activation_op.cc 60.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
26
#include "paddle/phi/backends/dynload/port.h"
Q
qijun 已提交
27

A
Adam 已提交
28 29
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
30 31 32
namespace paddle {
namespace operators {

33 34
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
35 36
  return GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kDepOut ||
         GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kNoDeps;
37 38
}

39 40 41 42 43 44 45 46 47 48 49 50 51 52
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)           \
  class OP_NAME##OpMaker                                            \
      : public ::paddle::framework::OpProtoAndCheckerMaker {        \
   public:                                                          \
    void Make() override {                                          \
      AddInput("X",                                                 \
               "Input of " #OP_NAME                                 \
               " operator, an N-D Tensor, with data type float32, " \
               "float64 or float16.");                              \
      AddOutput("Out",                                              \
                "Output of " #OP_NAME                               \
                " operator, a Tensor with shape same as input.");   \
      AddComment(OP_COMMENT);                                       \
    }                                                               \
D
dzhwinter 已提交
53
  }
D
dzhwinter 已提交
54

H
hong 已提交
55 56
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
57
 public:
H
hong 已提交
58
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
59 60

 protected:
61
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
62 63 64 65
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
66

A
Adam 已提交
67 68
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
69 70
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
R
Ruibiao Chen 已提交
71
         PADDLE_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
72
      op->SetInput("X", this->Input("X"));  // x
73 74 75 76
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
77
      op->SetInput("Out", this->Output("Out"));  // out
78
    }
D
dzhwinter 已提交
79
  }
80
};
D
dzhwinter 已提交
81

82 83 84
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
85
  auto data_type = oper.IndicateVarDataType(ctx, name);
86 87 88 89 90 91 92 93 94 95 96
  // FIXME(liuwei1031) temporarily disable the code to unblock users
  // TODO(liuwei1031) figure out the reason behind
  // https://github.com/PaddlePaddle/Paddle/issues/16096
  // and re-enable this in the future
  // #ifdef PADDLE_WITH_CUDA
  //   auto it1 = oper.Attrs().find("use_cudnn");
  //   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
  //     library = framework::LibraryType::kCUDNN;
  //   }
  // #endif
  return framework::OpKernelType(data_type, ctx.GetPlace());
97 98
}

Q
qijun 已提交
99 100 101 102
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

103
  void InferShape(framework::InferShapeContext* ctx) const override {
104
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
105
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
106
  }
107

108
 protected:
109 110 111 112
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
J
Jacek Czaja 已提交
113 114

  framework::OpKernelType GetKernelTypeForVar(
115
      const std::string& var_name,
116
      const phi::DenseTensor& tensor,
117
      const framework::OpKernelType& expected_kernel_type) const override {
J
Jacek Czaja 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130
#ifdef PADDLE_WITH_MKLDNN
    // When activation is first oneDNN op (there was some non oneDNN op
    // previously)
    // then we also need to rotate shape NHWC -> NCWH
    if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
        (tensor.layout() != framework::DataLayout::kMKLDNN) &&
        paddle::platform::MKLDNNDeviceContext::tls()
                .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(),
                                     framework::DataLayout::kNHWC);
    }
#endif
131 132
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
J
Jacek Czaja 已提交
133
  }
Q
qijun 已提交
134 135
};

C
chengduo 已提交
136 137 138
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
139
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
140
      const override {
141 142
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
143 144 145
  }
};

Q
qijun 已提交
146 147 148 149
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

150
  void InferShape(framework::InferShapeContext* ctx) const override {
151 152 153
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
154
  }
155

156
 protected:
157 158
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
159
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
160
  }
Q
qijun 已提交
161 162
};

D
dzhwinter 已提交
163
UNUSED constexpr char SigmoidDoc[] = R"DOC(
164
Sigmoid Activation
K
Kexin Zhao 已提交
165

166
$$out = \frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
167

D
dzhwinter 已提交
168
)DOC";
Q
qijun 已提交
169

M
minghaoBD 已提交
170 171 172 173 174 175
UNUSED constexpr char SiluDoc[] = R"DOC(
Silu Activation Operator

$$out = x * \\frac{1}{1 + e^{-x}}$$
)DOC";

D
dzhwinter 已提交
176
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
177
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
178

179
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
180

D
dzhwinter 已提交
181
)DOC";
182

D
dzhwinter 已提交
183
UNUSED constexpr char ExpDoc[] = R"DOC(
184
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
185

186
$$out = e^x$$
K
Kexin Zhao 已提交
187

D
dzhwinter 已提交
188
)DOC";
Q
qijun 已提交
189

R
ronnywang 已提交
190 191 192 193 194 195 196
UNUSED constexpr char Expm1Doc[] = R"DOC(
Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base.

$$out = e^x - 1$$

)DOC";

D
dzhwinter 已提交
197
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
198
Relu Activation Operator.
K
Kexin Zhao 已提交
199

200
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
201

D
dzhwinter 已提交
202
)DOC";
K
Kexin Zhao 已提交
203

D
dzhwinter 已提交
204
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
205
Tanh Activation Operator.
K
Kexin Zhao 已提交
206

Q
update  
qiaolongfei 已提交
207
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
208

