tensor_util.cc 55.5 KB
Newer Older
Y
Yang Yu 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14

C
chengduoZH 已提交
15 16
#include <algorithm>
#include <limits>
C
chengduo 已提交
17
#include <memory>
18
#include <string>
C
chengduo 已提交
19
#include <utility>
C
chengduoZH 已提交
20
#include <vector>
21

Y
yuyang18 已提交
22
#include "paddle/fluid/framework/data_type.h"
S
Steffy-zxf 已提交
23
#include "paddle/fluid/framework/tensor_util.h"
24
#include "paddle/fluid/platform/complex.h"
25
#include "paddle/fluid/platform/profiler.h"
26 27 28

#include "paddle/pten/core/dense_tensor.h"

29
#ifdef PADDLE_WITH_MKLDNN
30
#include "dnnl_debug.h"  // NOLINT
31
#endif
Y
Yang Yu 已提交
32 33 34

namespace paddle {
namespace framework {
Y
Yi Wang 已提交
35

36 37 38
template <typename TENSOR>
void TensorCopyImpl(const TENSOR& src, const platform::Place& dst_place,
                    const platform::DeviceContext& ctx, TENSOR* dst) {
39 40
  if (&src == dst) {
    auto src_copy = src;
41
    TensorCopyImpl(src_copy, dst_place, ctx, dst);
42 43 44
    return;
  }

M
minqiyang 已提交
45 46
  VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
          << dst_place;
Y
Yi Wang 已提交
47 48 49 50 51
  src.check_memory_size();

  dst->Resize(src.dims());
  dst->set_layout(src.layout());
  auto src_place = src.place();
52
  auto src_ptr = src.data();
53 54 55 56 57 58 59 60 61
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
  // oneDNN tensors due to padding may be of bigger size
  // than numel()*size(type())
  auto dst_ptr =
      src.layout() == DataLayout::kMKLDNN
          ? dst->mutable_data(dst_place, src.type(), src.memory_size())
          : dst->mutable_data(dst_place, src.type());
#else
Y
Yi Wang 已提交
62
  auto dst_ptr = dst->mutable_data(dst_place, src.type());
63
#endif
64 65 66 67 68
  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data async from " << src_place << " to "
            << dst_place;
    return;
  }
69
  VLOG(4) << "src:" << src_ptr << ", dst:" << dst_ptr;
70

71 72 73 74 75
#ifdef PADDLE_WITH_MKLDNN
  auto size = src.layout() == DataLayout::kMKLDNN
                  ? src.memory_size()
                  : src.numel() * SizeOfType(src.type());
#else
Y
Yi Wang 已提交
76
  auto size = src.numel() * SizeOfType(src.type());
77
#endif
Y
Yi Wang 已提交
78 79

  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
80 81
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
Y
Yi Wang 已提交
82
  }
J
jianghaicheng 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::IPUPlace, src_place), src_ptr, size);
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_ipu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::IPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
  } else if (platform::is_ipu_place(src_place) &&
             platform::is_ipu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::IPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::IPUPlace, src_place), src_ptr, size);
  }
#endif

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src_place), src_ptr, size);
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
  } else if (platform::is_xpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src_place), src_ptr, size);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
122 123 124 125 126 127 128 129 130 131 132 133
#ifdef PADDLE_WITH_ASCEND_CL
  // TODO(zhiqiu): handle different condition like CUDA code below
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src_place), src_ptr, size,
                 stream);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    //  1. cpu tensor -> npu pinned tensor
    platform::NPUPinnedPlace npu_pinned_place;
    Tensor npu_pinned_tensor;
    npu_pinned_tensor.Resize(src.dims());
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data(npu_pinned_place, src.type());
    memory::Copy(npu_pinned_place, npu_pinned_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);

    //  2. async copy npu pinned tensor -> npu tensor
    memory::Copy(
        BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
        npu_pinned_place, npu_pinned_ptr, size,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());

