activation_op.cc 68.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
26
#include "paddle/phi/backends/dynload/port.h"
Q
qijun 已提交
27

A
Adam 已提交
28 29
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
30 31 32
namespace paddle {
namespace operators {

33 34
using paddle::framework::Tensor;

35 36
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
37 38
  return GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kDepOut ||
         GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kNoDeps;
39 40
}

41 42 43 44 45
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
46 47 48 49 50
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
51 52
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
53 54
          .SetDefault(false)                                                 \
          .AsExtra();                                                        \
55 56 57
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
58 59
          .SetDefault(false)                                                 \
          .AsExtra();                                                        \
60 61
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
62
  }
D
dzhwinter 已提交
63

H
hong 已提交
64 65
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
66
 public:
H
hong 已提交
67
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
68 69

 protected:
70
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
71 72 73 74
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
75

A
Adam 已提交
76 77
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
78 79 80
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
         BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
81
      op->SetInput("X", this->Input("X"));  // x
82 83 84 85
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
86
      op->SetInput("Out", this->Output("Out"));  // out
87
    }
D
dzhwinter 已提交
88
  }
89
};
D
dzhwinter 已提交
90

91 92 93 94
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
95
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
96
  auto data_type = oper.IndicateVarDataType(ctx, name);
97 98 99 100 101 102 103 104 105 106
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
107 108 109
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
110
      oper.CanMKLDNNBeUsed(ctx, data_type)) {
111
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
112
    layout = framework::DataLayout::kMKLDNN;
113 114
  }
#endif
115
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
116 117
}

Q
qijun 已提交
118 119 120 121
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

122
  void InferShape(framework::InferShapeContext* ctx) const override {
123
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
124
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
125
  }
126

127
 protected:
128 129 130 131
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
J
Jacek Czaja 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
    // When activation is first oneDNN op (there was some non oneDNN op
    // previously)
    // then we also need to rotate shape NHWC -> NCWH
    if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
        (tensor.layout() != framework::DataLayout::kMKLDNN) &&
        paddle::platform::MKLDNNDeviceContext::tls()
                .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(),
                                     framework::DataLayout::kNHWC);
    }
#endif
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Q
qijun 已提交
152 153
};

C
chengduo 已提交
154 155 156
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
157
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
158
      const override {
159 160
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
161 162 163
  }
};

Q
qijun 已提交
164 165 166 167
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

168
  void InferShape(framework::InferShapeContext* ctx) const override {
169 170 171
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
172
  }
173

174
 protected:
175 176
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
177
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
178
  }
Q
qijun 已提交
179 180
};

D
dzhwinter 已提交
181
UNUSED constexpr char SigmoidDoc[] = R"DOC(
182
Sigmoid Activation Operator
K
Kexin Zhao 已提交
183

184
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
185

D
dzhwinter 已提交
186
)DOC";
Q
qijun 已提交
187

M
minghaoBD 已提交
188 189 190 191 192 193
UNUSED constexpr char SiluDoc[] = R"DOC(
Silu Activation Operator

$$out = x * \\frac{1}{1 + e^{-x}}$$
)DOC";

D
dzhwinter 已提交
194
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
195
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
196

197
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
198

D
dzhwinter 已提交
199
)DOC";
200

D
dzhwinter 已提交
201
UNUSED constexpr char ExpDoc[] = R"DOC(
202
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
203

204
$$out = e^x$$
K
Kexin Zhao 已提交
205

D
dzhwinter 已提交
206
)DOC";
Q
qijun 已提交
207

R
ronnywang 已提交
208 209 210 211 212 213 214
UNUSED constexpr char Expm1Doc[] = R"DOC(
Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base.

$$out = e^x - 1$$

)DOC";

D
dzhwinter 已提交
215
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
216
Relu Activation Operator.
K
Kexin Zhao 已提交
217

218
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
219

D
dzhwinter 已提交
220
)DOC";
K
Kexin Zhao 已提交
221

D
dzhwinter 已提交
222
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
223
Tanh Activation Operator.
K
Kexin Zhao 已提交
224

Q
update  
qiaolongfei 已提交
225
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
226

D
dzhwinter 已提交
227
)DOC";
228

D
dzhwinter 已提交
229
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
230
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
231

Y
Yan Chunwei 已提交
232
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
233

D
dzhwinter 已提交
234
)DOC";
K
Kexin Zhao 已提交
235

D
dzhwinter 已提交
236
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
237
Sqrt Activation Operator.
K
Kexin Zhao 已提交
238

