tensor_util.cc 38.4 KB
Newer Older
Y
Yang Yu 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yu 已提交
6

7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/tensor_util.h"
16

C
chengduoZH 已提交
17 18
#include <algorithm>
#include <limits>
C
chengduo 已提交
19
#include <memory>
20
#include <string>
C
chengduo 已提交
21
#include <utility>
C
chengduoZH 已提交
22
#include <vector>
23

Y
yuyang18 已提交
24
#include "paddle/fluid/framework/data_type.h"
25
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
26 27 28

namespace paddle {
namespace framework {
Y
Yi Wang 已提交
29 30

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
F
fengjiayi 已提交
31
                const platform::DeviceContext& ctx, Tensor* dst) {
32 33 34 35 36 37
  if (&src == dst) {
    auto src_copy = src;
    TensorCopy(src_copy, dst_place, ctx, dst);
    return;
  }

M
minqiyang 已提交
38 39
  VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
          << dst_place;
Y
Yi Wang 已提交
40 41 42 43
  src.check_memory_size();

  dst->Resize(src.dims());
  dst->set_layout(src.layout());
J
Jacek Czaja 已提交
44 45 46
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
#endif
Y
Yi Wang 已提交
47 48 49 50
  auto src_place = src.place();
  auto src_ptr = src.data<void>();
  auto dst_ptr = dst->mutable_data(dst_place, src.type());

51 52 53 54 55 56
  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data async from " << src_place << " to "
            << dst_place;
    return;
  }

Y
Yi Wang 已提交
57 58 59
  auto size = src.numel() * SizeOfType(src.type());

  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
60 61
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
Y
Yi Wang 已提交
62
  }
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src_place), src_ptr, size);
  } else if (platform::is_cpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
  } else if (platform::is_xpu_place(src_place) &&
             platform::is_xpu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src_place), src_ptr, size);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
Y
Yi Wang 已提交
86
#ifdef PADDLE_WITH_CUDA
87 88 89 90 91 92
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place), src_ptr,
                 size);
  }
93
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
Y
Yi Wang 已提交
94
           platform::is_cpu_place(dst_place)) {
95 96 97
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place), src_ptr,
                 size);
98 99 100
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
101 102
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
103 104 105
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
106 107
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_cpu_place = BOOST_GET_CONST(platform::CPUPlace, dst_place);
Y
Yi Wang 已提交
108
    auto ctx_place = ctx.GetPlace();
109 110 111 112 113
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
114
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
115 116 117 118 119
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Source place and context place do not match, source "
                          "place is %s, context place is %s.",
                          src_gpu_place, ctx_gpu_place));
120
    auto stream =
F
fengjiayi 已提交
121
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
122
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
123 124 125
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
126 127
    auto src_cpu_place = BOOST_GET_CONST(platform::CPUPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
Y
Yi Wang 已提交
128
    auto ctx_place = ctx.GetPlace();
129 130 131 132 133
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
134
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
135 136 137 138 139
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::Unavailable(
                          "Destination place and context place do not match, "
                          "destination place is %s, context place is %s.",
                          dst_gpu_place, ctx_gpu_place));
140
    auto stream =
F
fengjiayi 已提交
141
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
142
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
143 144 145
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_cuda_pinned_place =
        BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place);
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from GPU memory to CUDA Pinned memory, current "
                          "device context place should be GPU."));
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
    PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The source GPU device and current device context do "
                          "not match. The source GPU device number is %d, but "
                          "device context GPU number is %d.",
                          src_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_cuda_pinned_place, dst_ptr, src_gpu_place, src_ptr, size,
                 stream);
166 167 168
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    auto src_cuda_pinned_place =
        BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
    auto ctx_place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx_place), true,
                      platform::errors::PreconditionNotMet(
                          "Device context place mismatch. When copying Tensor "
                          "data from CUDA Pinned memory to GPU memory, current "
                          "device context place should be GPU."));
    auto ctx_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, ctx_place);
    PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place,
                      platform::errors::PreconditionNotMet(
                          "The target GPU device and current device context do "
                          "not match. The target GPU device number is %d, but "
                          "device context GPU number is %d.",
                          dst_gpu_place.device, ctx_gpu_place.device));
    auto stream =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
    memory::Copy(dst_gpu_place, dst_ptr, src_cuda_pinned_place, src_ptr, size,
                 stream);
189 190 191
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
192 193
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
Y
Yi Wang 已提交
194
    auto ctx_place = ctx.GetPlace();
195 196 197 198 199
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx_place), true,
        platform::errors::PreconditionNotMet(
            "Context place error, excepted GPUPlace, but actually %s.",
            ctx_place));
200
    auto stream =
F
fengjiayi 已提交
201
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
C
chengduo 已提交
202 203 204 205 206 207 208
    if (platform::is_same_place(src_place, dst_place)) {
      memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                   stream);
    } else {
      if (platform::is_same_place(ctx_place, src_place)) {
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
C
chengduo 已提交
209
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
210
      } else if (platform::is_same_place(ctx_place, dst_place)) {
C
chengduo 已提交
211
        platform::DeviceContextPool::Instance().Get(src.place())->Wait();
C
chengduo 已提交
212 213 214
        memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
                     stream);
      } else {
215 216
        PADDLE_THROW(platform::errors::Unavailable(
            "Context place dose not match the source and destination place."));
C
chengduo 已提交
217 218
      }
    }
219 220
  }
  else {  // NOLINT
221 222
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copying from %s to %s is not supported.", src_place, dst_place));
Y
Yi Wang 已提交
223 224 225 226 227 228 229 230
  }
#endif
}