    //  3. record event
    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator*>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
    paddle::memory::allocation::Allocation* allocation =
        npu_pinned_tensor.Holder().get();
    npu_pinned_allocator->RecordEvent(
        allocation,
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream());
160 161 162 163 164 165 166 167 168 169 170 171 172 173
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src_place), src_ptr, size,
                 stream);
  }
W
WangXi 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  else if (platform::is_npu_pinned_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {         /* npu_pinned->npu */
    auto src_npu_pinned_place =
        BOOST_GET_CONST(platform::NPUPinnedPlace, src_place);
    auto dst_npu_place = BOOST_GET_CONST(platform::NPUPlace, dst_place);
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU Pinned memory to NPU memory, current "
                          "device context place should be NPU."));
    auto ctx_npu_place = BOOST_GET_CONST(platform::NPUPlace, ctx_place);
    PADDLE_ENFORCE_EQ(dst_npu_place, ctx_npu_place,
                      platform::errors::PreconditionNotMet(
                          "The target NPU device and current device context do "
                          "not match. The target NPU device number is %d, but "
                          "device context NPU number is %d.",
                          dst_npu_place.device, ctx_npu_place.device));
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(dst_npu_place, dst_ptr, src_npu_pinned_place, src_ptr, size,
                 stream);
  }
  else if (platform::is_npu_place(src_place) &&        // NOLINT
           platform::is_npu_pinned_place(dst_place)) { /* npu->npu_pinned */
    auto src_npu_place = BOOST_GET_CONST(platform::NPUPlace, src_place);
    auto dst_npu_pinned_place =
        BOOST_GET_CONST(platform::NPUPinnedPlace, dst_place);
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_npu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from NPU memory to NPU Pinned memory, current "
                          "device context place should be NPU."));
    auto ctx_npu_place = BOOST_GET_CONST(platform::NPUPlace, ctx_place);
    PADDLE_ENFORCE_EQ(src_place, ctx_npu_place,
                      platform::errors::PreconditionNotMet(
                          "The source NPU device and current device context do "
                          "not match. The source NPU device number is %d, but "
                          "device context NPU number is %d.",
                          src_npu_place.device, ctx_npu_place.device));
    auto stream =
        reinterpret_cast<const platform::NPUDeviceContext&>(ctx).stream();
    memory::Copy(dst_npu_pinned_place, dst_ptr, src_npu_place, src_ptr, size,
                 stream);
  }
220 221 222 223 224
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
225
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
226 227 228 229 230 231
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place), src_ptr,
                 size);
  }
232
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
Y
Yi Wang 已提交
233
           platform::is_cpu_place(dst_place)) {
234 235 236
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place), src_ptr,
                 size);
237 238 239
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
240 241
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
242 243 244
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
245 246
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_cpu_place = BOOST_GET_CONST(platform::CPUPlace, dst_place);
Y
Yi Wang 已提交
247
    auto ctx_place = ctx.GetPlace();
248 249 250 251 252
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
253
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
254 255 256 257 258
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Source place and context place do not match, source "
                          "place is %s, context place is %s.",
                          src_gpu_place, ctx_gpu_place));
259
    auto stream =
F
fengjiayi 已提交
260
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
261
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
262 263 264
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
265 266
    auto src_cpu_place = BOOST_GET_CONST(platform::CPUPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
Y
Yi Wang 已提交
267
    auto ctx_place = ctx.GetPlace();
268 269 270 271 272
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
273
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
274 275 276 277 278
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Destination place and context place do not match, "
                          "destination place is %s, context place is %s.",
                          dst_gpu_place, ctx_gpu_place));
279
    auto stream =
F
fengjiayi 已提交
280
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
281
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
282 283 284
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_cuda_pinned_place =
        BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place);
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from GPU memory to CUDA Pinned memory, current "
                          "device context place should be GPU."));
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The source GPU device and current device context do "
                          "not match. The source GPU device number is %d, but "
                          "device context GPU number is %d.",
                          src_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_cuda_pinned_place, dst_ptr, src_gpu_place, src_ptr, size,
                 stream);
305 306 307
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    auto src_cuda_pinned_place =
        BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from CUDA Pinned memory to GPU memory, current "
                          "device context place should be GPU."));
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The target GPU device and current device context do "
                          "not match. The target GPU device number is %d, but "
                          "device context GPU number is %d.",
                          dst_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_gpu_place, dst_ptr, src_cuda_pinned_place, src_ptr, size,
                 stream);
328 329 330
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
331 332
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
Y
Yi Wang 已提交
333
    auto ctx_place = ctx.GetPlace();
334 335 336 337 338
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
339
    auto stream =
F
fengjiayi 已提交
340
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
C
chengduo 已提交
341 342 343 344 345 346 347
    if (platform::is_same_place(src_place, dst_place)) {
      memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                   stream);
    } else {
      if (platform::is_same_place(ctx_place, src_place)) {
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
C
chengduo 已提交
348
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
349
      } else if (platform::is_same_place(ctx_place, dst_place)) {
C
chengduo 已提交
350
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
351 352 353
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
      } else {
354 355
        PADDLE_THROW(platform::errors::Unavailable(
            "Context place dose not match the source and destination place."));
C
chengduo 已提交
356 357
      }
    }
358 359
  }
  else {  // NOLINT
360 361
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
Y
Yi Wang 已提交
362 363
  }
#endif
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    auto src_mlu_place = BOOST_GET_CONST(platform::MLUPlace, src_place);
    auto dst_cpu_place = BOOST_GET_CONST(platform::CPUPlace, dst_place);
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_cpu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    auto src_cpu_place = BOOST_GET_CONST(platform::CPUPlace, src_place);
    auto dst_mlu_place = BOOST_GET_CONST(platform::MLUPlace, dst_place);
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    auto src_mlu_place = BOOST_GET_CONST(platform::MLUPlace, src_place);
    auto dst_mlu_place = BOOST_GET_CONST(platform::MLUPlace, dst_place);
    auto stream =
        reinterpret_cast<const platform::MLUDeviceContext&>(ctx).stream();
    memory::Copy(dst_mlu_place, dst_ptr, src_mlu_place, src_ptr, size, stream);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
  }
#endif
Y
Yi Wang 已提交
394 395
}