N
Noel 已提交
239
$$out=\\sqrt{x}=x^{1/2}$$
240

241 242
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
243

D
dzhwinter 已提交
244
)DOC";
245

Z
zhoukunsheng 已提交
246 247 248 249 250
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

251
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
252 253 254

)DOC";

D
dzhwinter 已提交
255
UNUSED constexpr char CeilDoc[] = R"DOC(
256
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
257

N
Noel 已提交
258
$$out = \\lceil x \\rceil$$
D
dzhwinter 已提交
259

D
dzhwinter 已提交
260
)DOC";
D
dzhwinter 已提交
261

D
dzhwinter 已提交
262
UNUSED constexpr char FloorDoc[] = R"DOC(
263
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
264

N
Noel 已提交
265
$$out = \\lfloor x \\rfloor$$
D
dzhwinter 已提交
266

D
dzhwinter 已提交
267
)DOC";
D
dzhwinter 已提交
268

D
dzhwinter 已提交
269
UNUSED constexpr char CosDoc[] = R"DOC(
270
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
271

Y
Yang Zhang 已提交
272 273
Input range is `(-inf, inf)` and output range is `[-1,1]`.

274
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
275

D
dzhwinter 已提交
276
)DOC";
C
add cos  
chengduoZH 已提交
277

J
joejiong 已提交
278 279 280 281 282 283 284 285 286
UNUSED constexpr char TanDoc[] = R"DOC(
Tangent Operator. Computes tangent of x element-wise.

Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`.

$$out = tan(x)$$

)DOC";

D
dzhwinter 已提交
287
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
288 289
Sine Activation Operator.

290
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
291

D
dzhwinter 已提交
292
)DOC";
C
add sin  
chengduoZH 已提交
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

X
xiaoting 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
UNUSED constexpr char AsinhDoc[] = R"DOC(
Asinh Activation Operator.

$$out = asinh(x)$$

)DOC";

UNUSED constexpr char AcoshDoc[] = R"DOC(
Acosh Activation Operator.

$$out = acosh(x)$$

)DOC";

UNUSED constexpr char AtanhDoc[] = R"DOC(
Atanh Activation Operator.

$$out = atanh(x)$$

)DOC";

D
dzhwinter 已提交
329
UNUSED constexpr char RoundDoc[] = R"DOC(
330
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
331

N
Noel 已提交
332
.. code-block:: text
333 334 335 336 337 338 339 340

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
341

D
dzhwinter 已提交
342
)DOC";
D
dzhwinter 已提交
343

D
dzhwinter 已提交
344
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
345
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
346

347
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
348

D
dzhwinter 已提交
349
)DOC";
350

D
dzhwinter 已提交
351
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
352
Log Activation Operator.
K
Kexin Zhao 已提交
353

354
$$out = \ln(x)$$
K
Kexin Zhao 已提交
355 356 357

Natural logarithm of x.

D
dzhwinter 已提交
358 359
)DOC";

J
joejiong 已提交
360 361 362 363 364 365 366 367 368
UNUSED constexpr char Log2Doc[] = R"DOC(
Log2 Activation Operator.

$$out = \log_2x$$

logarithm of x base to 2.

)DOC";

J
joejiong 已提交
369 370 371 372 373 374 375 376 377
UNUSED constexpr char Log10Doc[] = R"DOC(
Log10 Activation Operator.

$$out = \log_10_x$$

logarithm of x base to 10.

)DOC";

378 379 380 381 382 383 384 385 386
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
387
UNUSED constexpr char SquareDoc[] = R"DOC(
388
The OP square each elements of the inputs.
D
dzhwinter 已提交
389

390
$$out = x^2$$
391

D
dzhwinter 已提交
392 393
)DOC";

D
dzhwinter 已提交
394
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
395 396
Softsign Activation Operator.