D
dzhwinter 已提交
209
)DOC";
210

D
dzhwinter 已提交
211
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
212
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
213

Y
Yan Chunwei 已提交
214
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
215

D
dzhwinter 已提交
216
)DOC";
K
Kexin Zhao 已提交
217

D
dzhwinter 已提交
218
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
219
Sqrt Activation Operator.
K
Kexin Zhao 已提交
220

N
Noel 已提交
221
$$out=\\sqrt{x}=x^{1/2}$$
222

223 224
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
225

D
dzhwinter 已提交
226
)DOC";
227

Z
zhoukunsheng 已提交
228 229 230 231 232
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

233
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
234 235 236

)DOC";

D
dzhwinter 已提交
237
UNUSED constexpr char CeilDoc[] = R"DOC(
238
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
239

240 241
..  math::
    out = \left \lceil x \right \rceil
D
dzhwinter 已提交
242

D
dzhwinter 已提交
243
)DOC";
D
dzhwinter 已提交
244

D
dzhwinter 已提交
245
UNUSED constexpr char FloorDoc[] = R"DOC(
246
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
247

N
Noel 已提交
248
$$out = \\lfloor x \\rfloor$$
D
dzhwinter 已提交
249

D
dzhwinter 已提交
250
)DOC";
D
dzhwinter 已提交
251

D
dzhwinter 已提交
252
UNUSED constexpr char CosDoc[] = R"DOC(
253
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
254

Y
Yang Zhang 已提交
255 256
Input range is `(-inf, inf)` and output range is `[-1,1]`.

257 258
..  math::
    out = cos(x)
C
add cos  
chengduoZH 已提交
259

D
dzhwinter 已提交
260
)DOC";
C
add cos  
chengduoZH 已提交
261

J
joejiong 已提交
262 263 264 265 266 267 268 269 270
UNUSED constexpr char TanDoc[] = R"DOC(
Tangent Operator. Computes tangent of x element-wise.

Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`.

$$out = tan(x)$$

)DOC";

D
dzhwinter 已提交
271
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
272 273
Sine Activation Operator.

274
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
275

D
dzhwinter 已提交
276
)DOC";
C
add sin  
chengduoZH 已提交
277

278 279 280 281 282 283 284 285 286 287
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

288 289 290 291
Input range `(-inf, inf)`, output range `(1, inf)`.

..  math::
    out = \frac{exp(x)+exp(-x)}{2}
292 293 294

)DOC";

X
xiaoting 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
UNUSED constexpr char AsinhDoc[] = R"DOC(
Asinh Activation Operator.

$$out = asinh(x)$$

)DOC";

UNUSED constexpr char AcoshDoc[] = R"DOC(
Acosh Activation Operator.

$$out = acosh(x)$$

)DOC";

UNUSED constexpr char AtanhDoc[] = R"DOC(
Atanh Activation Operator.

$$out = atanh(x)$$

)DOC";

D
dzhwinter 已提交
316
UNUSED constexpr char RoundDoc[] = R"DOC(
317
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
318

N
Noel 已提交
319
.. code-block:: text
320 321 322 323 324 325 326 327

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
328

D
dzhwinter 已提交
329
)DOC";
D
dzhwinter 已提交
330

D
dzhwinter 已提交
331
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
332
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
333

334
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
335

D
dzhwinter 已提交
336
)DOC";
337

D
dzhwinter 已提交
338
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
339
Log Activation Operator.
K
Kexin Zhao 已提交
340

341
$$out = \ln(x)$$
K
Kexin Zhao 已提交
342 343 344

Natural logarithm of x.

D
dzhwinter 已提交
345 346
)DOC";

J
joejiong 已提交
347 348 349 350 351 352 353 354 355
UNUSED constexpr char Log2Doc[] = R"DOC(
Log2 Activation Operator.

$$out = \log_2x$$

logarithm of x base to 2.

)DOC";

J
joejiong 已提交
356 357 358 359 360 361 362 363 364
UNUSED constexpr char Log10Doc[] = R"DOC(
Log10 Activation Operator.

$$out = \log_10_x$$

logarithm of x base to 10.

)DOC";

365 366 367 368 369 370 371 372 373
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
374
UNUSED constexpr char SquareDoc[] = R"DOC(
375
The OP square each elements of the inputs.
D
dzhwinter 已提交
376

377
$$out = x^2$$
378

D
dzhwinter 已提交
379 380
)DOC";

D
dzhwinter 已提交
381
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
382 383
Softsign Activation Operator.

