activation_op.cc 61.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
26
#include "paddle/phi/backends/dynload/port.h"
Q
qijun 已提交
27

A
Adam 已提交
28 29
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
30 31 32
namespace paddle {
namespace operators {

33 34
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
35 36
  return GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kDepOut ||
         GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kNoDeps;
37 38
}

39 40 41 42 43 44 45 46 47 48 49 50 51 52
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)           \
  class OP_NAME##OpMaker                                            \
      : public ::paddle::framework::OpProtoAndCheckerMaker {        \
   public:                                                          \
    void Make() override {                                          \
      AddInput("X",                                                 \
               "Input of " #OP_NAME                                 \
               " operator, an N-D Tensor, with data type float32, " \
               "float64 or float16.");                              \
      AddOutput("Out",                                              \
                "Output of " #OP_NAME                               \
                " operator, a Tensor with shape same as input.");   \
      AddComment(OP_COMMENT);                                       \
    }                                                               \
D
dzhwinter 已提交
53
  }
D
dzhwinter 已提交
54

H
hong 已提交
55 56
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
57
 public:
H
hong 已提交
58
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
59 60

 protected:
61
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
62 63 64 65
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
66

A
Adam 已提交
67 68
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
69 70
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
R
Ruibiao Chen 已提交
71
         PADDLE_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
72
      op->SetInput("X", this->Input("X"));  // x
73 74 75 76
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
77
      op->SetInput("Out", this->Output("Out"));  // out
78
    }
D
dzhwinter 已提交
79
  }
80
};
D
dzhwinter 已提交
81

82 83 84 85
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
86
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
87
  auto data_type = oper.IndicateVarDataType(ctx, name);
88 89 90 91 92 93 94 95 96 97
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
98
#ifdef PADDLE_WITH_MKLDNN
99
  if (library == framework::LibraryType::kPlain &&
100
      oper.CanMKLDNNBeUsed(ctx, data_type)) {
101
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
102
    layout = framework::DataLayout::kMKLDNN;
103 104
  }
#endif
105
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
106 107
}

Q
qijun 已提交
108 109 110 111
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

112
  void InferShape(framework::InferShapeContext* ctx) const override {
113
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
114
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
115
  }
116

117
 protected:
118 119 120 121
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
J
Jacek Czaja 已提交
122 123

  framework::OpKernelType GetKernelTypeForVar(
124
      const std::string& var_name,
125
      const phi::DenseTensor& tensor,
126
      const framework::OpKernelType& expected_kernel_type) const override {
J
Jacek Czaja 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139
#ifdef PADDLE_WITH_MKLDNN
    // When activation is first oneDNN op (there was some non oneDNN op
    // previously)
    // then we also need to rotate shape NHWC -> NCWH
    if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
        (tensor.layout() != framework::DataLayout::kMKLDNN) &&
        paddle::platform::MKLDNNDeviceContext::tls()
                .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(),
                                     framework::DataLayout::kNHWC);
    }
#endif
140 141
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
J
Jacek Czaja 已提交
142
  }
Q
qijun 已提交
143 144
};

C
chengduo 已提交
145 146 147
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
148
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
149
      const override {
150 151
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
152 153 154
  }
};

Q
qijun 已提交
155 156 157 158
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

159
  void InferShape(framework::InferShapeContext* ctx) const override {
160 161 162
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
163
  }
164

165
 protected:
166 167
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
168
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
169
  }
Q
qijun 已提交
170 171
};

D
dzhwinter 已提交
172
UNUSED constexpr char SigmoidDoc[] = R"DOC(
173
Sigmoid Activation
K
Kexin Zhao 已提交
174

175
$$out = \frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
176

D
dzhwinter 已提交
177
)DOC";
Q
qijun 已提交
178

M
minghaoBD 已提交
179 180 181 182 183 184
UNUSED constexpr char SiluDoc[] = R"DOC(
Silu Activation Operator

$$out = x * \\frac{1}{1 + e^{-x}}$$
)DOC";

D
dzhwinter 已提交
185
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
186
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
187

188
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
189

D
dzhwinter 已提交
190
)DOC";
191

D
dzhwinter 已提交
192
UNUSED constexpr char ExpDoc[] = R"DOC(
193
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
194