void TensorCopy(const Tensor& src, const platform::Place& dst_place,
                Tensor* dst) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
C
chengduo 已提交
231
  if (platform::is_gpu_place(dst_place)) {
Y
Yi Wang 已提交
232
    dev_ctx = pool.Get(dst_place);
C
chengduo 已提交
233 234
  } else {
    dev_ctx = pool.Get(src.place());
Y
Yi Wang 已提交
235 236 237 238
  }
  TensorCopy(src, dst_place, *dev_ctx, dst);
}

F
fengjiayi 已提交
239 240
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
                    Tensor* dst) {
241 242 243 244 245 246
  if (&src == dst) {
    auto src_copy = src;
    TensorCopySync(src_copy, dst_place, dst);
    return;
  }

M
minqiyang 已提交
247 248
  VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
          << " to " << dst_place;
F
fengjiayi 已提交
249 250 251
  src.check_memory_size();
  dst->Resize(src.dims());
  dst->set_layout(src.layout());
J
Jacek Czaja 已提交
252 253 254
#ifdef PADDLE_WITH_MKLDNN
  dst->set_format(src.format());
#endif
F
fengjiayi 已提交
255 256 257
  auto src_place = src.place();
  auto src_ptr = src.data<void>();
  auto dst_ptr = dst->mutable_data(dst_place, src.type());
258 259 260 261 262 263 264

  if (src_ptr == dst_ptr && src_place == dst_place) {
    VLOG(3) << "Skip copy the same data from " << src_place << " to "
            << dst_place;
    return;
  }