397
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
398 399 400

)DOC";

T
tink2123 已提交
401 402 403 404 405 406
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
407
Arccosine Operator.
408

T
tink2123 已提交
409
$$out = \cos^{-1}(x)$$
410

T
tink2123 已提交
411 412 413
)DOC");
  }
};
414

T
tink2123 已提交
415 416 417
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
418 419 420
    AddInput("X",
             "Input of asin operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
421 422
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
423
Arcsine Operator.
424

T
tink2123 已提交
425
$$out = \sin^{-1}(x)$$
426

T
tink2123 已提交
427 428 429
)DOC");
  }
};
430

T
tink2123 已提交
431 432 433
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
434 435 436
    AddInput("X",
             "Input of atan operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
437 438
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
439
Arctangent Operator.
440

441
$$out = \tan^{-1}(x)$$
442

T
tink2123 已提交
443 444 445
)DOC");
  }
};
446

D
dzhwinter 已提交
447
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
448
 public:
Y
Yu Yang 已提交
449
  void Make() override {
W
Wilber 已提交
450 451 452 453 454 455 456 457
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
458 459
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
460 461
        .SetDefault(false)
        .AsExtra();
K
Kexin Zhao 已提交
462
    AddComment(R"DOC(
D
dzhwinter 已提交
463
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
464

W
Wilber 已提交
465
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
466 467

)DOC");
468 469 470
  }
};

471 472 473 474 475 476 477 478 479 480 481 482 483 484
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel.")
485 486
        .SetDefault(false)
        .AsExtra();
487 488 489
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn.")
490 491
        .SetDefault(false)
        .AsExtra();
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    AddAttr<std::string>(
        "fuse_activation_type",
        "Fused activation type used in softplus OneDNN kernel.")
        .SetDefault("")
        .AsExtra();
    AddAttr<float>(
        "fuse_activation_alpha",
        "Fused activation alpha parameter type used in softplus OneDNN kernel.")
        .SetDefault(0.0f)
        .AsExtra();
    AddAttr<float>(
        "fuse_activation_beta",
        "Fused activation beta parameter type used in softplus OneDNN kernel.")
        .SetDefault(0.0f)
        .AsExtra();
    AddAttr<float>(
        "fuse_activation_scale",
        "Fused activation scale parameter type used in softplus OneDNN kernel.")
        .SetDefault(1.0f)
        .AsExtra();
512 513 514 515 516 517 518 519 520 521 522
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
523
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
524
 public:
Y
Yu Yang 已提交
525
  void Make() override {
D
dzhwinter 已提交
526 527 528
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
529
    AddComment(R"DOC(
530 531 532
:strong:`Softshrink Activation Operator`

..  math::
533
    out = \begin{cases}
534 535 536 537
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
538 539

)DOC");
K
kexinzhao 已提交
540 541 542
  }
};

D
dzhwinter 已提交
543
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
544
 public:
Y
Yu Yang 已提交
545
  void Make() override {
D
dzhwinter 已提交
546 547
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
548 549
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
550
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
551
    AddComment(R"DOC(
Y
yuyang18 已提交
552
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
553

Y
yuyang18 已提交
554 555 556 557 558 559
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
560 561

)DOC");
562 563 564
  }
};

565 566
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
567
  void Make() override {
568 569 570 571 572 573
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
574 575 576 577
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
578
    AddComment(R"DOC(
K
kexinzhao 已提交
579
BRelu Activation Operator.
K
Kexin Zhao 已提交
580

581
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
582 583

)DOC");
584 585 586 587 588
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
589
  void Make() override {
590
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
591
    AddOutput("Out", "Output of SoftRelu operator");
592 593
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
594
    AddComment(R"DOC(
K
kexinzhao 已提交
595
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
596

597
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
598 599

)DOC");
600 601 602
  }
};

603 604
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
605
  void Make() override {
606 607 608 609 610 611
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
612
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
J
jakpiase 已提交
613 614 615 616
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false)
        .AsExtra();
617
    AddComment(R"DOC(
K
kexinzhao 已提交
618
ELU Activation Operator.
K
Kexin Zhao 已提交
619 620 621 622

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

623
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
624 625

)DOC");
626 627 628
  }
};

Z
zhupengyang 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
template <typename T>
class ELUGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elu_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

W
wangzhen38 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
class LogitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Logit operator");
    AddOutput("Out", "Output of Logit operator");
    AddAttr<float>("eps",
                   "(float, default 1e-6f) the epsilon for input clamp bound")
        .SetDefault(1e-6f);
    AddComment(R"DOC(
Logit Operator. 

this function is defined as follow:
$ logit=ln\left ( {\frac {x} {1-x}} \right ) $

)DOC");
  }
};

template <typename T>
class LogitGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("logit_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
class CELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
    AddAttr<float>("alpha", "The alpha value of CELU").SetDefault(1.0f);
    AddComment(R"DOC(
CELU Activation Operator.