396 397 398
template <typename TENSOR>
void TensorCopyImpl(const TENSOR& src, const platform::Place& dst_place,
                    TENSOR* dst) {
Y
Yi Wang 已提交
399 400
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
401
  if (platform::is_gpu_place(dst_place) || platform::is_npu_place(dst_place)) {
Y
Yi Wang 已提交
402
    dev_ctx = pool.Get(dst_place);
C
chengduo 已提交
403 404
  } else {
    dev_ctx = pool.Get(src.place());
Y
Yi Wang 已提交
405
  }
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
  TensorCopyImpl(src, dst_place, *dev_ctx, dst);
}

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, dst);
}
void TensorCopy(const pten::DenseTensor& src, const platform::Place& dst_place,
                pten::DenseTensor* dst) {
  TensorCopyImpl<pten::DenseTensor>(src, dst_place, dst);
}
void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                const platform::DeviceContext& ctx, Tensor* dst) {
  TensorCopyImpl<Tensor>(src, dst_place, ctx, dst);
}
void TensorCopy(const pten::DenseTensor& src, const platform::Place& dst_place,
                const platform::DeviceContext& ctx, pten::DenseTensor* dst) {
  TensorCopyImpl<pten::DenseTensor>(src, dst_place, ctx, dst);
Y
Yi Wang 已提交
424 425
}

F
fengjiayi 已提交
426 427
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst) {
428 429 430 431 432 433
  if (&src == dst) {
    auto src_copy = src;
    TensorCopySync(src_copy, dst_place, dst);
    return;
  }

M
minqiyang 已提交
434 435
  VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
          << " to " << dst_place;
F
fengjiayi 已提交
436 437 438
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
J
Jacek Czaja 已提交
439 440 441
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
#endif
F
fengjiayi 已提交
442
  auto src_place = src.place();
443
  auto src_ptr = src.data();
F
fengjiayi 已提交
444
  auto dst_ptr = dst->mutable_data(dst_place, src.type());
445 446 447 448 449 450 451

  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data from " << src_place << " to "
            << dst_place;
    return;
  }

F
fengjiayi 已提交
452 453
  auto size = src.numel() * SizeOfType(src.type());
  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
454 455
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
F
fengjiayi 已提交
456
  }
J
jianghaicheng 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470
#ifdef PADDLE_WITH_IPU
  else if (platform::is_ipu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::IPUPlace, src_place), src_ptr, size);
  } else if (platform::is_cpu_place(src_place) &&  // NOLINT
             platform::is_ipu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::IPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
  } else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
471 472 473 474 475
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src_place), src_ptr, size);
J
jianghaicheng 已提交
476 477 478
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
479 480
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
J
jianghaicheng 已提交
481 482 483
  }
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_xpu_place(dst_place)) {
484 485 486 487 488 489 490
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src_place), src_ptr, size);
J
jianghaicheng 已提交
491 492
  }
  else {  // NOLINT
493 494 495 496
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#ifdef PADDLE_WITH_ASCEND_CL
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {  /* npu -> cpu*/
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src_place), src_ptr, size,
                 nullptr);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* cpu -> npu*/
    memory::Copy(BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size,
                 nullptr);
  }
  else if (platform::is_npu_place(src_place) &&  // NOLINT
           platform::is_npu_place(dst_place)) {  /* npu -> npu*/
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data sync from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(BOOST_GET_CONST(platform::NPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::NPUPlace, src_place), src_ptr, size,
                 nullptr);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
526
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
527 528 529 530 531 532
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place), src_ptr,
                 size);
  }
533
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
F
fengjiayi 已提交
534
           platform::is_cpu_place(dst_place)) {
535 536 537
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place), src_ptr,
                 size);
538 539 540
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
541 542
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
543 544 545
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
546 547 548
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPlace, src_place), src_ptr, size,
                 nullptr);
549 550 551
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
552 553
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_cpu_place = BOOST_GET_CONST(platform::CPUPlace, dst_place);
F
fengjiayi 已提交
554
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
555 556 557
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
558 559
    auto src_cpu_place = BOOST_GET_CONST(platform::CPUPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
F
fengjiayi 已提交
560
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
561 562 563
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
564 565
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
F
fengjiayi 已提交
566
    memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
567 568 569
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
570 571 572
    auto src_pinned_place =
        BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
W
Wu Yi 已提交
573 574
    memory::Copy(dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size,
                 nullptr);
575 576
  }
  else {  // NOLINT
577 578
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
F
fengjiayi 已提交
579 580
  }
#endif
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
#ifdef PADDLE_WITH_MLU
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::MLUPlace, src_place), src_ptr, size,
                 nullptr);
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::MLUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size,
                 nullptr);
  }
  else if (platform::is_mlu_place(src_place) &&  // NOLINT
           platform::is_mlu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(BOOST_GET_CONST(platform::MLUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::MLUPlace, src_place), src_ptr, size,
                 nullptr);
  }
  else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
F
fengjiayi 已提交
610 611
}

