activation_op.cc 42.0 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
T
tink2123 已提交
16
#include <memory>
D
dzhwinter 已提交
17
#include <string>
18
#include <type_traits>
T
tink2123 已提交
19
#include <unordered_map>
20
#include <vector>
21
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
22
#include "paddle/fluid/platform/port.h"
23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
Q
qijun 已提交
26

A
Adam 已提交
27 28
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
29 30 31
namespace paddle {
namespace operators {

32 33
using paddle::framework::Tensor;

34 35 36 37 38
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

39 40 41 42 43
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
44 45 46 47 48
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
49 50 51 52 53 54 55 56 57
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
          .SetDefault(false);                                                \
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
          .SetDefault(false);                                                \
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
58
  }
D
dzhwinter 已提交
59

H
hong 已提交
60 61
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
62
 public:
H
hong 已提交
63
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
64 65

 protected:
66
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
67 68 69 70
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
71

A
Adam 已提交
72 73 74 75
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
        FLAGS_use_mkldnn || (op->HasAttr("use_mkldnn") &&
                             boost::get<bool>(op->GetAttr("use_mkldnn")))) {
H
hong 已提交
76
      op->SetInput("X", this->Input("X"));
77 78 79 80
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
H
hong 已提交
81
      op->SetInput("Out", this->Output("Out"));
82
    }
D
dzhwinter 已提交
83
  }
84
};
D
dzhwinter 已提交
85

86 87 88 89
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
90
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
91 92 93 94 95 96 97 98 99 100
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
101 102 103 104 105
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
106
    layout = framework::DataLayout::kMKLDNN;
107 108
  }
#endif
109 110
  return framework::OpKernelType(oper.IndicateVarDataType(ctx, name),
                                 ctx.GetPlace(), layout, library);
111 112
}

Q
qijun 已提交
113 114 115 116
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

117
  void InferShape(framework::InferShapeContext* ctx) const override {
118
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
119
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
120
  }
121

122
 protected:
123 124 125 126
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
127 128
};

C
chengduo 已提交
129 130 131 132 133 134
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
135 136 137
  }
};

Q
qijun 已提交
138 139 140 141
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

142
  void InferShape(framework::InferShapeContext* ctx) const override {
143 144 145
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
146
  }
147

148
 protected:
149 150
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
151
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
152
  }
Q
qijun 已提交
153 154
};

D
dzhwinter 已提交
155
UNUSED constexpr char SigmoidDoc[] = R"DOC(
156
Sigmoid Activation Operator
K
Kexin Zhao 已提交
157

158
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
159

D
dzhwinter 已提交
160
)DOC";
Q
qijun 已提交
161

D
dzhwinter 已提交
162
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
163
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
164

165
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
166

D
dzhwinter 已提交
167
)DOC";
168

D
dzhwinter 已提交
169
UNUSED constexpr char ExpDoc[] = R"DOC(
170
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
171

F
fengjiayi 已提交
172
$out = e^x$
K
Kexin Zhao 已提交
173

D
dzhwinter 已提交
174
)DOC";
Q
qijun 已提交
175

D
dzhwinter 已提交
176
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
177
Relu Activation Operator.
K
Kexin Zhao 已提交
178

F
fengjiayi 已提交
179
$out = \max(x, 0)$
K
Kexin Zhao 已提交
180

D
dzhwinter 已提交
181
)DOC";
K
Kexin Zhao 已提交
182

D
dzhwinter 已提交
183
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
184
Tanh Activation Operator.
K
Kexin Zhao 已提交
185

Q
update  
qiaolongfei 已提交
186
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
187

D
dzhwinter 已提交
188
)DOC";
189

D
dzhwinter 已提交
190
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
191
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
192

Y
Yan Chunwei 已提交
193
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
194

D
dzhwinter 已提交
195
)DOC";
K
Kexin Zhao 已提交
196

D
dzhwinter 已提交
197
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
198
Sqrt Activation Operator.
K
Kexin Zhao 已提交
199

200
.. math:: out=\sqrt x=x^{1/2}
201

202 203
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
204

D
dzhwinter 已提交
205
)DOC";
206

Z
zhoukunsheng 已提交
207 208 209 210 211 212 213 214 215
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

$out = \frac{1}{\sqrt{x}}$

)DOC";

D
dzhwinter 已提交
216
UNUSED constexpr char AbsDoc[] = R"DOC(
K
kexinzhao 已提交
217
Abs Activation Operator.
K
Kexin Zhao 已提交
218

F
fengjiayi 已提交
219
$out = |x|$
K
Kexin Zhao 已提交
220

D
dzhwinter 已提交
221
)DOC";
222

D
dzhwinter 已提交
223
UNUSED constexpr char CeilDoc[] = R"DOC(
224
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
225

226
$out = \left \lceil x \right \rceil$
D
dzhwinter 已提交
227

D
dzhwinter 已提交
228
)DOC";
D
dzhwinter 已提交
229

D
dzhwinter 已提交
230
UNUSED constexpr char FloorDoc[] = R"DOC(
D
dzhwinter 已提交
231 232
Floor Activation Operator.