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1704.07483.

$$out = \max(0, x) + \min(0, \alpha * (e^(x/\alpha) - 1))$$

)DOC");
  }
};

700 701
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
702
  void Make() override {
Z
zhupengyang 已提交
703 704 705 706 707 708 709 710
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
711
        .SetDefault(6.0f);
A
Adam 已提交
712 713
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
714 715
        .SetDefault(false)
        .AsExtra();
K
Kexin Zhao 已提交
716
    AddComment(R"DOC(
K
kexinzhao 已提交
717
Relu6 Activation Operator.
K
Kexin Zhao 已提交
718

719
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
720 721

)DOC");
722 723 724
  }
};

725 726
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
727
  void Make() override {
728
    AddInput("X", "Input of Pow operator");
729 730 731 732 733
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
734
    AddOutput("Out", "Output of Pow operator");
735
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
736
    AddComment(R"DOC(
K
kexinzhao 已提交
737
Pow Activation Operator.
K
Kexin Zhao 已提交
738

739
$$out = x^{factor}$$
K
Kexin Zhao 已提交
740 741

)DOC");
742 743 744 745 746
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
747
  void Make() override {
748 749
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
750
             " A Tensor with type float32, float64.");
751 752 753
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
754 755
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
756
    AddComment(R"DOC(
K
kexinzhao 已提交
757
STanh Activation Operator.
K
Kexin Zhao 已提交
758

Y
Yan Chunwei 已提交
759
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
760 761

)DOC");
Q
qijun 已提交
762 763 764
  }
};

765 766
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
767
  void Make() override {
768
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
769
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
770 771
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
772
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
773
    AddComment(R"DOC(
Y
yuyang18 已提交
774
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
775

Y
yuyang18 已提交
776
..  math::
K
Kexin Zhao 已提交
777

Y
yuyang18 已提交
778
    out = \begin{cases}
Y
yuyang18 已提交
779
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
780 781
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
782
)DOC");
783 784 785
  }
};

786 787
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
788
  void Make() override {
789 790 791 792 793
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
794
        .SetDefault(0.2f);
795 796 797
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
798
        .SetDefault(0.5f);
799
    AddComment(R"DOC(
K
kexinzhao 已提交
800
HardSigmoid Activation Operator.
801

802
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
803
which is much faster than sigmoid.
804

805
$$out = \max(0, \min(1, slope * x + offset))$$
806

K
Kexin Zhao 已提交
807
)DOC");
808 809 810
  }
};

A
Abhinav Arora 已提交
811 812
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
813
  void Make() override {
A
Abhinav Arora 已提交
814
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
815
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
816
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
817 818
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
S
Shang Zhizhou 已提交
819 820
        .SetDefault(false)
        .AsExtra();
A
Abhinav Arora 已提交
821 822 823
    AddComment(R"DOC(
Swish Activation Operator.

824
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
825 826 827 828 829

)DOC");
  }
};

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
class MishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Mish operator");
    AddOutput("Out", "Output of Mish operator");
    AddAttr<float>(
        "threshold",
        "Constant threshold of softplus in Mish operator. Approximate value "
        "of softplus will be used if absolute value of input is greater than "
        ":attr:`threshold`")
        .SetDefault(20.f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false)
        .AsExtra();
    AddComment(R"DOC(
Mish Activation Operator.

..  math::
    softplus(x) = \begin{cases}
            x, \text{if } x > \text{threshold} \\
            \ln(1 + e^{x}),  \text{otherwise}
          \end{cases}

    out = x * \tanh(softplus(x))

)DOC");
  }
};

H
huangjun12 已提交
860 861 862 863 864 865 866 867 868 869 870
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
J
jakpiase 已提交
871 872 873 874
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false)
        .AsExtra();
H
huangjun12 已提交
875 876 877 878 879
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

880
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
881 882 883 884 885 886 887 888 889

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
890
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
M
minghaoBD 已提交
891
REGISTER_ACTIVATION_OP_MAKER(Silu, SiluDoc);
D
dzhwinter 已提交
892 893
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
R
ronnywang 已提交
894
REGISTER_ACTIVATION_OP_MAKER(Expm1, Expm1Doc);
D
dzhwinter 已提交
895 896 897 898
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
899
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
900 901 902
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
J
joejiong 已提交
903
REGISTER_ACTIVATION_OP_MAKER(Tan, TanDoc);
D
dzhwinter 已提交
904
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
905 906
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
X
xiaoting 已提交
907 908 909
REGISTER_ACTIVATION_OP_MAKER(Acosh, AcoshDoc);
REGISTER_ACTIVATION_OP_MAKER(Asinh, AsinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Atanh, AtanhDoc);
D
dzhwinter 已提交
910 911 912
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
J
joejiong 已提交
913
REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc);
J
joejiong 已提交
914
REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc);
915
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
916 917 918
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