Y
Yang Yu 已提交
612 613 614 615 616 617 618 619 620 621 622 623
template <typename Predicate, typename DevCtx>
struct AnyDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AnyDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
D
dzhwinter 已提交
624
  void apply() const {
Y
Yang Yu 已提交
625 626
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenScalar<bool>::From(*out_);
Y
Yang Yu 已提交
627
    // return any of predicate_(t) is true.
Y
Yang Yu 已提交
628 629 630 631 632 633 634
    o.device(*ctx_.eigen_device()) = predicate_(t).any();
  }
};

template <typename Predicate, typename DevCtx>
inline void AnyImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
Y
Yu Yang 已提交
635 636
  VisitDataType(tensor.type(), AnyDTypeVisitor<Predicate, DevCtx>(
                                   predicate, tensor, ctx, out));
Y
Yang Yu 已提交
637 638 639
}

template <typename Predicate>
640 641
class AnyVisitor : public boost::static_visitor<bool> {
 private:
Y
Yang Yu 已提交
642 643 644
  const framework::Tensor& tensor_;
  Predicate predicate_;

645 646 647 648 649 650 651 652 653 654 655 656 657
  bool GetResultHelper(const framework::Tensor& out,
                       const platform::Place& place) const {
    platform::CPUPlace cpu;
    framework::Tensor tmp;
    tmp.Resize({1});
    tmp.mutable_data<bool>(cpu);
    auto ctx = platform::DeviceContextPool::Instance().Get(place);
    ctx->Wait();
    TensorCopy(out, cpu, *ctx, &tmp);
    ctx->Wait();
    return GetResult(tmp, cpu);
  }

658
 public:
Y
Yang Yu 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671
  AnyVisitor(const framework::Tensor& tensor, Predicate predicate)
      : tensor_(tensor), predicate_(std::move(predicate)) {}

  template <typename Place>
  bool operator()(const Place& place) const {
    framework::Tensor out;
    out.Resize({1});
    out.mutable_data<bool>(place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    AnyImpl(predicate_, tensor_, *ctx, &out);
    return this->GetResult(out, place);
  }

672 673 674 675 676
  bool GetResult(const framework::Tensor& out,
                 const platform::XPUPlace& xpu) const {
    return GetResultHelper(out, xpu);
  }

F
fwenguang 已提交
677 678 679 680 681 682 683
  bool GetResult(const framework::Tensor& out,
                 const platform::MLUPlace& mlu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", mlu));
    return true;
  }

Y
Yang Yu 已提交
684 685
  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPlace& gpu) const {
686
    return GetResultHelper(out, gpu);
Y
Yang Yu 已提交
687 688
  }

689 690 691 692 693 694
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPlace& npu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", npu));
    // return GetResultHelper(out, npu);
  }
J
jianghaicheng 已提交
695 696 697 698 699
  bool GetResult(const framework::Tensor& out,
                 const platform::IPUPlace& ipu) const {
    PADDLE_THROW(
        platform::errors::Unimplemented("Not supported on place (%s) ", ipu));
  }
700

701 702 703 704 705
  bool GetResult(const framework::Tensor& out,
                 const platform::NPUPinnedPlace& cpu) const {
    return *out.data<bool>();
  }