233
$out = \left \lfloor x \right \rfloor$
D
dzhwinter 已提交
234

D
dzhwinter 已提交
235
)DOC";
D
dzhwinter 已提交
236

D
dzhwinter 已提交
237
UNUSED constexpr char CosDoc[] = R"DOC(
238
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
239 240 241

$out = cos(x)$

D
dzhwinter 已提交
242
)DOC";
C
add cos  
chengduoZH 已提交
243

D
dzhwinter 已提交
244
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
245 246 247 248
Sine Activation Operator.

$out = sin(x)$

D
dzhwinter 已提交
249
)DOC";
C
add sin  
chengduoZH 已提交
250

D
dzhwinter 已提交
251
UNUSED constexpr char RoundDoc[] = R"DOC(
252
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
253

254 255 256 257 258 259 260 261 262
.. code-block:: python

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
263

D
dzhwinter 已提交
264
)DOC";
D
dzhwinter 已提交
265

D
dzhwinter 已提交
266
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
267
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
268

269
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
270

D
dzhwinter 已提交
271
)DOC";
272

D
dzhwinter 已提交
273
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
274
Log Activation Operator.
K
Kexin Zhao 已提交
275

F
fengjiayi 已提交
276
$out = \ln(x)$
K
Kexin Zhao 已提交
277 278 279

Natural logarithm of x.

D
dzhwinter 已提交
280 281
)DOC";

D
dzhwinter 已提交
282
UNUSED constexpr char SquareDoc[] = R"DOC(
283
The OP square each elements of the inputs.
D
dzhwinter 已提交
284 285

$out = x^2$
286

D
dzhwinter 已提交
287 288
)DOC";

D
dzhwinter 已提交
289
UNUSED constexpr char SoftplusDoc[] = R"DOC(
D
dzhwinter 已提交
290 291 292 293 294 295
Softplus Activation Operator.

$out = \ln(1 + e^{x})$

)DOC";

D
dzhwinter 已提交
296
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
297 298
Softsign Activation Operator.

299
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
300 301 302

)DOC";

T
tink2123 已提交
303 304 305 306 307 308
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
309 310
Arccosine Activation Operator.

T
tink2123 已提交
311
$$out = \cos^{-1}(x)$$
312

T
tink2123 已提交
313 314 315
)DOC");
  }
};
316

T
tink2123 已提交
317 318 319 320 321 322
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of asin operator");
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
323 324
Arcsine Activation Operator.

T
tink2123 已提交
325
$$out = \sin^{-1}(x)$$
326

T
tink2123 已提交
327 328 329
)DOC");
  }
};
330

T
tink2123 已提交
331 332 333 334 335 336
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of atan operator");
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
337 338
Arctanh Activation Operator.

T
tink2123 已提交
339
$$out = \tanh^{-1}(x)$$
340

T
tink2123 已提交
341 342 343
)DOC");
  }
};
344

D
dzhwinter 已提交
345
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
346
 public:
Y
Yu Yang 已提交
347
  void Make() override {
W
Wilber 已提交
348 349 350 351 352 353 354 355
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
356 357 358
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
359
    AddComment(R"DOC(
D
dzhwinter 已提交
360
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
361

W
Wilber 已提交
362
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
363 364

)DOC");
365 366 367
  }
};

D
dzhwinter 已提交
368
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
369
 public:
Y
Yu Yang 已提交
370
  void Make() override {
D
dzhwinter 已提交
371 372 373
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
374
    AddComment(R"DOC(
375 376 377
:strong:`Softshrink Activation Operator`

..  math::
378
    out = \begin{cases}
379 380 381 382
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
383 384

)DOC");
K
kexinzhao 已提交
385 386 387
  }
};

D
dzhwinter 已提交
388
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
389
 public:
Y
Yu Yang 已提交
390
  void Make() override {
D
dzhwinter 已提交
391 392
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
393 394
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
395
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
396
    AddComment(R"DOC(
Y
yuyang18 已提交
397
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
398

Y
yuyang18 已提交
399 400 401 402 403 404
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
405 406

)DOC");
407 408 409
  }
};

410 411
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
412
  void Make() override {
413 414 415 416 417 418
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
419 420 421 422
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
423
    AddComment(R"DOC(
K
kexinzhao 已提交
424
BRelu Activation Operator.
K
Kexin Zhao 已提交
425