919
template <ActBwdOpFwdDeps kDepValue>
920 921 922 923 924
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
925 926
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
927
      if (ctx->HasOutput("DX")) {
928 929 930
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
931
      if (ctx->HasOutput("DDOut")) {
932 933 934
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
935
    }
936 937
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
938
      if (ctx->HasOutput("DOut")) {
939 940 941
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
942 943 944 945
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
946 947 948 949
      if (ctx->HasOutput("DOutNew")) {
        ctx->ShareDim("Out", "DOutNew");
        ctx->ShareLoD("Out", "DOutNew");
      }
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
966 967
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
968 969 970 971 972
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
973 974
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
975
      if (ctx->HasOutput("DDOut")) {
976 977 978
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
979 980 981 982 983 984 985 986 987 988
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

989 990 991 992 993 994
template <ActBwdOpFwdDeps kDepValue>
class ActivationOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
995 996
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
997 998 999 1000 1001 1002 1003 1004 1005
      if (ctx->HasOutput("DX")) {
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
1006 1007
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
      if (ctx->HasOutput("D_DOut")) {
        ctx->ShareDim("Out", "D_DOut");
        ctx->ShareLoD("Out", "D_DOut");
      }
      if (ctx->HasOutput("D_OutNew")) {
        ctx->ShareDim("Out", "D_OutNew");
        ctx->ShareLoD("Out", "D_OutNew");
      }
      if (ctx->HasOutput("D_DDx")) {
        ctx->ShareDim("DDX", "D_DDx");
        ctx->ShareLoD("DDX", "D_DDx");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
template <typename T>
class SigmoidDoubleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
template <typename T>
class SigmoidTripleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
template <typename T>
class TanhDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
template <typename T>
class TanhTripleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};
1129 1130
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
H
hong 已提交
1131 1132
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1133
 public:
H
hong 已提交
1134
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1135 1136

 protected:
1137
  void Apply(GradOpPtr<T> op) const override {
1138 1139
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
1140
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
1141
    // input2: ddx
H
hong 已提交
1142 1143
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1144
    // output: ddy
H
hong 已提交
1145
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1146 1147 1148
  }
};

1149 1150
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
1151
template <typename T>
1152
class LeakyReluDoubleGradMaker
H
hong 已提交
1153
    : public ::paddle::framework::SingleGradOpMaker<T> {
1154
 public:
H
hong 已提交
1155
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1156 1157

 protected:
1158
  void Apply(GradOpPtr<T> op) const override {
1159
    op->SetType("leaky_relu_grad_grad");
1160 1161
    // input1: X
    op->SetInput("X", this->Input("X"));
1162
    // X@GRAD@GRAD: ddx
H
hong 已提交
1163 1164
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1165
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1166
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1167 1168 1169
  }
};

D
Double_V 已提交
1170 1171 1172 1173 1174 1175 1176 1177
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
1178
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
// celu grad: dx=dy if y>0 else dy*(x/alpha).exp()
// celu gradgrad: ddx=ddy if y>0 else ddy*(x/alpha).exp()/alpha
template <typename T>
class CELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("celu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
1216 1217
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
1218 1219
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
1220
 public:
H
hong 已提交
1221
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
1222 1223

 protected:
1224
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
1225
    op->SetType("sqrt_grad_grad");
H
hong 已提交
1226 1227 1228 1229 1230 1231
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
1232 1233 1234
  }
};

W
whs 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * ddx
template <typename T>
class RsqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rsqrt_grad_grad");
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1254 1255
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
1256 1257
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1258
 public:
H
hong 已提交
1259
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1260 1261

 protected:
1262
  void Apply(GradOpPtr<T> op) const override {
1263
    op->SetType("square_grad_grad");
H
hong 已提交
1264
    op->SetInput("X", this->Input("X"));
1265
    // Out@GRAD: dy
H
hong 已提交
1266
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
1267
    // X@GRAD@GRAD: ddx
H
hong 已提交
1268
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
1269