Y
Yang Yu 已提交
706 707 708 709
  bool GetResult(const framework::Tensor& out,
                 const platform::CPUPlace& cpu) const {
    return *out.data<bool>();
  }
C
chengduoZH 已提交
710 711 712 713 714

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPinnedPlace& cpu) const {
    return *out.data<bool>();
  }
Y
Yang Yu 已提交
715 716
};

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
template <typename Predicate>
class AnyOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AnyOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(std::move(predicate)) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize({1});
    out_->mutable_data<bool>(place);
    AnyImpl(predicate_, tensor_, *ctx, out_);
  }
};

Y
Yang Yu 已提交
738 739 740 741 742 743 744
template <typename Predicate>
inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
  AnyVisitor<Predicate> visitor(tensor, predicate);
  auto place = tensor.place();
  return platform::VisitPlace(place, visitor);
}

745 746 747 748 749 750 751 752
template <typename Predicate>
inline void Any(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AnyOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
template <typename Predicate, typename DevCtx>
struct AllDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AllDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
  void apply() const {
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenVector<bool>::Flatten(*out_);
    o.device(*ctx_.eigen_device()) = predicate_(t);
  }
};

template <typename Predicate, typename DevCtx>
inline void AllImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
  VisitDataType(tensor.type(), AllDTypeVisitor<Predicate, DevCtx>(
                                   predicate, tensor, ctx, out));
}

template <typename Predicate>
class AllOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AllOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(predicate) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize(tensor_.dims());
    out_->mutable_data<bool>(place);
    AllImpl(predicate_, tensor_, *ctx, out_);
  }
};

template <typename Predicate>
inline void All(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AllOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
808
struct ContainsNANPredicate {
Y
Yang Yu 已提交
809 810 811
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isnan()) {
Y
Yang Yu 已提交
812
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
813 814 815 816
    return eigen_vec.isnan();
  }
};

Y
Yi Wang 已提交
817 818
bool TensorContainsNAN(const framework::Tensor& tensor) {
  ContainsNANPredicate predicate;
Y
Yang Yu 已提交
819 820 821
  return Any(tensor, predicate);
}

822 823 824 825 826 827
void TensorContainsNAN(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsNANPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
828 829 830 831 832 833
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsNANPredicate predicate;
  All(tensor, predicate, out);
}

Y
Yi Wang 已提交
834
struct ContainsInfPredicate {
Y
Yang Yu 已提交
835 836 837
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isinf()) {
Y
Yang Yu 已提交
838
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
839 840 841 842
    return eigen_vec.isinf();
  }
};

Y
Yi Wang 已提交
843 844
bool TensorContainsInf(const framework::Tensor& tensor) {
  ContainsInfPredicate predicate;
Y
Yang Yu 已提交
845 846 847
  return Any(tensor, predicate);
}

848 849 850 851 852 853
void TensorContainsInf(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsInfPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
854 855 856 857 858 859
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsInfPredicate predicate;
  All(tensor, predicate, out);
}

860 861 862 863 864 865 866 867 868 869
// NOTE(dzhwinter):
// Isfinite need a AllVisitor to loop through all the elements.
// We choose two cuda call instead of one allvisitor. The AllVisitor
// should be implemented if the performance hurts.
bool TensorIsfinite(const framework::Tensor& tensor) {
  ContainsInfPredicate pred_inf;
  ContainsNANPredicate pred_nan;
  return !Any(tensor, pred_inf) && !Any(tensor, pred_nan);
}

870
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
871
template <typename T>
J
Jack Zhou 已提交
872 873
static inline void __global__ BothFalse(const T* cmp, T* out, int element_num) {
  CUDA_KERNEL_LOOP(i, element_num) { out[i] = (!cmp[i]) && (!out[i]); }
874 875 876 877 878 879 880 881 882 883 884 885 886 887
}
#endif

struct BothFalseVisitor : public boost::static_visitor<> {
  const framework::Tensor& in_;
  mutable framework::Tensor* out_;
  BothFalseVisitor(const framework::Tensor& in, framework::Tensor* out)
      : in_(in), out_(out) {}

  template <typename Place>
  void operator()(const Place& place) const {
    VisitorImpl(place);
  }

888 889 890
  void VisitorImpl(const platform::XPUPlace& xpu) const {
    PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
  }
J
jianghaicheng 已提交
891 892 893
  void VisitorImpl(const platform::IPUPlace& ipu) const {
    PADDLE_THROW(platform::errors::Unimplemented("IPUPlace is not supported"));
  }
894