F
fengjiayi 已提交
265 266
  auto size = src.numel() * SizeOfType(src.type());
  if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
267 268
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
F
fengjiayi 已提交
269
  }
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
#ifdef PADDLE_WITH_XPU
  else if (platform::is_xpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src_place), src_ptr, size);
  } else if (platform::is_cpu_place(src_place) &&  // NOLINT
             platform::is_xpu_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
  } else if (platform::is_xpu_place(src_place) &&  // NOLINT
             platform::is_xpu_place(dst_place)) {
    if (src_ptr == dst_ptr) {
      VLOG(3) << "Skip copy the same data async from " << src_place << " to "
              << dst_place;
      return;
    }
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, src_place), src_ptr, size);
  } else {  // NOLINT
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
  }
#endif
F
fengjiayi 已提交
293
#ifdef PADDLE_WITH_CUDA
294 295 296 297 298 299
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place), src_ptr,
                 size);
  }
300
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
F
fengjiayi 已提交
301
           platform::is_cpu_place(dst_place)) {
302 303 304
    memory::Copy(BOOST_GET_CONST(platform::CPUPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place), src_ptr,
                 size);
305 306 307
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
308 309
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CPUPlace, src_place), src_ptr, size);
310 311 312
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cuda_pinned_place(dst_place)) {
313 314 315
    memory::Copy(BOOST_GET_CONST(platform::CUDAPinnedPlace, dst_place), dst_ptr,
                 BOOST_GET_CONST(platform::CUDAPlace, src_place), src_ptr, size,
                 nullptr);
316 317 318
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_cpu_place(dst_place)) {
319 320
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_cpu_place = BOOST_GET_CONST(platform::CPUPlace, dst_place);
F
fengjiayi 已提交
321
    memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
322 323 324
  }
  else if (platform::is_cpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
325 326
    auto src_cpu_place = BOOST_GET_CONST(platform::CPUPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
F
fengjiayi 已提交
327
    memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
328 329 330
  }
  else if (platform::is_gpu_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
331 332
    auto src_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
F
fengjiayi 已提交
333
    memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
334 335 336
  }
  else if (platform::is_cuda_pinned_place(src_place) &&  // NOLINT
           platform::is_gpu_place(dst_place)) {
337 338 339
    auto src_pinned_place =
        BOOST_GET_CONST(platform::CUDAPinnedPlace, src_place);
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, dst_place);
W
Wu Yi 已提交
340 341
    memory::Copy(dst_gpu_place, dst_ptr, src_pinned_place, src_ptr, size,
                 nullptr);
342 343
  }
  else {  // NOLINT
344 345
    PADDLE_THROW(platform::errors::Unimplemented(
        "Copy from %s to %s is not supported.", src_place, dst_place));
F
fengjiayi 已提交
346 347 348 349
  }
#endif
}

Y
Yang Yu 已提交
350 351 352 353 354 355 356 357 358 359 360 361
template <typename Predicate, typename DevCtx>
struct AnyDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AnyDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
D
dzhwinter 已提交
362
  void apply() const {
Y
Yang Yu 已提交
363 364
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenScalar<bool>::From(*out_);
Y
Yang Yu 已提交
365
    // return any of predicate_(t) is true.
Y
Yang Yu 已提交
366 367 368 369 370 371 372
    o.device(*ctx_.eigen_device()) = predicate_(t).any();
  }
};

template <typename Predicate, typename DevCtx>
inline void AnyImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
Y
Yu Yang 已提交
373 374
  VisitDataType(tensor.type(), AnyDTypeVisitor<Predicate, DevCtx>(
                                   predicate, tensor, ctx, out));
Y
Yang Yu 已提交
375 376 377
}

template <typename Predicate>
378 379
class AnyVisitor : public boost::static_visitor<bool> {
 private:
Y
Yang Yu 已提交
380 381 382
  const framework::Tensor& tensor_;
  Predicate predicate_;

383 384 385 386 387 388 389 390 391 392 393 394 395
  bool GetResultHelper(const framework::Tensor& out,
                       const platform::Place& place) const {
    platform::CPUPlace cpu;
    framework::Tensor tmp;
    tmp.Resize({1});
    tmp.mutable_data<bool>(cpu);
    auto ctx = platform::DeviceContextPool::Instance().Get(place);
    ctx->Wait();
    TensorCopy(out, cpu, *ctx, &tmp);
    ctx->Wait();
    return GetResult(tmp, cpu);
  }

396
 public:
Y
Yang Yu 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409
  AnyVisitor(const framework::Tensor& tensor, Predicate predicate)
      : tensor_(tensor), predicate_(std::move(predicate)) {}

  template <typename Place>
  bool operator()(const Place& place) const {
    framework::Tensor out;
    out.Resize({1});
    out.mutable_data<bool>(place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    AnyImpl(predicate_, tensor_, *ctx, &out);
    return this->GetResult(out, place);
  }

410 411 412 413 414
  bool GetResult(const framework::Tensor& out,
                 const platform::XPUPlace& xpu) const {
    return GetResultHelper(out, xpu);
  }