384
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
385 386 387

)DOC";

T
tink2123 已提交
388 389 390 391
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
392
    AddOutput("Out", "Tensor, same shape and dtype as input");
T
tink2123 已提交
393
    AddComment(R"DOC(
394
Arccosine Operator.
395

396 397
..  math::
    out = \cos^{-1}(x)
398

T
tink2123 已提交
399 400 401
)DOC");
  }
};
402

T
tink2123 已提交
403 404 405
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
406 407 408
    AddInput("X",
             "Input of asin operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
409
    AddOutput("Out", "Tensor, same shape and dtype as input.");
T
tink2123 已提交
410
    AddComment(R"DOC(
411
Arcsine Operator.
412

413 414
..  math::
    out = \sin^{-1}(x)
415

T
tink2123 已提交
416 417 418
)DOC");
  }
};
419

T
tink2123 已提交
420 421 422
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
423 424 425
    AddInput("X",
             "Input of atan operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
426
    AddOutput("Out", "Tensor, same shape and dtype as input x");
T
tink2123 已提交
427
    AddComment(R"DOC(
428
Arctangent Operator.
429

430 431
..  math::
    out = \tan^{-1}(x)
432

T
tink2123 已提交
433 434 435
)DOC");
  }
};
436

D
dzhwinter 已提交
437
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
438
 public:
Y
Yu Yang 已提交
439
  void Make() override {
W
Wilber 已提交
440 441 442 443 444 445 446 447
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
K
Kexin Zhao 已提交
448
    AddComment(R"DOC(
D
dzhwinter 已提交
449
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
450

W
Wilber 已提交
451
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
452 453

)DOC");
454 455 456
  }
};

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
480
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
481
 public:
Y
Yu Yang 已提交
482
  void Make() override {
D
dzhwinter 已提交
483 484 485
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
486
    AddComment(R"DOC(
487 488 489
:strong:`Softshrink Activation Operator`

..  math::
490
    out = \begin{cases}
491 492 493 494
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
495 496

)DOC");
K
kexinzhao 已提交
497 498 499
  }
};

D
dzhwinter 已提交
500
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
501
 public:
Y
Yu Yang 已提交
502
  void Make() override {
D
dzhwinter 已提交
503 504
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
505 506
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
507
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
508
    AddComment(R"DOC(
Y
yuyang18 已提交
509
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
510

Y
yuyang18 已提交
511 512 513 514 515 516
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
517 518

)DOC");
519 520 521
  }
};

522 523
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
524
  void Make() override {
525 526 527 528 529 530
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
531 532 533 534
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
535
    AddComment(R"DOC(
K
kexinzhao 已提交
536
BRelu Activation Operator.
K
Kexin Zhao 已提交
537

538
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
539 540

)DOC");
541 542 543 544 545
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
546
  void Make() override {
547
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
548
    AddOutput("Out", "Output of SoftRelu operator");
549 550
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
551
    AddComment(R"DOC(
K
kexinzhao 已提交
552
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
553

554
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
555 556

)DOC");
557 558 559
  }
};

560 561
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
562
  void Make() override {
563 564 565 566 567 568
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
569
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
570
    AddComment(R"DOC(
K
kexinzhao 已提交
571
ELU Activation Operator.
K
Kexin Zhao 已提交
572 573 574 575

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

576
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
577 578

)DOC");
579 580 581
  }
};

Z
zhupengyang 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
template <typename T>
class ELUGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elu_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

W
wangzhen38 已提交
598 599 600 601 602 603 604 605 606
class LogitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Logit operator");
    AddOutput("Out", "Output of Logit operator");
    AddAttr<float>("eps",
                   "(float, default 1e-6f) the epsilon for input clamp bound")
        .SetDefault(1e-6f);
    AddComment(R"DOC(
607
Logit Operator.
W
wangzhen38 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

this function is defined as follow:
$ logit=ln\left ( {\frac {x} {1-x}} \right ) $

)DOC");
  }
};

template <typename T>
class LogitGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("logit_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
class CELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
    AddAttr<float>("alpha", "The alpha value of CELU").SetDefault(1.0f);
    AddComment(R"DOC(
CELU Activation Operator.

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1704.07483.

$$out = \max(0, x) + \min(0, \alpha * (e^(x/\alpha) - 1))$$

)DOC");
  }
};

653 654
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
655
  void Make() override {
Z
zhupengyang 已提交
656 657 658 659 660 661 662 663
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
664
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
665
    AddComment(R"DOC(
K
kexinzhao 已提交
666
Relu6 Activation Operator.
K
Kexin Zhao 已提交
667

668
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
669 670

)DOC");
671 672 673
  }
};

674 675
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
676
  void Make() override {
677
    AddInput("X", "Input of Pow operator");
678 679 680 681 682
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
683
    AddOutput("Out", "Output of Pow operator");
684
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
685
    AddComment(R"DOC(
K
kexinzhao 已提交
686
Pow Activation Operator.
K
Kexin Zhao 已提交
687

688
$$out = x^{factor}$$
K
Kexin Zhao 已提交
689 690

)DOC");
691 692 693 694 695
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
696
  void Make() override {
697 698
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
699
             " A Tensor with type float32, float64.");
700 701 702
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
703 704
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
705
    AddComment(R"DOC(
K
kexinzhao 已提交
706
STanh Activation Operator.
K
Kexin Zhao 已提交
707

Y
Yan Chunwei 已提交
708
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
709 710

)DOC");
Q
qijun 已提交
711 712 713
  }
};

714 715
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
716
  void Make() override {
717
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
718
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
719 720
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
721
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
722
    AddComment(R"DOC(
Y
yuyang18 已提交
723
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
724

Y
yuyang18 已提交
725
..  math::
K
Kexin Zhao 已提交
726

Y
yuyang18 已提交
727
    out = \begin{cases}
Y
yuyang18 已提交
728
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
729 730
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
731
)DOC");
732 733 734
  }
};