895
  void VisitorImpl(const platform::CUDAPlace& gpu) const {
896
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
897
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(gpu);
J
Jack Zhou 已提交
898 899 900 901 902 903 904 905 906 907
    constexpr int MAX_BLOCK_DIM = 512;
    const int MAX_GRID_DIM = ctx->GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int element_num = in_.numel();
    int block_size = (element_num >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(element_num)));
    int grid_size = element_num / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
    BothFalse<bool><<<grid_size, block_size, 0, ctx->stream()>>>(
        in_.data<bool>(), out_->mutable_data<bool>(gpu), element_num);
908 909 910
#endif
  }

911 912 913 914
  void VisitorImpl(const platform::NPUPlace& npu) const {
    // TODO(zhiqiu)
  }

F
fwenguang 已提交
915 916 917 918
  void VisitorImpl(const platform::MLUPlace& mlu) const {
    PADDLE_THROW(platform::errors::Unimplemented("MLUPlace is not supported"));
  }

919
  void VisitorImpl(const platform::CPUPlace& cpu) const {
J
Jack Zhou 已提交
920 921 922 923 924 925 926 927
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
928 929 930 931
  }

  void VisitorImpl(
      const platform::CUDAPinnedPlace& cpu /* equals to cpu*/) const {
J
Jack Zhou 已提交
932 933 934 935 936 937 938 939
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
940
  }
941 942 943 944 945 946 947 948 949 950 951 952

  void VisitorImpl(
      const platform::NPUPinnedPlace& cpu /* equals to cpu*/) const {
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
  }
953 954 955 956 957 958 959 960 961 962 963
};

void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInf(tensor, &tmp);
  TensorContainsNAN(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
964 965 966 967 968 969 970 971 972
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInfV2(tensor, &tmp);
  TensorContainsNANV2(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
973 974 975 976 977 978 979 980 981 982
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {  // the 2nd field, tensor description
     // int32_t  size
     // void*    protobuf message
    proto::VarType::TensorDesc desc;
Y
Yu Yang 已提交
983
    desc.set_data_type(tensor.type());
Y
Yi Wang 已提交
984 985 986 987 988 989 990 991 992 993
    auto dims = framework::vectorize(tensor.dims());
    auto* pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    std::copy(dims.begin(), dims.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
Y
yuyang18 已提交
994 995
    uint64_t size = tensor.numel() * framework::SizeOfType(tensor.type());

996
    auto* data_ptr = tensor.data();
W
wanghuancoder 已提交
997
    PADDLE_ENFORCE_LT(size, (std::numeric_limits<std::streamsize>::max)(),
T
tangwei12 已提交
998 999
                      platform::errors::ResourceExhausted(
                          "tensor size %d overflow when writing tensor", size));
Y
Yi Wang 已提交
1000
    if (platform::is_gpu_place(tensor.place())) {
1001
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yi Wang 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& gpu_dev_ctx =
          static_cast<const platform::CUDADeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(),
1011
                     BOOST_GET_CONST(platform::CUDAPlace, tensor.place()),
Y
Yi Wang 已提交
1012 1013 1014 1015 1016 1017 1018 1019
                     reinterpret_cast<const void*>(data), size_to_write,
                     gpu_dev_ctx.stream());
        gpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
T
tangwei12 已提交
1020 1021
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
#endif
    } else if (platform::is_xpu_place(tensor.place())) {
#ifdef PADDLE_WITH_XPU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& xpu_dev_ctx =
          static_cast<const platform::XPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(),
                     BOOST_GET_CONST(platform::XPUPlace, tensor.place()),
                     reinterpret_cast<const void*>(data), size_to_write);
        xpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "XPUPlace is not supported when not compiled with XPU"));
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
#endif
    } else if (platform::is_npu_place(tensor.place())) {
#ifdef PADDLE_WITH_ASCEND_CL
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& npu_dev_ctx =
          static_cast<const platform::NPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(),
                     BOOST_GET_CONST(platform::NPUPlace, tensor.place()),
                     reinterpret_cast<const void*>(data), size_to_write,
                     npu_dev_ctx.stream());
        npu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported when not compiled with NPU"));
Y
Yi Wang 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
#endif
    } else {
      os.write(static_cast<const char*>(data_ptr),
               static_cast<std::streamsize>(size));
    }
  }
}

struct DeserializedDataFunctor {
  DeserializedDataFunctor(void** buf, Tensor* tensor,
                          const platform::Place& place)
      : buf_(buf), tensor_(tensor), place_(place) {}

  template <typename T>
D
dzhwinter 已提交
1081
  void apply() {
Y
Yi Wang 已提交
1082 1083 1084 1085 1086 1087 1088 1089
    *buf_ = tensor_->mutable_data<T>(place_);
  }

  void** buf_;
  Tensor* tensor_;
  platform::Place place_;
};