Y
Yang Yu 已提交
415 416
  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPlace& gpu) const {
417
    return GetResultHelper(out, gpu);
Y
Yang Yu 已提交
418 419 420 421 422 423
  }

  bool GetResult(const framework::Tensor& out,
                 const platform::CPUPlace& cpu) const {
    return *out.data<bool>();
  }
C
chengduoZH 已提交
424 425 426 427 428

  bool GetResult(const framework::Tensor& out,
                 const platform::CUDAPinnedPlace& cpu) const {
    return *out.data<bool>();
  }
Y
Yang Yu 已提交
429 430
};

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
template <typename Predicate>
class AnyOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AnyOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(std::move(predicate)) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize({1});
    out_->mutable_data<bool>(place);
    AnyImpl(predicate_, tensor_, *ctx, out_);
  }
};

Y
Yang Yu 已提交
452 453 454 455 456 457 458
template <typename Predicate>
inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
  AnyVisitor<Predicate> visitor(tensor, predicate);
  auto place = tensor.place();
  return platform::VisitPlace(place, visitor);
}

459 460 461 462 463 464 465 466
template <typename Predicate>
inline void Any(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AnyOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
template <typename Predicate, typename DevCtx>
struct AllDTypeVisitor {
  Predicate predicate_;
  const Tensor& tensor_;
  const DevCtx& ctx_;
  Tensor* out_;

  AllDTypeVisitor(Predicate predicate, const Tensor& tensor, const DevCtx& ctx,
                  Tensor* out)
      : predicate_(predicate), tensor_(tensor), ctx_(ctx), out_(out) {}

  template <typename T>
  void apply() const {
    auto t = EigenVector<T>::Flatten(tensor_);
    auto o = EigenVector<bool>::Flatten(*out_);
    o.device(*ctx_.eigen_device()) = predicate_(t);
  }
};

template <typename Predicate, typename DevCtx>
inline void AllImpl(Predicate predicate, const framework::Tensor& tensor,
                    const DevCtx& ctx, framework::Tensor* out) {
  VisitDataType(tensor.type(), AllDTypeVisitor<Predicate, DevCtx>(
                                   predicate, tensor, ctx, out));
}

template <typename Predicate>
class AllOutVisitor : public boost::static_visitor<> {
 private:
  const framework::Tensor& tensor_;
  mutable framework::Tensor* out_;
  Predicate predicate_;

 public:
  AllOutVisitor(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out)
      : tensor_(tensor), out_(out), predicate_(predicate) {}

  template <typename Place>
  void operator()(const Place& place) const {
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
    out_->Resize(tensor_.dims());
    out_->mutable_data<bool>(place);
    AllImpl(predicate_, tensor_, *ctx, out_);
  }
};

template <typename Predicate>
inline void All(const framework::Tensor& tensor, Predicate predicate,
                framework::Tensor* out) {
  AllOutVisitor<Predicate> visitor(tensor, predicate, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
522
struct ContainsNANPredicate {
Y
Yang Yu 已提交
523 524 525
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isnan()) {
Y
Yang Yu 已提交
526
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
527 528 529 530
    return eigen_vec.isnan();
  }
};

Y
Yi Wang 已提交
531 532
bool TensorContainsNAN(const framework::Tensor& tensor) {
  ContainsNANPredicate predicate;
Y
Yang Yu 已提交
533 534 535
  return Any(tensor, predicate);
}

536 537 538 539 540 541
void TensorContainsNAN(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsNANPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
542 543 544 545 546 547
void TensorContainsNANV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsNANPredicate predicate;
  All(tensor, predicate, out);
}

Y
Yi Wang 已提交
548
struct ContainsInfPredicate {
Y
Yang Yu 已提交
549 550 551
  template <typename T>
  auto operator()(const T& eigen_vec) const
      -> decltype(std::declval<T>().isinf()) {
Y
Yang Yu 已提交
552
    // Cast eigen_vector to vector of bool. true if is inf.
Y
Yang Yu 已提交
553 554 555 556
    return eigen_vec.isinf();
  }
};