735 736
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
737
  void Make() override {
738 739 740 741 742
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
743
        .SetDefault(0.2f);
744 745 746
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
747
        .SetDefault(0.5f);
748
    AddComment(R"DOC(
K
kexinzhao 已提交
749
HardSigmoid Activation Operator.
750

751
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
752
which is much faster than sigmoid.
753

754
$$out = \max(0, \min(1, slope * x + offset))$$
755

K
Kexin Zhao 已提交
756
)DOC");
757 758 759
  }
};

A
Abhinav Arora 已提交
760 761
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
762
  void Make() override {
A
Abhinav Arora 已提交
763
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
764
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
765 766 767 768
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
    AddComment(R"DOC(
Swish Activation Operator.

769
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
770 771 772 773 774

)DOC");
  }
};

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
class MishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Mish operator");
    AddOutput("Out", "Output of Mish operator");
    AddAttr<float>(
        "threshold",
        "Constant threshold of softplus in Mish operator. Approximate value "
        "of softplus will be used if absolute value of input is greater than "
        ":attr:`threshold`")
        .SetDefault(20.f);
    AddComment(R"DOC(
Mish Activation Operator.

..  math::
    softplus(x) = \begin{cases}
            x, \text{if } x > \text{threshold} \\
            \ln(1 + e^{x}),  \text{otherwise}
          \end{cases}

    out = x * \tanh(softplus(x))

)DOC");
  }
};

H
huangjun12 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

817
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
818 819 820 821 822 823 824 825 826

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
827
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
M
minghaoBD 已提交
828
REGISTER_ACTIVATION_OP_MAKER(Silu, SiluDoc);
D
dzhwinter 已提交
829 830
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
R
ronnywang 已提交
831
REGISTER_ACTIVATION_OP_MAKER(Expm1, Expm1Doc);
D
dzhwinter 已提交
832 833 834 835
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
836
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
837 838 839
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
J
joejiong 已提交
840
REGISTER_ACTIVATION_OP_MAKER(Tan, TanDoc);
D
dzhwinter 已提交
841
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
842 843
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
X
xiaoting 已提交
844 845 846
REGISTER_ACTIVATION_OP_MAKER(Acosh, AcoshDoc);
REGISTER_ACTIVATION_OP_MAKER(Asinh, AsinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Atanh, AtanhDoc);
D
dzhwinter 已提交
847 848 849
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
J
joejiong 已提交
850
REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc);
J
joejiong 已提交
851
REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc);
852
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
853 854 855
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

856
template <ActBwdOpFwdDeps kDepValue>
857 858 859 860 861
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
862 863
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
864
      if (ctx->HasOutput("DX")) {
865 866 867
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
868
      if (ctx->HasOutput("DDOut")) {
869 870 871
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
872
    }
873 874
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
875
      if (ctx->HasOutput("DOut")) {
876 877 878
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
879 880 881 882
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
883 884 885 886
      if (ctx->HasOutput("DOutNew")) {
        ctx->ShareDim("Out", "DOutNew");
        ctx->ShareLoD("Out", "DOutNew");
      }
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
903 904
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
905 906 907 908 909
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
910 911
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
912
      if (ctx->HasOutput("DDOut")) {
913 914 915
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
916 917 918 919 920 921 922 923 924 925
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

926 927 928 929 930 931
template <ActBwdOpFwdDeps kDepValue>
class ActivationOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
932 933
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
934 935 936 937 938 939 940 941 942
      if (ctx->HasOutput("DX")) {
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
943 944
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
      if (ctx->HasOutput("D_DOut")) {
        ctx->ShareDim("Out", "D_DOut");
        ctx->ShareLoD("Out", "D_DOut");
      }
      if (ctx->HasOutput("D_OutNew")) {
        ctx->ShareDim("Out", "D_OutNew");
        ctx->ShareLoD("Out", "D_OutNew");
      }
      if (ctx->HasOutput("D_DDx")) {
        ctx->ShareDim("DDX", "D_DDx");
        ctx->ShareLoD("DDX", "D_DDx");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
template <typename T>
class SigmoidDoubleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
template <typename T>
class SigmoidTripleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
template <typename T>
class TanhDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
template <typename T>
class TanhTripleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};
1066 1067
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
H
hong 已提交
1068 1069
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1070
 public:
H
hong 已提交
1071
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1072 1073

 protected:
1074
  void Apply(GradOpPtr<T> op) const override {
1075 1076
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
1077
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
1078
    // input2: ddx
H
hong 已提交
1079 1080
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1081
    // output: ddy
H
hong 已提交
1082
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1083 1084 1085
  }
};

1086 1087
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
1088
template <typename T>
1089
class LeakyReluDoubleGradMaker
H
hong 已提交
1090
    : public ::paddle::framework::SingleGradOpMaker<T> {
1091
 public:
H
hong 已提交
1092
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1093 1094

 protected:
1095
  void Apply(GradOpPtr<T> op) const override {
1096
    op->SetType("leaky_relu_grad_grad");
1097 1098
    // input1: X
    op->SetInput("X", this->Input("X"));
1099
    // X@GRAD@GRAD: ddx
H
hong 已提交
1100 1101
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1102
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1103
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1104 1105 1106
  }
};