T
tangwei12 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));

  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));

  proto::VarType::TensorDesc desc;
  {  // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
  }
  {  // read tensor
    tensor->Resize(framework::make_ddim(shape));
    size_t seekg = seek * framework::SizeOfType(desc.data_type());
    is.seekg(seekg, is.cur);

    void* buf;
    auto ctx = platform::CPUDeviceContext();
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1121
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1122 1123
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
        platform::is_npu_place(dev_ctx.GetPlace())) {
1124
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1125
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_ASCEND_CL)
T
tangwei12 已提交
1126 1127 1128 1129 1130 1131 1132 1133
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(shape));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1134 1135 1136
      if (platform::is_npu_place(dev_ctx.GetPlace())) {
        dev_ctx.Wait();
      }
T
tangwei12 已提交
1137
#else
1138 1139 1140
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1141
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1142 1143
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1144 1145 1146
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1147
      }
T
tangwei12 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
    }
  }
}

Y
Yi Wang 已提交
1158 1159 1160 1161
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));
T
tangwei12 已提交
1162 1163 1164 1165 1166
  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));
Y
Yi Wang 已提交
1167 1168 1169 1170 1171 1172 1173
  proto::VarType::TensorDesc desc;
  {  // int32_t size
     // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
T
tangwei12 已提交
1174 1175 1176
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
Y
Yi Wang 已提交
1177 1178 1179 1180 1181 1182 1183 1184
  }
  {  // read tensor
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
    tensor->Resize(framework::make_ddim(dims));
    void* buf;
    auto ctx = platform::CPUDeviceContext();
Y
Yu Yang 已提交
1185
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
1186
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
1187 1188
        platform::is_xpu_place(dev_ctx.GetPlace()) ||
        platform::is_npu_place(dev_ctx.GetPlace())) {
1189
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
1190
    defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_ASCEND_CL)
Y
Yi Wang 已提交
1191 1192 1193 1194 1195
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(dims));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1196
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1197 1198
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
1199 1200 1201
      if (platform::is_npu_place(dev_ctx.GetPlace())) {
        dev_ctx.Wait();
      }
Y
Yi Wang 已提交
1202
#else
1203 1204 1205
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
1206
      } else if (platform::is_xpu_place(dev_ctx.GetPlace())) {
1207 1208
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
1209 1210 1211
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "NPUPlace is not supported when not compiled with NPU"));
1212
      }
Y
Yi Wang 已提交
1213 1214 1215 1216 1217
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
Y
yuyang18 已提交
1218
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
1219 1220 1221 1222
    }
  }
}

6
633WHU 已提交
1223 1224 1225 1226
// get tensor data point by DLDataType
void* GetDstPtrByDLDataType(DLDataType type, framework::Tensor* dst,
                            const platform::Place& dst_place) {
  // vector types not currently supported
1227 1228 1229
  PADDLE_ENFORCE_LE(type.lanes, 1,
                    platform::errors::Unimplemented(
                        "Vector type is not supported currently."));
6
633WHU 已提交
1230 1231 1232 1233 1234 1235 1236

  switch (type.bits) {
    case 8:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int8_t>(dst_place));
      if (type.code == kDLUInt)
        return static_cast<void*>(dst->mutable_data<uint8_t>(dst_place));
1237 1238 1239
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1240 1241 1242 1243 1244 1245
    case 16:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int16_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::float16>(dst_place));
S
Siming Dai 已提交
1246 1247 1248
      if (type.code == kDLBfloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::bfloat16>(dst_place));
1249 1250 1251
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1252 1253 1254 1255 1256
    case 32:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int32_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<float>(dst_place));
1257 1258 1259
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1260 1261 1262 1263 1264
    case 64:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int64_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<double>(dst_place));
S
Siming Dai 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<float>>(dst_place));
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
    case 128:
      if (type.code == kDLComplex)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::complex<double>>(dst_place));
1275 1276 1277
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
1278
    default:
1279 1280
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported DLDataType.bits %d.", type.bits));
6
633WHU 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
  }
}

void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst) {
  platform::CPUPlace dst_place = platform::CPUPlace();
  platform::CPUPlace src_place = platform::CPUPlace();

  std::vector<int64_t> vec;
  std::copy(dl_tensor.shape, dl_tensor.shape + dl_tensor.ndim,
            std::back_inserter(vec));

  framework::DDim vddim = framework::make_ddim(vec);

  dst->Resize(vddim);
  ::DLDataType type = dl_tensor.dtype;
  void* dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);

  auto src_ptr = static_cast<const void*>(dl_tensor.data);
  auto size = paddle::framework::product(vddim) * type.bits / 8;