195
$$out = e^x$$
K
Kexin Zhao 已提交
196

D
dzhwinter 已提交
197
)DOC";
Q
qijun 已提交
198

R
ronnywang 已提交
199 200 201 202 203 204 205
UNUSED constexpr char Expm1Doc[] = R"DOC(
Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base.

$$out = e^x - 1$$

)DOC";

D
dzhwinter 已提交
206
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
207
Relu Activation Operator.
K
Kexin Zhao 已提交
208

209
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
210

D
dzhwinter 已提交
211
)DOC";
K
Kexin Zhao 已提交
212

D
dzhwinter 已提交
213
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
214
Tanh Activation Operator.
K
Kexin Zhao 已提交
215

Q
update  
qiaolongfei 已提交
216
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
217

D
dzhwinter 已提交
218
)DOC";
219

D
dzhwinter 已提交
220
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
221
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
222

Y
Yan Chunwei 已提交
223
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
224

D
dzhwinter 已提交
225
)DOC";
K
Kexin Zhao 已提交
226

D
dzhwinter 已提交
227
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
228
Sqrt Activation Operator.
K
Kexin Zhao 已提交
229

N
Noel 已提交
230
$$out=\\sqrt{x}=x^{1/2}$$
231

232 233
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
234

D
dzhwinter 已提交
235
)DOC";
236

Z
zhoukunsheng 已提交
237 238 239 240 241
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

242
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
243 244 245

)DOC";

D
dzhwinter 已提交
246
UNUSED constexpr char CeilDoc[] = R"DOC(
247
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
248

N
Noel 已提交
249
$$out = \\lceil x \\rceil$$
D
dzhwinter 已提交
250

D
dzhwinter 已提交
251
)DOC";
D
dzhwinter 已提交
252

D
dzhwinter 已提交
253
UNUSED constexpr char FloorDoc[] = R"DOC(
254
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
255

N
Noel 已提交
256
$$out = \\lfloor x \\rfloor$$
D
dzhwinter 已提交
257

D
dzhwinter 已提交
258
)DOC";
D
dzhwinter 已提交
259

D
dzhwinter 已提交
260
UNUSED constexpr char CosDoc[] = R"DOC(
261
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
262

Y
Yang Zhang 已提交
263 264
Input range is `(-inf, inf)` and output range is `[-1,1]`.

265
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
266

D
dzhwinter 已提交
267
)DOC";
C
add cos  
chengduoZH 已提交
268

J
joejiong 已提交
269 270 271 272 273 274 275 276 277
UNUSED constexpr char TanDoc[] = R"DOC(
Tangent Operator. Computes tangent of x element-wise.

Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`.

$$out = tan(x)$$

)DOC";

D
dzhwinter 已提交
278
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
279 280
Sine Activation Operator.

281
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
282

D
dzhwinter 已提交
283
)DOC";
C
add sin  
chengduoZH 已提交
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

X
xiaoting 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
UNUSED constexpr char AsinhDoc[] = R"DOC(
Asinh Activation Operator.

$$out = asinh(x)$$

)DOC";

UNUSED constexpr char AcoshDoc[] = R"DOC(
Acosh Activation Operator.

$$out = acosh(x)$$

)DOC";

UNUSED constexpr char AtanhDoc[] = R"DOC(
Atanh Activation Operator.

$$out = atanh(x)$$

)DOC";

D
dzhwinter 已提交
320
UNUSED constexpr char RoundDoc[] = R"DOC(
321
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
322

N
Noel 已提交
323
.. code-block:: text
324 325 326 327 328 329 330 331

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
332

D
dzhwinter 已提交
333
)DOC";
D
dzhwinter 已提交
334

D
dzhwinter 已提交
335
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
336
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
337

338
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
339

D
dzhwinter 已提交
340
)DOC";
341

D
dzhwinter 已提交
342
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
343
Log Activation Operator.
K
Kexin Zhao 已提交
344

345
$$out = \ln(x)$$
K
Kexin Zhao 已提交
346 347 348

Natural logarithm of x.

D
dzhwinter 已提交
349 350
)DOC";

J
joejiong 已提交
351 352 353 354 355 356 357 358 359
UNUSED constexpr char Log2Doc[] = R"DOC(
Log2 Activation Operator.

$$out = \log_2x$$

logarithm of x base to 2.

)DOC";

J
joejiong 已提交
360 361 362 363 364 365 366 367 368
UNUSED constexpr char Log10Doc[] = R"DOC(
Log10 Activation Operator.

$$out = \log_10_x$$

logarithm of x base to 10.