D
Double_V 已提交
1107 1108 1109 1110 1111 1112 1113 1114
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
1115
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
// celu grad: dx=dy if y>0 else dy*(x/alpha).exp()
// celu gradgrad: ddx=ddy if y>0 else ddy*(x/alpha).exp()/alpha
template <typename T>
class CELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("celu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
1153 1154
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
1155 1156
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
1157
 public:
H
hong 已提交
1158
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
1159 1160

 protected:
1161
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
1162
    op->SetType("sqrt_grad_grad");
H
hong 已提交
1163 1164 1165 1166 1167 1168
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
1169 1170 1171
  }
};

W
whs 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * ddx
template <typename T>
class RsqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rsqrt_grad_grad");
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1191 1192
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
1193 1194
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1195
 public:
H
hong 已提交
1196
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1197 1198

 protected:
1199
  void Apply(GradOpPtr<T> op) const override {
1200
    op->SetType("square_grad_grad");
H
hong 已提交
1201
    op->SetInput("X", this->Input("X"));
1202
    // Out@GRAD: dy
H
hong 已提交
1203
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
1204
    // X@GRAD@GRAD: ddx
H
hong 已提交
1205
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
1206

H
hong 已提交
1207
    op->SetAttrMap(this->Attrs());
1208 1209

    // X@GRAD: dx
H
hong 已提交
1210
    op->SetOutput("DX", this->InputGrad("X"));
1211
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1212
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1213 1214 1215
  }
};

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
// log Grad: dx = dout / x
// log Grad Grad: ddout = ddx / x; dx = -(dout / x) * (ddx / x)
template <typename T>
class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("log_grad_grad");
    op->SetInput("X", this->Input("X"));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // X@GRAD: dx
    op->SetOutput("DX", this->InputGrad("X"));
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1238
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
1239 1240
                           {framework::GradVarName("Out"),  // dout
                            framework::GradVarName("X")});  // dx
1241
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
1242
                           {"DDX", "DDOut"});
1243 1244
DECLARE_INPLACE_OP_INFERER(ActivationTripleGradOpInplaceInferer,
                           {"DDX", "D_DOut"});
1245

W
wangzhen38 已提交
1246 1247
class LogitOp : public framework::OperatorWithKernel {
 public:
1248 1249
  LogitOp(const std::string& type,
          const framework::VariableNameMap& inputs,
W
wangzhen38 已提交
1250 1251 1252 1253 1254
          const framework::VariableNameMap& outputs,
          const framework::AttributeMap& attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
1255 1256
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"),
                      true,
W
wangzhen38 已提交
1257 1258
                      platform::errors::InvalidArgument(
                          "Input(%s) of LogitOp should not be null.", "X"));
1259 1260
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"),
                      true,
W
wangzhen38 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
                      platform::errors::InvalidArgument(
                          "Output(%s) of LogitOp should not be null.", "Out"));

    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

class LogitGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
1285 1286
        ctx->HasInput(framework::GradVarName("Out")),
        true,
W
wangzhen38 已提交
1287 1288
        platform::errors::InvalidArgument(
            "Input(%s) of LogitGradOp should not be null.", "DOut"));
1289 1290
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"),
                      true,
W
wangzhen38 已提交
1291 1292 1293
                      platform::errors::InvalidArgument(
                          "Input(%s) of LogitGradOp should not be null.", "X"));
    PADDLE_ENFORCE_EQ(
1294 1295
        ctx->HasOutput(framework::GradVarName("X")),
        true,
W
wangzhen38 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
        platform::errors::InvalidArgument(
            "Output(%s) of LogitGradOp should not be null.", "DX"));
    auto x_grad_name = framework::GradVarName("X");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

H
hong 已提交
1313 1314
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
1315
 public:
H
hong 已提交
1316
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1317 1318

 protected:
1319
  void Apply(GradOpPtr<T> op) const override {
1320
    op->SetType("pow_grad");
H
hong 已提交
1321 1322 1323 1324 1325
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
1344
      const std::string& var_name,
1345
      const phi::DenseTensor& tensor,
1346 1347 1348 1349
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
1350 1351
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
1372
      const std::string& var_name,
1373
      const phi::DenseTensor& tensor,
1374 1375 1376 1377
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
1378 1379
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
1380 1381
  }
};
1382
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
1383 1384 1385 1386
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1387
namespace plat = paddle::platform;
1388

1389 1390
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
1391 1392 1393
      KERNEL_TYPE,                                                          \
      ops::ActivationOp,                                                    \
      ops::OP_NAME##OpMaker,                                                \
1394
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
1395 1396 1397 1398
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
1399
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
1400 1401 1402 1403
                       ops::ActFwdInplaceInferer,                           \
                       void>::type);                                        \
  REGISTER_OPERATOR(KERNEL_TYPE##_grad,                                     \
                    ops::ActivationOpGrad,                                  \
1404
                    ops::ActivationGradOpInplaceInferer);
1405