H
hong 已提交
1270
    op->SetAttrMap(this->Attrs());
1271 1272

    // X@GRAD: dx
H
hong 已提交
1273
    op->SetOutput("DX", this->InputGrad("X"));
1274
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1275
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1276 1277 1278
  }
};

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
// log Grad: dx = dout / x
// log Grad Grad: ddout = ddx / x; dx = -(dout / x) * (ddx / x)
template <typename T>
class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("log_grad_grad");
    op->SetInput("X", this->Input("X"));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // X@GRAD: dx
    op->SetOutput("DX", this->InputGrad("X"));
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1301
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
1302 1303
                           {framework::GradVarName("Out"),  // dout
                            framework::GradVarName("X")});  // dx
1304
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
1305
                           {"DDX", "DDOut"});
1306 1307
DECLARE_INPLACE_OP_INFERER(ActivationTripleGradOpInplaceInferer,
                           {"DDX", "D_DOut"});
1308

W
wangzhen38 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
class LogitOp : public framework::OperatorWithKernel {
 public:
  LogitOp(const std::string& type, const framework::VariableNameMap& inputs,
          const framework::VariableNameMap& outputs,
          const framework::AttributeMap& attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(%s) of LogitOp should not be null.", "X"));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::InvalidArgument(
                          "Output(%s) of LogitOp should not be null.", "Out"));

    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

class LogitGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput(framework::GradVarName("Out")), true,
        platform::errors::InvalidArgument(
            "Input(%s) of LogitGradOp should not be null.", "DOut"));
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(%s) of LogitGradOp should not be null.", "X"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput(framework::GradVarName("X")), true,
        platform::errors::InvalidArgument(
            "Output(%s) of LogitGradOp should not be null.", "DX"));
    auto x_grad_name = framework::GradVarName("X");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

H
hong 已提交
1370 1371
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
1372
 public:
H
hong 已提交
1373
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1374 1375

 protected:
1376
  void Apply(GradOpPtr<T> op) const override {
1377
    op->SetType("pow_grad");
H
hong 已提交
1378 1379 1380 1381 1382
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
1437
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
1438 1439 1440 1441
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1442
namespace plat = paddle::platform;
1443

1444 1445 1446 1447
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
1448 1449 1450 1451
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
1452
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
1453
                       ops::ActFwdInplaceInferer, void>::type);             \
1454
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
1455
                    ops::ActivationGradOpInplaceInferer);
1456 1457 1458

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
1469
                                ops::grad_functor<double>>);
1470

1471 1472
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
1473

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
REGISTER_ACTIVATION_OP(cos, Cos, CosFunctor, CosGradFunctor)
REGISTER_ACTIVATION_OP(tan, Tan, TanFunctor, TanGradFunctor);
REGISTER_ACTIVATION_OP(acos, Acos, AcosFunctor, AcosGradFunctor);
REGISTER_ACTIVATION_OP(sin, Sin, SinFunctor, SinGradFunctor);
REGISTER_ACTIVATION_OP(asin, Asin, AsinFunctor, AsinGradFunctor);
REGISTER_ACTIVATION_OP(atan, Atan, AtanFunctor, AtanGradFunctor);
REGISTER_ACTIVATION_OP(sinh, Sinh, SinhFunctor, SinhGradFunctor);
REGISTER_ACTIVATION_OP(cosh, Cosh, CoshFunctor, CoshGradFunctor);
REGISTER_ACTIVATION_OP(asinh, Asinh, AsinhFunctor, AsinhGradFunctor);
REGISTER_ACTIVATION_OP(acosh, Acosh, AcoshFunctor, AcoshGradFunctor);
REGISTER_ACTIVATION_OP(atanh, Atanh, AtanhFunctor, AtanhGradFunctor);
1485 1486 1487
REGISTER_ACTIVATION_OP(brelu, BRelu, BReluFunctor, BReluGradFunctor);
REGISTER_ACTIVATION_OP(thresholded_relu, ThresholdedRelu,
                       ThresholdedReluFunctor, ThresholdedReluGradFunctor);
Y
YuanRisheng 已提交
1488 1489 1490 1491 1492 1493 1494
REGISTER_ACTIVATION_OP(hard_shrink, HardShrink, HardShrinkFunctor,
                       HardShrinkGradFunctor);
REGISTER_ACTIVATION_OP(softshrink, SoftShrink, SoftShrinkFunctor,
                       SoftShrinkGradFunctor);
REGISTER_ACTIVATION_OP(tanh_shrink, TanhShrink, TanhShrinkFunctor,
                       TanhShrinkGradFunctor);
REGISTER_ACTIVATION_OP(silu, Silu, SiluFunctor, SiluGradFunctor);
Y
YuanRisheng 已提交
1495 1496 1497 1498
REGISTER_ACTIVATION_OP(hard_sigmoid, HardSigmoid, HardSigmoidFunctor,
                       HardSigmoidGradFunctor);
REGISTER_ACTIVATION_OP(logsigmoid, LogSigmoid, LogSigmoidFunctor,
                       LogSigmoidGradFunctor);
1499 1500 1501
REGISTER_ACTIVATION_OP(log2, Log2, Log2Functor, Log2GradFunctor);
REGISTER_ACTIVATION_OP(log10, Log10, Log10Functor, Log10GradFunctor);
REGISTER_ACTIVATION_OP(log1p, Log1p, Log1pFunctor, Log1pGradFunctor);
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/* ==========================    sigmoid register  =============================
 */
// 1. Register Sigmoid Operator
REGISTER_OPERATOR(
    sigmoid, ops::ActivationOp, ops::SigmoidOpMaker,
    ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::SigmoidGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);