Y
Yi Wang 已提交
557 558
bool TensorContainsInf(const framework::Tensor& tensor) {
  ContainsInfPredicate predicate;
Y
Yang Yu 已提交
559 560 561
  return Any(tensor, predicate);
}

562 563 564 565 566 567
void TensorContainsInf(const framework::Tensor& tensor,
                       framework::Tensor* out) {
  ContainsInfPredicate predicate;
  Any(tensor, predicate, out);
}

J
Jack Zhou 已提交
568 569 570 571 572 573
void TensorContainsInfV2(const framework::Tensor& tensor,
                         framework::Tensor* out) {
  ContainsInfPredicate predicate;
  All(tensor, predicate, out);
}

574 575 576 577 578 579 580 581 582 583 584 585
// NOTE(dzhwinter):
// Isfinite need a AllVisitor to loop through all the elements.
// We choose two cuda call instead of one allvisitor. The AllVisitor
// should be implemented if the performance hurts.
bool TensorIsfinite(const framework::Tensor& tensor) {
  ContainsInfPredicate pred_inf;
  ContainsNANPredicate pred_nan;
  return !Any(tensor, pred_inf) && !Any(tensor, pred_nan);
}

#ifdef PADDLE_WITH_CUDA
template <typename T>
J
Jack Zhou 已提交
586 587
static inline void __global__ BothFalse(const T* cmp, T* out, int element_num) {
  CUDA_KERNEL_LOOP(i, element_num) { out[i] = (!cmp[i]) && (!out[i]); }
588 589 590 591 592 593 594 595 596 597 598 599 600 601
}
#endif

struct BothFalseVisitor : public boost::static_visitor<> {
  const framework::Tensor& in_;
  mutable framework::Tensor* out_;
  BothFalseVisitor(const framework::Tensor& in, framework::Tensor* out)
      : in_(in), out_(out) {}

  template <typename Place>
  void operator()(const Place& place) const {
    VisitorImpl(place);
  }

602 603 604 605
  void VisitorImpl(const platform::XPUPlace& xpu) const {
    PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
  }

606 607 608
  void VisitorImpl(const platform::CUDAPlace& gpu) const {
#ifdef PADDLE_WITH_CUDA
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(gpu);
J
Jack Zhou 已提交
609 610 611 612 613 614 615 616 617 618
    constexpr int MAX_BLOCK_DIM = 512;
    const int MAX_GRID_DIM = ctx->GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int element_num = in_.numel();
    int block_size = (element_num >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(element_num)));
    int grid_size = element_num / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
    BothFalse<bool><<<grid_size, block_size, 0, ctx->stream()>>>(
        in_.data<bool>(), out_->mutable_data<bool>(gpu), element_num);
619 620 621 622
#endif
  }

  void VisitorImpl(const platform::CPUPlace& cpu) const {
J
Jack Zhou 已提交
623 624 625 626 627 628 629 630
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
631 632 633 634
  }

  void VisitorImpl(
      const platform::CUDAPinnedPlace& cpu /* equals to cpu*/) const {
J
Jack Zhou 已提交
635 636 637 638 639 640 641 642
    int num = in_.numel();
    const bool* in_ptr = in_.data<bool>();
    bool* out_ptr = out_->data<bool>();
    for (int i = 0; i < num; ++i) {
      bool lhs = !in_ptr[i];
      bool rhs = !out_ptr[i];
      out_ptr[i] = lhs && rhs;
    }
643 644 645 646 647 648 649 650 651 652 653 654
  }
};

void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInf(tensor, &tmp);
  TensorContainsNAN(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

J
Jack Zhou 已提交
655 656 657 658 659 660 661 662 663
void TensorIsfiniteV2(const framework::Tensor& tensor, framework::Tensor* out) {
  framework::Tensor tmp;
  TensorContainsInfV2(tensor, &tmp);
  TensorContainsNANV2(tensor, out);
  BothFalseVisitor visitor(tmp, out);
  auto place = tensor.place();
  platform::VisitPlace(place, visitor);
}