L
Leo Chen 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
#define REGISTER_ACTIVATION_CPU_KERNEL(                                     \
    act_type, op_name, functor, grad_functor)                               \
  REGISTER_OP_CPU_KERNEL(                                                   \
      act_type,                                                             \
      ops::ActivationKernel<phi::CPUContext, ops::functor<float>>,          \
      ops::ActivationKernel<phi::CPUContext, ops::functor<double>>);        \
  REGISTER_OP_CPU_KERNEL(                                                   \
      act_type##_grad,                                                      \
      ops::ActivationGradKernel<phi::CPUContext, ops::grad_functor<float>>, \
      ops::ActivationGradKernel<phi::CPUContext, ops::grad_functor<double>>);
1416

1417 1418
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
REGISTER_ACTIVATION_OP(cos, Cos, CosFunctor, CosGradFunctor)
REGISTER_ACTIVATION_OP(tan, Tan, TanFunctor, TanGradFunctor);
REGISTER_ACTIVATION_OP(acos, Acos, AcosFunctor, AcosGradFunctor);
REGISTER_ACTIVATION_OP(sin, Sin, SinFunctor, SinGradFunctor);
REGISTER_ACTIVATION_OP(asin, Asin, AsinFunctor, AsinGradFunctor);
REGISTER_ACTIVATION_OP(atan, Atan, AtanFunctor, AtanGradFunctor);
REGISTER_ACTIVATION_OP(sinh, Sinh, SinhFunctor, SinhGradFunctor);
REGISTER_ACTIVATION_OP(cosh, Cosh, CoshFunctor, CoshGradFunctor);
REGISTER_ACTIVATION_OP(asinh, Asinh, AsinhFunctor, AsinhGradFunctor);
REGISTER_ACTIVATION_OP(acosh, Acosh, AcoshFunctor, AcoshGradFunctor);
REGISTER_ACTIVATION_OP(atanh, Atanh, AtanhFunctor, AtanhGradFunctor);
1431
REGISTER_ACTIVATION_OP(brelu, BRelu, BReluFunctor, BReluGradFunctor);
1432 1433 1434 1435
REGISTER_ACTIVATION_OP(thresholded_relu,
                       ThresholdedRelu,
                       ThresholdedReluFunctor,
                       ThresholdedReluGradFunctor);
1436
REGISTER_ACTIVATION_OP(relu6, Relu6, Relu6Functor, Relu6GradFunctor);
1437 1438 1439
REGISTER_ACTIVATION_OP(hard_shrink,
                       HardShrink,
                       HardShrinkFunctor,
Y
YuanRisheng 已提交
1440
                       HardShrinkGradFunctor);
1441 1442 1443
REGISTER_ACTIVATION_OP(softshrink,
                       SoftShrink,
                       SoftShrinkFunctor,
Y
YuanRisheng 已提交
1444
                       SoftShrinkGradFunctor);
1445 1446 1447
REGISTER_ACTIVATION_OP(tanh_shrink,
                       TanhShrink,
                       TanhShrinkFunctor,
Y
YuanRisheng 已提交
1448 1449
                       TanhShrinkGradFunctor);
REGISTER_ACTIVATION_OP(silu, Silu, SiluFunctor, SiluGradFunctor);
1450 1451 1452 1453
REGISTER_ACTIVATION_OP(softsign,
                       Softsign,
                       SoftsignFunctor,
                       SoftsignGradFunctor);
1454 1455 1456
REGISTER_ACTIVATION_OP(hard_sigmoid,
                       HardSigmoid,
                       HardSigmoidFunctor,
Y
YuanRisheng 已提交
1457
                       HardSigmoidGradFunctor);
1458 1459 1460
REGISTER_ACTIVATION_OP(logsigmoid,
                       LogSigmoid,
                       LogSigmoidFunctor,
Y
YuanRisheng 已提交
1461
                       LogSigmoidGradFunctor);
1462
REGISTER_ACTIVATION_OP(expm1, Expm1, Expm1Functor, Expm1GradFunctor);
1463 1464 1465
REGISTER_ACTIVATION_OP(softplus,
                       Softplus,
                       SoftplusFunctor,
1466 1467 1468
                       SoftplusGradFunctor);
REGISTER_ACTIVATION_OP(mish, Mish, MishFunctor, MishGradFunctor);
REGISTER_ACTIVATION_OP(stanh, STanh, STanhFunctor, STanhGradFunctor);
1469 1470 1471
REGISTER_ACTIVATION_OP(reciprocal,
                       Reciprocal,
                       ReciprocalFunctor,
1472 1473
                       ReciprocalGradFunctor);

1474 1475 1476
REGISTER_ACTIVATION_OP(log2, Log2, Log2Functor, Log2GradFunctor);
REGISTER_ACTIVATION_OP(log10, Log10, Log10Functor, Log10GradFunctor);
REGISTER_ACTIVATION_OP(log1p, Log1p, Log1pFunctor, Log1pGradFunctor);
1477 1478 1479
REGISTER_ACTIVATION_OP(hard_swish,
                       HardSwish,
                       HardSwishFunctor,
Y
YuanRisheng 已提交
1480 1481 1482 1483 1484
                       HardSwishGradFunctor);
REGISTER_ACTIVATION_OP(swish, Swish, SwishFunctor, SwishGradFunctor);
REGISTER_ACTIVATION_OP(round, Round, RoundFunctor, ZeroGradFunctor);
REGISTER_ACTIVATION_OP(floor, Floor, FloorFunctor, ZeroGradFunctor);
REGISTER_ACTIVATION_OP(ceil, Ceil, CeilFunctor, ZeroGradFunctor);
1485