// 2. Register Sigmoid Grad Operator
REGISTER_OPERATOR(sigmoid_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::SigmoidDoubleGradMaker<paddle::framework::OpDesc>,
1520
                  ops::SigmoidDoubleGradMaker<paddle::imperative::OpBase>);
1521 1522 1523 1524

// 3. Register Sigmoid DoubleGrad Operator
REGISTER_OPERATOR(
    sigmoid_grad_grad,
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
    ops::ActivationOpDoubleGrad<ops::SigmoidGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::SigmoidTripleGradMaker<paddle::framework::OpDesc>,
    ops::SigmoidTripleGradMaker<paddle::imperative::OpBase>);

// 4. Register Sigmoid TripleGrad Operator
REGISTER_OPERATOR(sigmoid_triple_grad,
                  ops::ActivationOpTripleGrad<
                      ops::SigmoidTripleGradFunctor<float>::FwdDeps()>,
                  ops::ActivationTripleGradOpInplaceInferer);
1535 1536 1537

/* ========================================================================== */

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
/* ==========================    tanh register  ============================= */
REGISTER_OPERATOR(
    tanh, ops::ActivationOp, ops::TanhOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::TanhGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(tanh_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::TanhDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::TanhDoubleGradMaker<paddle::imperative::OpBase>)
REGISTER_OPERATOR(
    tanh_grad_grad,
    ops::ActivationOpDoubleGrad<ops::TanhGradFunctor<float>::FwdDeps()>,
1554 1555 1556 1557 1558 1559 1560 1561
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::TanhTripleGradMaker<paddle::framework::OpDesc>,
    ops::TanhTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    tanh_triple_grad,
    ops::ActivationOpTripleGrad<ops::TanhTripleGradFunctor<float>::FwdDeps()>,
    ops::ActivationTripleGradOpInplaceInferer);
1562 1563 1564

/* ========================================================================== */

1565
/* ==========================    relu register  ============================= */
1566 1567
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1568 1569 1570 1571
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1572
    ops::ActFwdInplaceInferer);
1573
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
1574
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1575 1576
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
1577 1578
REGISTER_OPERATOR(
    relu_grad_grad,
1579
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
1580
    ops::ActivationDoubleGradOpInplaceInferer);
1581

1582
/* ========================================================================== */
1583

1584
/* ======================== leaky relu register  ============================ */
1585 1586 1587
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1588 1589 1590 1591
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1592
    ops::ActFwdInplaceInferer);
1593
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
1594
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1595 1596
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1597 1598
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1599
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1600
    ops::ActivationDoubleGradOpInplaceInferer);
1601 1602 1603

/* ========================================================================== */

D
Double_V 已提交
1604
/* ========================    elu  register     ============================ */
Z
zhupengyang 已提交
1605 1606 1607 1608 1609
REGISTER_OPERATOR(elu, ops::ActivationOp, ops::ELUOpMaker,
                  ops::ActivationOpInferVarType,
                  ops::ELUGradOpMaker<paddle::framework::OpDesc>,
                  ops::ELUGradOpMaker<paddle::imperative::OpBase>,
                  ops::ActFwdInplaceInferer);
D
Double_V 已提交
1610
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
1611
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1612 1613 1614 1615 1616
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1617
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1618 1619 1620