S
Siming Dai 已提交
1301
  if (dl_tensor.device.device_type == kDLCPU) {
6
633WHU 已提交
1302 1303
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
1304
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
1305
  if (dl_tensor.device.device_type == kDLGPU) {
6
633WHU 已提交
1306
    platform::CUDAPlace dst_place =
S
Siming Dai 已提交
1307
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1308
    platform::CUDAPlace src_place =
S
Siming Dai 已提交
1309
        platform::CUDAPlace(dl_tensor.device.device_id);
6
633WHU 已提交
1310 1311 1312 1313 1314 1315 1316
    dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(dst_place);
    memory::Copy(
        dst_place, dst_ptr, src_place, src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(*ctx).stream());
  }
#endif
1317 1318 1319
#ifdef PADDLE_WITH_XPU
  PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
#endif
6
633WHU 已提交
1320 1321
}

1322 1323 1324 1325 1326 1327
template <typename T>
std::string format_tensor(const framework::Tensor& tensor) {
  // TODO(zhiqiu): use the print option to format tensor.
  return "NOT IMPLEMENTED";
}

1328 1329 1330 1331 1332
template <typename T>
std::ostream& print_tensor(std::ostream& os, const framework::Tensor& tensor) {
  auto inspect = tensor.data<T>();
  auto element_num = tensor.numel();

1333
  os << "  - data: [";
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
  // Note: int8_t && uint8_t is typedf of char, ostream unable to print properly
  if (typeid(int8_t) == typeid(T) || typeid(uint8_t) == typeid(T)) {
    if (element_num > 0) {
      os << signed(inspect[0]);
      for (int j = 1; j < element_num; ++j) {
        os << " " << signed(inspect[j]);
      }
    }
  } else {
    if (element_num > 0) {
      os << inspect[0];
      for (int j = 1; j < element_num; ++j) {
        os << " " << inspect[j];
      }
1348 1349 1350 1351 1352 1353
    }
  }
  os << "]";
  return os;
}

1354
template <>
1355
std::ostream& print_tensor<paddle::platform::complex<float>>(
1356
    std::ostream& os, const framework::Tensor& tensor) {
1357
  auto inspect = tensor.data<paddle::platform::complex<float>>();
1358 1359 1360 1361
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1362
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1363
    for (int j = 1; j < element_num; ++j) {
1364 1365
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1366 1367 1368 1369 1370 1371 1372
    }
  }
  os << "]";
  return os;
}

template <>
1373
std::ostream& print_tensor<paddle::platform::complex<double>>(
1374
    std::ostream& os, const framework::Tensor& tensor) {
1375
  auto inspect = tensor.data<paddle::platform::complex<double>>();
1376 1377 1378 1379
  auto element_num = tensor.numel();

  os << "  - data: [";
  if (element_num > 0) {
1380
    os << signed(inspect[0].real) << "+" << signed(inspect[0].imag) << "j";
1381
    for (int j = 1; j < element_num; ++j) {
1382 1383
      os << " " << signed(inspect[j].real) << "+" << signed(inspect[j].imag)
         << "j";
1384 1385 1386 1387 1388 1389
    }
  }
  os << "]";
  return os;
}

1390
std::ostream& operator<<(std::ostream& os, const Tensor& t) {
1391 1392 1393
  os << "  - place: " << t.place() << "\n";
  os << "  - shape: [" << t.dims() << "]\n";
  os << "  - layout: " << DataLayoutToString(t.layout()) << "\n";
1394

1395 1396 1397 1398 1399
#ifdef PADDLE_WITH_MKLDNN
  os << "  - format: "
     << dnnl_fmt_tag2str(static_cast<dnnl_format_tag_t>(t.format())) << "\n";
#endif

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
  Tensor tensor;
  tensor.Resize(t.dims());
  if (platform::is_cpu_place(t.place())) {
    tensor.ShareDataWith(t);
  } else {
    platform::CPUPlace place;
    framework::TensorCopy(t, place, &tensor);
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();
  }

#define PrintTensorCallback(cpp_type, proto_type) \
  do {                                            \
    if (tensor.type() == proto_type) {            \
1415
      os << "  - dtype: " << proto_type << "\n";  \
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
      print_tensor<cpp_type>(os, tensor);         \
      return os;                                  \
    }                                             \
  } while (0)

  _ForEachDataType_(PrintTensorCallback);
  VLOG(1) << "PrintVar: unrecognized data type:" << t.type();
  return os;
}

Y
Yang Yu 已提交
1426 1427
}  // namespace framework
}  // namespace paddle