1486 1487 1488 1489
/* ==========================    sigmoid register  =============================
 */
// 1. Register Sigmoid Operator
REGISTER_OPERATOR(
1490 1491 1492
    sigmoid,
    ops::ActivationOp,
    ops::SigmoidOpMaker,
1493 1494 1495 1496 1497 1498
    ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::SigmoidGradFunctor<float>>(),
1499 1500
                     ops::ActFwdInplaceInferer,
                     void>::type);
1501 1502

// 2. Register Sigmoid Grad Operator
1503 1504
REGISTER_OPERATOR(sigmoid_grad,
                  ops::ActivationOpGrad,
1505 1506
                  ops::ActivationGradOpInplaceInferer,
                  ops::SigmoidDoubleGradMaker<paddle::framework::OpDesc>,
1507
                  ops::SigmoidDoubleGradMaker<paddle::imperative::OpBase>);
1508 1509 1510 1511

// 3. Register Sigmoid DoubleGrad Operator
REGISTER_OPERATOR(
    sigmoid_grad_grad,
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
    ops::ActivationOpDoubleGrad<ops::SigmoidGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::SigmoidTripleGradMaker<paddle::framework::OpDesc>,
    ops::SigmoidTripleGradMaker<paddle::imperative::OpBase>);

// 4. Register Sigmoid TripleGrad Operator
REGISTER_OPERATOR(sigmoid_triple_grad,
                  ops::ActivationOpTripleGrad<
                      ops::SigmoidTripleGradFunctor<float>::FwdDeps()>,
                  ops::ActivationTripleGradOpInplaceInferer);
1522 1523 1524

/* ========================================================================== */

1525 1526
/* ==========================    tanh register  ============================= */
REGISTER_OPERATOR(
1527 1528 1529 1530
    tanh,
    ops::ActivationOp,
    ops::TanhOpMaker,
    ops::ActivationOpInferVarType,
1531 1532 1533 1534 1535
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::TanhGradFunctor<float>>(),
1536 1537 1538 1539
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(tanh_grad,
                  ops::ActivationOpGrad,
1540 1541 1542 1543 1544 1545
                  ops::ActivationGradOpInplaceInferer,
                  ops::TanhDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::TanhDoubleGradMaker<paddle::imperative::OpBase>)
REGISTER_OPERATOR(
    tanh_grad_grad,
    ops::ActivationOpDoubleGrad<ops::TanhGradFunctor<float>::FwdDeps()>,
1546 1547 1548 1549 1550 1551 1552 1553
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::TanhTripleGradMaker<paddle::framework::OpDesc>,
    ops::TanhTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    tanh_triple_grad,
    ops::ActivationOpTripleGrad<ops::TanhTripleGradFunctor<float>::FwdDeps()>,
    ops::ActivationTripleGradOpInplaceInferer);
1554 1555 1556

/* ========================================================================== */

1557
/* ==========================    relu register  ============================= */
1558
REGISTER_OPERATOR(
1559 1560 1561 1562
    relu,
    ops::ActivationOp,
    ops::ReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1563 1564 1565 1566
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1567
    ops::ActFwdInplaceInferer);
1568 1569
REGISTER_OPERATOR(relu_grad,
                  ops::ActivationOpGrad,
1570
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1571 1572
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
1573 1574
REGISTER_OPERATOR(
    relu_grad_grad,
1575
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
1576
    ops::ActivationDoubleGradOpInplaceInferer);
1577

1578
/* ========================================================================== */
1579

1580
/* ======================== leaky relu register  ============================ */
1581
REGISTER_OPERATOR(
1582 1583 1584
    leaky_relu,
    ops::ActivationOp,
    ops::LeakyReluOpMaker,
1585
    ops::ActivationOpInferVarType,
H
hong 已提交
1586 1587 1588 1589
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1590
    ops::ActFwdInplaceInferer);
1591 1592
REGISTER_OPERATOR(leaky_relu_grad,
                  ops::ActivationOpGrad,
1593
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1594 1595
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1596 1597
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1598
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1599
    ops::ActivationDoubleGradOpInplaceInferer);
1600 1601 1602

/* ========================================================================== */

D
Double_V 已提交
1603
/* ========================    elu  register     ============================ */
1604 1605 1606
REGISTER_OPERATOR(elu,
                  ops::ActivationOp,
                  ops::ELUOpMaker,
Z
zhupengyang 已提交
1607 1608 1609 1610
                  ops::ActivationOpInferVarType,
                  ops::ELUGradOpMaker<paddle::framework::OpDesc>,
                  ops::ELUGradOpMaker<paddle::imperative::OpBase>,
                  ops::ActFwdInplaceInferer);
1611 1612
REGISTER_OPERATOR(elu_grad,
                  ops::ActivationOpGrad,
1613
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1614 1615 1616 1617 1618
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1619
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1620 1621 1622