Y
Yi Wang 已提交
664 665 666 667 668 669 670 671 672 673
void TensorToStream(std::ostream& os, const Tensor& tensor,
                    const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {  // the 2nd field, tensor description
     // int32_t  size
     // void*    protobuf message
    proto::VarType::TensorDesc desc;
Y
Yu Yang 已提交
674
    desc.set_data_type(tensor.type());
Y
Yi Wang 已提交
675 676 677 678 679 680 681 682 683 684
    auto dims = framework::vectorize(tensor.dims());
    auto* pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    std::copy(dims.begin(), dims.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
Y
yuyang18 已提交
685 686
    uint64_t size = tensor.numel() * framework::SizeOfType(tensor.type());

Y
Yi Wang 已提交
687
    auto* data_ptr = tensor.data<void>();
W
wanghuancoder 已提交
688
    PADDLE_ENFORCE_LT(size, (std::numeric_limits<std::streamsize>::max)(),
T
tangwei12 已提交
689 690
                      platform::errors::ResourceExhausted(
                          "tensor size %d overflow when writing tensor", size));
Y
Yi Wang 已提交
691 692 693 694 695 696 697 698 699 700 701
    if (platform::is_gpu_place(tensor.place())) {
#ifdef PADDLE_WITH_CUDA
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& gpu_dev_ctx =
          static_cast<const platform::CUDADeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(),
702
                     BOOST_GET_CONST(platform::CUDAPlace, tensor.place()),
Y
Yi Wang 已提交
703 704 705 706 707 708 709 710
                     reinterpret_cast<const void*>(data), size_to_write,
                     gpu_dev_ctx.stream());
        gpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
T
tangwei12 已提交
711 712
      PADDLE_THROW(platform::errors::Unimplemented(
          "CUDAPlace is not supported when not compiled with CUDA"));
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
#endif
    } else if (platform::is_xpu_place(tensor.place())) {
#ifdef PADDLE_WITH_XPU
      constexpr size_t kBufSize = 1024 * 1024 * 64;  // 64MB
      std::unique_ptr<char[]> buf(new char[kBufSize]);
      auto& xpu_dev_ctx =
          static_cast<const platform::XPUDeviceContext&>(dev_ctx);
      platform::CPUPlace cpu;
      uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
      while (size != 0) {
        size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
        memory::Copy(cpu, buf.get(),
                     BOOST_GET_CONST(platform::XPUPlace, tensor.place()),
                     reinterpret_cast<const void*>(data), size_to_write);
        xpu_dev_ctx.Wait();
        os.write(buf.get(), size_to_write);
        data += size_to_write;
        size -= size_to_write;
      }
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "XPUPlace is not supported when not compiled with XPU"));
Y
Yi Wang 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748
#endif
    } else {
      os.write(static_cast<const char*>(data_ptr),
               static_cast<std::streamsize>(size));
    }
  }
}

struct DeserializedDataFunctor {
  DeserializedDataFunctor(void** buf, Tensor* tensor,
                          const platform::Place& place)
      : buf_(buf), tensor_(tensor), place_(place) {}

  template <typename T>
D
dzhwinter 已提交
749
  void apply() {
Y
Yi Wang 已提交
750 751 752 753 754 755 756 757
    *buf_ = tensor_->mutable_data<T>(place_);
  }

  void** buf_;
  Tensor* tensor_;
  platform::Place place_;
};

T
tangwei12 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx,
                      const size_t& seek, const std::vector<int64_t>& shape) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));

  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));

  proto::VarType::TensorDesc desc;
  {  // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
  }
  {  // read tensor
    tensor->Resize(framework::make_ddim(shape));
    size_t seekg = seek * framework::SizeOfType(desc.data_type());
    is.seekg(seekg, is.cur);

    void* buf;
    auto ctx = platform::CPUDeviceContext();
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
789 790 791
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
        platform::is_xpu_place(dev_ctx.GetPlace())) {
#if defined PADDLE_WITH_CUDA || defined PADDLE_WITH_XPU
T
tangwei12 已提交
792 793 794 795 796 797 798 799 800
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(shape));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
#else
801 802 803 804 805 806 807
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
      }
T
tangwei12 已提交
808 809 810 811 812 813 814 815 816 817
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
      is.read(static_cast<char*>(buf), size);
    }
  }
}