/* ========================================================================== */

W
wangzhen38 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/* ========================    logit  register     ============================
 */
REGISTER_OPERATOR(logit, ops::LogitOp, ops::LogitOpMaker,
                  ops::LogitGradOpMaker<paddle::framework::OpDesc>,
                  ops::LogitGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(logit_grad, ops::LogitGradOp);
REGISTER_OP_CPU_KERNEL(
    logit, ops::LogitKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LogitKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    logit_grad, ops::LogitGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LogitGradKernel<paddle::platform::CPUDeviceContext, double>);
/* ========================================================================== */

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
/* ========================    celu  register     ============================
 */
REGISTER_OPERATOR(
    celu, ops::ActivationOp, ops::CELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(celu_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::CELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::CELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    celu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::CELUGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(celu, CELU, CELUFunctor, CELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    celu_grad_grad, ops::CELUDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::CELUGradGradFunctor<float>>,
    ops::CELUDoubleGradKernel<plat::CPUDeviceContext,
                              ops::CELUGradGradFunctor<double>>,
    ops::CELUDoubleGradKernel<plat::CPUDeviceContext,
                              ops::CELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1664 1665 1666
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1667 1668 1669 1670
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1671
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1672
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1673
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1674 1675
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1676 1677
REGISTER_OPERATOR(
    sqrt_grad_grad,
1678
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1679
    ops::ActivationDoubleGradOpInplaceInferer);
1680

L
lvmengsi 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

W
whs 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
/* ===========================   rsqrt register  =============================
 */
REGISTER_OPERATOR(
    rsqrt, ops::ActivationOp, ops::RsqrtOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(rsqrt_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::RsqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::RsqrtDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    rsqrt_grad_grad,
    ops::ActivationOpDoubleGrad<ops::RsqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(rsqrt, Rsqrt, RsqrtFunctor, RsqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    rsqrt_grad_grad,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<float>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<double>>,
    ops::RsqrtDoubleGradKernel<plat::CPUDeviceContext,
                               ops::RsqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1720 1721 1722 1723
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1724 1725 1726 1727
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1728
    ops::ActFwdInplaceInferer);
1729
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1730
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1731 1732
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1733 1734
REGISTER_OPERATOR(
    square_grad_grad,
1735
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1736
    ops::ActivationDoubleGradOpInplaceInferer);
1737

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1756 1757 1758 1759 1760 1761 1762 1763

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1764 1765 1766 1767 1768
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1769
/* ========================================================================== */
1770 1771 1772 1773 1774

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1775 1776
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1777
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1778
                     ops::ActFwdInplaceInferer, void>::type);
1779
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
1780
                  ops::ActivationGradOpInplaceInferer);
1781 1782 1783

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1784 1785 1786
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1787 1788 1789
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
1805
                  ops::ActivationGradOpInplaceInferer);
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */
R
ronnywang 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

/* ==========================   expm1 register  ============================ */
REGISTER_OPERATOR(
    expm1, ops::ActivationOp, ops::Expm1OpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::Expm1GradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::Expm1GradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::Expm1GradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(expm1_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer);

REGISTER_OP_CPU_KERNEL(expm1,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::Expm1Functor<plat::float16>>);
REGISTER_OP_CPU_KERNEL(
    expm1_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                          ops::Expm1GradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::Expm1GradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::Expm1GradFunctor<plat::float16>>);
/* ========================================================================== */
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
/* ==========================  Log register ==================================*/
REGISTER_OPERATOR(
    log, ops::ActivationOp, ops::LogOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(log_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::LogDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LogDoubleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    log_grad_grad,
    ops::ActivationOpDoubleGrad<ops::LogGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

/* ========================================================================== */

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
REGISTER_OP_VERSION(softplus)
    .AddCheckpoint(
        R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("beta", "The beta value of the new formula", 1.0f)
            .NewAttr("threshold", "The threshold value of the new formula",
                     20.0f));

1904 1905 1906 1907 1908 1909 1910
REGISTER_OP_VERSION(mish)
    .AddCheckpoint(
        R"ROC(add new attributes [use_mkldnn], and when computing softplus the formula is changed as the new veriosn of softplus)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_mkldnn", "(bool, default false) Only used in mkldnn kernel",
            false));

1911
/* ========================================================================== */