426
$out = \min(\max(x, t_{min}), t_{max})$
K
Kexin Zhao 已提交
427 428

)DOC");
429 430 431 432 433
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
434
  void Make() override {
435
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
436
    AddOutput("Out", "Output of SoftRelu operator");
437 438
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
439
    AddComment(R"DOC(
K
kexinzhao 已提交
440
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
441

T
tensor-tang 已提交
442
$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$
K
Kexin Zhao 已提交
443 444

)DOC");
445 446 447
  }
};

448 449
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
450
  void Make() override {
451 452 453 454 455 456
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
457
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
458
    AddComment(R"DOC(
K
kexinzhao 已提交
459
ELU Activation Operator.
K
Kexin Zhao 已提交
460 461 462 463

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

F
fengjiayi 已提交
464
$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$
K
Kexin Zhao 已提交
465 466

)DOC");
467 468 469
  }
};

470 471
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
472
  void Make() override {
Z
zhupengyang 已提交
473 474 475 476 477 478 479 480
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
481
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
482
    AddComment(R"DOC(
K
kexinzhao 已提交
483
Relu6 Activation Operator.
K
Kexin Zhao 已提交
484

Z
zhupengyang 已提交
485
$out = \min(\max(0, x), threshold)$
K
Kexin Zhao 已提交
486 487

)DOC");
488 489 490
  }
};

491 492
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
493
  void Make() override {
494
    AddInput("X", "Input of Pow operator");
495 496 497 498 499
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
500
    AddOutput("Out", "Output of Pow operator");
501
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
502
    AddComment(R"DOC(
K
kexinzhao 已提交
503
Pow Activation Operator.
K
Kexin Zhao 已提交
504

F
fengjiayi 已提交
505
$out = x^{factor}$
K
Kexin Zhao 已提交
506 507

)DOC");
508 509 510 511 512
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
513
  void Make() override {
514 515 516 517 518 519
    AddInput("X",
             "Input of STanh operator."
             " A LoDTensor or Tensor with type float32, float64.");
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
520 521
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
522
    AddComment(R"DOC(
K
kexinzhao 已提交
523
STanh Activation Operator.
K
Kexin Zhao 已提交
524

Y
Yan Chunwei 已提交
525
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
526 527

)DOC");
Q
qijun 已提交
528 529 530
  }
};

531 532
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
533
  void Make() override {
534
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
535
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
536 537
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
538
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
539
    AddComment(R"DOC(
Y
yuyang18 已提交
540
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
541

Y
yuyang18 已提交
542
..  math::
K
Kexin Zhao 已提交
543

Y
yuyang18 已提交
544
    out = \begin{cases}
Y
yuyang18 已提交
545
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
546 547
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
548
)DOC");
549 550 551
  }
};

552 553
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
554
  void Make() override {
555 556 557 558 559
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
560
        .SetDefault(0.2f);
561 562 563
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
564
        .SetDefault(0.5f);
565
    AddComment(R"DOC(
K
kexinzhao 已提交
566
HardSigmoid Activation Operator.
567

568
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
569
which is much faster than sigmoid.
570

571
$out = \max(0, \min(1, slope * x + offset))$
572

K
Kexin Zhao 已提交
573
)DOC");
574 575 576
  }
};

A
Abhinav Arora 已提交
577 578
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
579
  void Make() override {
A
Abhinav Arora 已提交
580
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
581
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
582
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
583 584 585
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
A
Abhinav Arora 已提交
586 587 588
    AddComment(R"DOC(
Swish Activation Operator.

589
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
590 591 592 593 594

)DOC");
  }
};

H
huangjun12 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
621 622 623 624 625 626 627
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
628
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
629 630 631 632 633 634 635 636 637 638 639 640
REGISTER_ACTIVATION_OP_MAKER(Abs, AbsDoc);
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softplus, SoftplusDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

641
template <ActBwdOpFwdDeps kDepValue>
642 643 644 645 646
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
647
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
648
      if (ctx->HasOutput("DX")) {
649 650 651
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
652
      if (ctx->HasOutput("DDOut")) {
653 654 655
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
656
    }
657
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
658
      if (ctx->HasOutput("DOut")) {
659 660 661
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
690 691 692
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
693 694 695 696 697 698 699 700 701 702
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

703 704 705 706
//
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
//
H
hong 已提交
707 708
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
709
 public:
H
hong 已提交
710
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
711 712

 protected:
713
  void Apply(GradOpPtr<T> op) const override {
714 715
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
716
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
717
    // input2: ddx
H
hong 已提交
718 719
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
720
    // output: ddy
H
hong 已提交
721
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
722 723 724
  }
};