Y
Yi Wang 已提交
818 819 820 821
void TensorFromStream(std::istream& is, Tensor* tensor,
                      const platform::DeviceContext& dev_ctx) {
  uint32_t version;
  is.read(reinterpret_cast<char*>(&version), sizeof(version));
T
tangwei12 已提交
822 823 824 825 826
  PADDLE_ENFORCE_EQ(
      version, 0U,
      platform::errors::InvalidArgument(
          "tensor version %u is not supported, Only version 0 is supported",
          version));
Y
Yi Wang 已提交
827 828 829 830 831 832 833
  proto::VarType::TensorDesc desc;
  {  // int32_t size
     // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char*>(buf.get()), size);
T
tangwei12 已提交
834 835 836
    PADDLE_ENFORCE_EQ(
        desc.ParseFromArray(buf.get(), size), true,
        platform::errors::InvalidArgument("Cannot parse tensor desc"));
Y
Yi Wang 已提交
837 838 839 840 841 842 843 844
  }
  {  // read tensor
    std::vector<int64_t> dims;
    dims.reserve(static_cast<size_t>(desc.dims().size()));
    std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
    tensor->Resize(framework::make_ddim(dims));
    void* buf;
    auto ctx = platform::CPUDeviceContext();
Y
Yu Yang 已提交
845
    size_t size = tensor->numel() * framework::SizeOfType(desc.data_type());
846 847 848
    if (platform::is_gpu_place(dev_ctx.GetPlace()) ||
        platform::is_xpu_place(dev_ctx.GetPlace())) {
#if defined PADDLE_WITH_CUDA || defined PADDLE_WITH_XPU
Y
Yi Wang 已提交
849 850 851 852 853
      Tensor cpu_tensor;
      cpu_tensor.Resize(framework::make_ddim(dims));
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
Y
yuyang18 已提交
854
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
855 856 857
      auto dst_place = dev_ctx.GetPlace();
      framework::TensorCopy(cpu_tensor, dst_place, dev_ctx, tensor);
#else
858 859 860 861 862 863 864
      if (platform::is_gpu_place(dev_ctx.GetPlace())) {
        PADDLE_THROW(platform::errors::Unimplemented(
            "CUDAPlace is not supported when not compiled with CUDA"));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "XPUPlace is not supported when not compiled with XPU"));
      }
Y
Yi Wang 已提交
865 866 867 868 869
#endif
    } else {
      framework::VisitDataType(
          desc.data_type(),
          DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
Y
yuyang18 已提交
870
      is.read(static_cast<char*>(buf), size);
Y
Yi Wang 已提交
871 872 873 874
    }
  }
}

6
633WHU 已提交
875 876 877 878
// get tensor data point by DLDataType
void* GetDstPtrByDLDataType(DLDataType type, framework::Tensor* dst,
                            const platform::Place& dst_place) {
  // vector types not currently supported
879 880 881
  PADDLE_ENFORCE_LE(type.lanes, 1,
                    platform::errors::Unimplemented(
                        "Vector type is not supported currently."));
6
633WHU 已提交
882 883 884 885 886 887 888

  switch (type.bits) {
    case 8:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int8_t>(dst_place));
      if (type.code == kDLUInt)
        return static_cast<void*>(dst->mutable_data<uint8_t>(dst_place));
889 890 891
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
892 893 894 895 896 897
    case 16:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int16_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(
            dst->mutable_data<paddle::platform::float16>(dst_place));
898 899 900
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
901 902 903 904 905
    case 32:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int32_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<float>(dst_place));
906 907 908
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
909 910 911 912 913
    case 64:
      if (type.code == kDLInt)
        return static_cast<void*>(dst->mutable_data<int64_t>(dst_place));
      if (type.code == kDLFloat)
        return static_cast<void*>(dst->mutable_data<double>(dst_place));
914 915 916
      PADDLE_THROW(platform::errors::Unimplemented(
          "DLDataType code <%d> is illegal when DLDataType.bits is <%d>.",
          type.code, type.bits));
6
633WHU 已提交
917
    default:
918 919
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported DLDataType.bits %d.", type.bits));
6
633WHU 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
  }
}