/* ========================================================================== */

W
wangzhen38 已提交
1623 1624
/* ========================    logit  register     ============================
 */
1625 1626 1627
REGISTER_OPERATOR(logit,
                  ops::LogitOp,
                  ops::LogitOpMaker,
W
wangzhen38 已提交
1628 1629 1630
                  ops::LogitGradOpMaker<paddle::framework::OpDesc>,
                  ops::LogitGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(logit_grad, ops::LogitGradOp);
1631

W
wangzhen38 已提交
1632 1633
/* ========================================================================== */

1634 1635 1636
/* ========================    celu  register     ============================
 */
REGISTER_OPERATOR(
1637 1638 1639 1640
    celu,
    ops::ActivationOp,
    ops::CELUOpMaker,
    ops::ActivationOpInferVarType,
1641 1642 1643 1644 1645
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
1646 1647
REGISTER_OPERATOR(celu_grad,
                  ops::ActivationOpGrad,
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
                  ops::ActivationGradOpInplaceInferer,
                  ops::CELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::CELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    celu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::CELUGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

/* ========================================================================== */

L
lvmengsi 已提交
1658 1659
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
1660 1661 1662 1663
    sqrt,
    ops::ActivationOp,
    ops::SqrtOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1664 1665 1666 1667
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1668
    ops::ActFwdInplaceInferer);
1669 1670
REGISTER_OPERATOR(sqrt_grad,
                  ops::ActivationOpGrad,
1671
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1672 1673
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1674 1675
REGISTER_OPERATOR(
    sqrt_grad_grad,
1676
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1677
    ops::ActivationDoubleGradOpInplaceInferer);
1678

L
lvmengsi 已提交
1679 1680
/* ========================================================================== */

W
whs 已提交
1681 1682 1683
/* ===========================   rsqrt register  =============================
 */
REGISTER_OPERATOR(
1684 1685 1686 1687
    rsqrt,
    ops::ActivationOp,
    ops::RsqrtOpMaker,
    ops::ActivationOpInferVarType,
W
whs 已提交
1688 1689 1690 1691 1692
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
1693 1694
REGISTER_OPERATOR(rsqrt_grad,
                  ops::ActivationOpGrad,
W
whs 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
                  ops::ActivationGradOpInplaceInferer,
                  ops::RsqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::RsqrtDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    rsqrt_grad_grad,
    ops::ActivationOpDoubleGrad<ops::RsqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

/* ========================================================================== */

1705 1706
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
1707 1708 1709
    square,
    ops::ActivationOp,
    ops::SquareOpMaker,
1710
    ops::ActivationOpInferVarType,
H
hong 已提交
1711 1712 1713 1714
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1715
    ops::ActFwdInplaceInferer);
1716 1717
REGISTER_OPERATOR(square_grad,
                  ops::ActivationOpGrad,
1718
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1719 1720
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1721 1722
REGISTER_OPERATOR(
    square_grad_grad,
1723
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1724
    ops::ActivationDoubleGradOpInplaceInferer);
1725 1726

/* ========================================================================== */
1727 1728 1729 1730

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
1731 1732 1733 1734
    pow,
    ops::PowOp,
    ops::PowOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1735 1736
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1737
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1738 1739 1740 1741
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(pow_grad,
                  ops::PowOpGrad,
1742
                  ops::ActivationGradOpInplaceInferer);
1743 1744 1745 1746
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
1747 1748 1749 1750
    exp,
    ops::ActivationOp,
    ops::ExpOpMaker,
    ops::ActivationOpInferVarType,
1751 1752 1753 1754 1755
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
1756 1757 1758 1759
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(exp_grad,
                  ops::ActivationOpGrad,
1760
                  ops::ActivationGradOpInplaceInferer);
1761

1762 1763
/* ==========================  Log register ==================================*/
REGISTER_OPERATOR(
1764 1765 1766 1767
    log,
    ops::ActivationOp,
    ops::LogOpMaker,
    ops::ActivationOpInferVarType,
1768 1769 1770 1771 1772
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
1773 1774
REGISTER_OPERATOR(log_grad,
                  ops::ActivationOpGrad,
1775 1776 1777 1778 1779 1780 1781 1782 1783
                  ops::ActivationGradOpInplaceInferer,
                  ops::LogDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LogDoubleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    log_grad_grad,
    ops::ActivationOpDoubleGrad<ops::LogGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

1803 1804
REGISTER_OP_VERSION(softplus).AddCheckpoint(
    R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
1805 1806
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
1807 1808 1809 1810 1811 1812 1813
    paddle::framework::compatible::OpVersionDesc()
        .NewAttr("beta", "The beta value of the new formula", 1.0f)
        .NewAttr("threshold", "The threshold value of the new formula", 20.0f));

REGISTER_OP_VERSION(mish).AddCheckpoint(
    R"ROC(add new attributes [use_mkldnn], and when computing softplus the formula is changed as the new veriosn of softplus)ROC",
    paddle::framework::compatible::OpVersionDesc().NewAttr(
1814 1815
        "use_mkldnn",
        "(bool, default false) Only used in mkldnn kernel",
1816
        false));
1817

1818
/* ========================================================================== */