725 726
// leaky_relu Grad: dx=dy if y>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if y>=0 else alpha * ddx
H
hong 已提交
727
template <typename T>
728
class LeakyReluDoubleGradMaker
H
hong 已提交
729
    : public ::paddle::framework::SingleGradOpMaker<T> {
730
 public:
H
hong 已提交
731
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
732 733

 protected:
734
  void Apply(GradOpPtr<T> op) const override {
735
    op->SetType("leaky_relu_grad_grad");
Z
Zeng Jinle 已提交
736
    // input1: Out
H
hong 已提交
737
    op->SetInput("Out", this->Input("Out"));
738
    // X@GRAD@GRAD: ddx
H
hong 已提交
739 740
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
741
    // Out@GRAD@GRAD: ddy
H
hong 已提交
742
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
743 744 745
  }
};

D
Double_V 已提交
746 747 748 749 750 751 752 753
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
754
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
769 770
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
771 772
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
773
 public:
H
hong 已提交
774
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
775 776

 protected:
777
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
778
    op->SetType("sqrt_grad_grad");
H
hong 已提交
779 780 781 782 783 784
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
785 786 787
  }
};

788 789
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
790 791
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
792
 public:
H
hong 已提交
793
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
794 795

 protected:
796
  void Apply(GradOpPtr<T> op) const override {
797
    op->SetType("square_grad_grad");
H
hong 已提交
798
    op->SetInput("X", this->Input("X"));
799
    // Out@GRAD: dy
H
hong 已提交
800
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
801
    // X@GRAD@GRAD: ddx
H
hong 已提交
802
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
803

H
hong 已提交
804
    op->SetAttrMap(this->Attrs());
805 806

    // X@GRAD: dx
H
hong 已提交
807
    op->SetOutput("DX", this->InputGrad("X"));
808
    // Out@GRAD@GRAD: ddy
H
hong 已提交
809
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
810 811 812
  }
};

813 814 815
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInference,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
816 817
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInference,
                           {"DDX", "DDOut"});
818

H
hong 已提交
819 820
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
821
 public:
H
hong 已提交
822
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
823 824

 protected:
825
  void Apply(GradOpPtr<T> op) const override {
826
    op->SetType("pow_grad");
H
hong 已提交
827 828 829 830 831
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
886
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
887 888 889 890
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
891
namespace plat = paddle::platform;
892

893 894 895 896
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
897 898 899 900
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
901
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
902
                       ops::ActFwdInplaceInferer, void>::type);             \
903 904
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
                    ops::ActivationGradOpInplaceInference);
905 906 907

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
908 909 910 911 912 913 914 915 916 917
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
918
                                ops::grad_functor<double>>);
919

920 921
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
922

923
/* ==========================    relu register  ============================= */
924 925
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
926 927 928 929
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
930
    ops::ActFwdInplaceInferer);
931
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
932
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
933 934
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
935 936
REGISTER_OPERATOR(
    relu_grad_grad,
937 938
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
939 940 941 942 943 944 945 946 947 948 949

REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluFunctor, ReluGradFunctor);

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
950
/* ========================================================================== */
951

952
/* ======================== leaky relu register  ============================ */
953 954 955
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
956 957 958 959
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
960
    ops::ActFwdInplaceInferer);
961
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
962
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
963 964
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
965 966
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
967 968
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
969

970 971 972 973 974 975 976 977 978 979
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
980 981
/* ========================================================================== */

D
Double_V 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/* ========================    elu  register     ============================ */
REGISTER_OPERATOR(
    elu, ops::ActivationOp, ops::ELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInference,
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);

REGISTER_ACTIVATION_CPU_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1010 1011 1012
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1013 1014 1015 1016
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1017
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1018
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1019
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
1020 1021
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1022 1023
REGISTER_OPERATOR(
    sqrt_grad_grad,
1024 1025 1026
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);

L
lvmengsi 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1037 1038 1039 1040
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1041 1042 1043 1044
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1045
    ops::ActFwdInplaceInferer);
1046
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1047
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
1048 1049
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1050 1051
REGISTER_OPERATOR(
    square_grad_grad,
1052 1053
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1073 1074 1075 1076 1077 1078 1079 1080

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1081 1082 1083 1084 1085
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1086
/* ========================================================================== */
1087 1088 1089 1090 1091

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1092 1093
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1094
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1095
                     ops::ActFwdInplaceInferer, void>::type);
1096 1097 1098 1099 1100
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
                  ops::ActivationGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1101 1102 1103
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1104 1105 1106
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   abs register  ============================ */
REGISTER_OPERATOR(
    abs, ops::ActivationOp, ops::AbsOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::AbsGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(abs_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(abs,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    abs_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::AbsGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int64_t>>);
1174
/* ========================================================================== */