
  auto size = paddle::framework::product(vddim) * type.bits / 8;

S
Siming Dai 已提交
1288
  if (dl_tensor.device.device_type == kDLCPU) {
6
633WHU 已提交
1289 1290
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
1291
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
1292
  if (dl_tensor.device.device_type == kDLGPU) {
6
633WHU 已提交
1293
    platform::CUDAPlace dst_place =
S
Siming Dai 已提交
1294
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1295
    platform::CUDAPlace src_place =
S
Siming Dai 已提交
1296
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1297 1298 1299 1300 1301 1302 1303
    dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(dst_place);
    memory::Copy(
        dst_place, dst_ptr, src_place, src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(*ctx).stream());
  }
#endif
1304 1305 1306
#ifdef PADDLE_WITH_XPU
  PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
#endif
6
633WHU 已提交
1307 1308
}

1309 1310 1311 1312 1313 1314
template <typename T>
std::string format_tensor(const framework::Tensor& tensor) {
  // TODO(zhiqiu): use the print option to format tensor.
  return "NOT IMPLEMENTED";
}

1315 1316 1317 1318 1319
template <typename T>
std::ostream& print_tensor(std::ostream& os, const framework::Tensor& tensor) {
  auto inspect = tensor.data<T>();
  auto element_num = tensor.numel();

1320
  os << "  - data: [";
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
  // Note: int8_t && uint8_t is typedf of char, ostream unable to print properly
  if (typeid(int8_t) == typeid(T) || typeid(uint8_t) == typeid(T)) {
    if (element_num > 0) {
      os << signed(inspect[0]);
      for (int j = 1; j < element_num; ++j) {
        os << " " << signed(inspect[j]);
      }
    }
  } else {
    if (element_num > 0) {
      os << inspect[0];
      for (int j = 1; j < element_num; ++j) {
        os << " " << inspect[j];
      }
1335 1336 1337 1338 1339 1340
    }
  }
  os << "]";
  return os;
}

1341
template <>
1342
std::ostream& print_tensor<paddle::platform::complex<float>>(
1343
    std::ostream& os, const framework::Tensor& tensor) {
1344
  auto inspect = tensor.data<paddle::platform::complex<float>>();
1345 1346 1347 1348
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1349
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1350
    for (int j = 1; j < element_num; ++j) {
1351 1352
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1353 1354 1355 1356 1357 1358 1359
    }
  }
  os << "]";
  return os;
}

template <>
1360
std::ostream& print_tensor<paddle::platform::complex<double>>(
1361
    std::ostream& os, const framework::Tensor& tensor) {
1362
  auto inspect = tensor.data<paddle::platform::complex<double>>();
1363 1364 1365 1366
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1367
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1368
    for (int j = 1; j < element_num; ++j) {
1369 1370
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1371 1372 1373 1374 1375 1376
    }
  }
  os << "]";
  return os;
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
std::ostream& operator<<(std::ostream& os, const LoD& lod) {
  os << "{";
  for (auto& v : lod) {
    os << "{";
    bool is_first = true;
    for (auto& i : v) {
      if (is_first) {
        os << i;
        is_first = false;
      } else {
        os << ", " << i;
      }
    }
    os << "}";
  }
  os << "}";

  return os;
}

1397
std::ostream& operator<<(std::ostream& os, const Tensor& t) {
1398 1399 1400 1401
  if (t.lod().size() > 0) {
    os << "  - lod: " << t.lod() << "\n";
  }

1402 1403 1404
  os << "  - place: " << t.place() << "\n";
  os << "  - shape: [" << t.dims() << "]\n";
  os << "  - layout: " << DataLayoutToString(t.layout()) << "\n";
1405

1406 1407 1408 1409 1410
#ifdef PADDLE_WITH_MKLDNN
  os << "  - format: "
     << dnnl_fmt_tag2str(static_cast<dnnl_format_tag_t>(t.format())) << "\n";
#endif

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
  Tensor tensor;
  tensor.Resize(t.dims());
  if (platform::is_cpu_place(t.place())) {
    tensor.ShareDataWith(t);
  } else {
    platform::CPUPlace place;
    framework::TensorCopy(t, place, &tensor);
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();
  }

#define PrintTensorCallback(cpp_type, proto_type) \
  do {                                            \
    if (tensor.type() == proto_type) {            \
1426
      os << "  - dtype: " << proto_type << "\n";  \
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
      print_tensor<cpp_type>(os, tensor);         \
      return os;                                  \
    }                                             \
  } while (0)

  _ForEachDataType_(PrintTensorCallback);
  VLOG(1) << "PrintVar: unrecognized data type:" << t.type();
  return os;
}

Y
Yang Yu 已提交
1437 1438
}  // namespace framework
}  // namespace paddle