void TensorFromDLPack(const ::DLTensor& dl_tensor, framework::Tensor* dst) {
  platform::CPUPlace dst_place = platform::CPUPlace();
  platform::CPUPlace src_place = platform::CPUPlace();

  std::vector<int64_t> vec;
  std::copy(dl_tensor.shape, dl_tensor.shape + dl_tensor.ndim,
            std::back_inserter(vec));

  framework::DDim vddim = framework::make_ddim(vec);

  dst->Resize(vddim);
  ::DLDataType type = dl_tensor.dtype;
  void* dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);

  auto src_ptr = static_cast<const void*>(dl_tensor.data);
  auto size = paddle::framework::product(vddim) * type.bits / 8;

  if (dl_tensor.ctx.device_type == kDLCPU) {
    memory::Copy(dst_place, dst_ptr, src_place, src_ptr, size);
  }
#ifdef PADDLE_WITH_CUDA
  if (dl_tensor.ctx.device_type == kDLGPU) {
    platform::CUDAPlace dst_place =
        platform::CUDAPlace(dl_tensor.ctx.device_id);
    platform::CUDAPlace src_place =
        platform::CUDAPlace(dl_tensor.ctx.device_id);
    dst_ptr = GetDstPtrByDLDataType(type, dst, dst_place);
    auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(dst_place);
    memory::Copy(
        dst_place, dst_ptr, src_place, src_ptr, size,
        reinterpret_cast<const platform::CUDADeviceContext&>(*ctx).stream());
  }
#endif
956 957 958
#ifdef PADDLE_WITH_XPU
  PADDLE_THROW(platform::errors::Unimplemented("XPUPlace is not supported"));
#endif
6
633WHU 已提交
959 960
}

961 962 963 964 965 966
template <typename T>
std::string format_tensor(const framework::Tensor& tensor) {
  // TODO(zhiqiu): use the print option to format tensor.
  return "NOT IMPLEMENTED";
}

967 968 969 970 971
template <typename T>
std::ostream& print_tensor(std::ostream& os, const framework::Tensor& tensor) {
  auto inspect = tensor.data<T>();
  auto element_num = tensor.numel();

972
  os << "  - data: [";
973 974 975 976 977 978 979 980 981 982 983 984 985 986
  // Note: int8_t && uint8_t is typedf of char, ostream unable to print properly
  if (typeid(int8_t) == typeid(T) || typeid(uint8_t) == typeid(T)) {
    if (element_num > 0) {
      os << signed(inspect[0]);
      for (int j = 1; j < element_num; ++j) {
        os << " " << signed(inspect[j]);
      }
    }
  } else {
    if (element_num > 0) {
      os << inspect[0];
      for (int j = 1; j < element_num; ++j) {
        os << " " << inspect[j];
      }
987 988 989 990 991 992 993
    }
  }
  os << "]";
  return os;
}

std::ostream& operator<<(std::ostream& os, const Tensor& t) {
994 995 996
  os << "  - place: " << t.place() << "\n";
  os << "  - shape: [" << t.dims() << "]\n";
  os << "  - layout: " << DataLayoutToString(t.layout()) << "\n";
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

  Tensor tensor;
  tensor.Resize(t.dims());
  if (platform::is_cpu_place(t.place())) {
    tensor.ShareDataWith(t);
  } else {
    platform::CPUPlace place;
    framework::TensorCopy(t, place, &tensor);
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();
  }

#define PrintTensorCallback(cpp_type, proto_type) \
  do {                                            \
    if (tensor.type() == proto_type) {            \
1013
      os << "  - dtype: " << proto_type << "\n";  \
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
      print_tensor<cpp_type>(os, tensor);         \
      return os;                                  \
    }                                             \
  } while (0)

  _ForEachDataType_(PrintTensorCallback);
  VLOG(1) << "PrintVar: unrecognized data type:" << t.type();
  return os;
}

Y
Yang Yu 已提交
1024 1025
}  // namespace framework
}  // namespace paddle