)DOC";

369 370 371 372 373 374 375 376 377
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
378
UNUSED constexpr char SquareDoc[] = R"DOC(
379
The OP square each elements of the inputs.
D
dzhwinter 已提交
380

381
$$out = x^2$$
382

D
dzhwinter 已提交
383 384
)DOC";

D
dzhwinter 已提交
385
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
386 387
Softsign Activation Operator.

388
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
389 390 391

)DOC";

T
tink2123 已提交
392 393 394 395 396 397
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
398
Arccosine Operator.
399

T
tink2123 已提交
400
$$out = \cos^{-1}(x)$$
401

T
tink2123 已提交
402 403 404
)DOC");
  }
};
405

T
tink2123 已提交
406 407 408
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
409 410 411
    AddInput("X",
             "Input of asin operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
412 413
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
414
Arcsine Operator.
415

T
tink2123 已提交
416
$$out = \sin^{-1}(x)$$
417

T
tink2123 已提交
418 419 420
)DOC");
  }
};
421

T
tink2123 已提交
422 423 424
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
425 426 427
    AddInput("X",
             "Input of atan operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
428 429
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
430
Arctangent Operator.
431

432
$$out = \tan^{-1}(x)$$
433

T
tink2123 已提交
434 435 436
)DOC");
  }
};
437

D
dzhwinter 已提交
438
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
439
 public:
Y
Yu Yang 已提交
440
  void Make() override {
W
Wilber 已提交
441 442 443 444 445 446 447 448
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
K
Kexin Zhao 已提交
449
    AddComment(R"DOC(
D
dzhwinter 已提交
450
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
451

W
Wilber 已提交
452
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
453 454

)DOC");
455 456 457
  }
};

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
481
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
482
 public:
Y
Yu Yang 已提交
483
  void Make() override {
D
dzhwinter 已提交
484 485 486
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
487
    AddComment(R"DOC(
488 489 490
:strong:`Softshrink Activation Operator`

..  math::
491
    out = \begin{cases}
492 493 494 495
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
496 497

)DOC");
K
kexinzhao 已提交
498 499 500
  }
};

D
dzhwinter 已提交
501
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
502
 public:
Y
Yu Yang 已提交
503
  void Make() override {
D
dzhwinter 已提交
504 505
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
506 507
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
508
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
509
    AddComment(R"DOC(
Y
yuyang18 已提交
510
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
511

Y
yuyang18 已提交
512 513 514 515 516 517
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
518 519

)DOC");
520 521 522
  }
};

523 524
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
525
  void Make() override {
526 527 528 529 530 531
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
532 533 534 535
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
536
    AddComment(R"DOC(
K
kexinzhao 已提交
537
BRelu Activation Operator.
K
Kexin Zhao 已提交
538

539
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
540 541

)DOC");
542 543 544 545 546
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
547
  void Make() override {
548
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
549
    AddOutput("Out", "Output of SoftRelu operator");
550 551
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
552
    AddComment(R"DOC(
K
kexinzhao 已提交
553
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
554

555
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
556 557

)DOC");
558 559 560
  }
};

561 562
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
563
  void Make() override {
564 565 566 567 568 569
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
570
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
571
    AddComment(R"DOC(
K
kexinzhao 已提交
572
ELU Activation Operator.
K
Kexin Zhao 已提交
573 574 575 576

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

577
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
578 579

)DOC");
580 581 582
  }
};

Z
zhupengyang 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
template <typename T>
class ELUGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elu_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

W
wangzhen38 已提交
599 600 601 602 603 604 605 606 607
class LogitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Logit operator");
    AddOutput("Out", "Output of Logit operator");
    AddAttr<float>("eps",
                   "(float, default 1e-6f) the epsilon for input clamp bound")
        .SetDefault(1e-6f);
    AddComment(R"DOC(
608
Logit Operator.
W
wangzhen38 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

this function is defined as follow:
$ logit=ln\left ( {\frac {x} {1-x}} \right ) $

)DOC");
  }
};

template <typename T>
class LogitGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("logit_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
class CELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
    AddAttr<float>("alpha", "The alpha value of CELU").SetDefault(1.0f);
    AddComment(R"DOC(
CELU Activation Operator.

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1704.07483.

$$out = \max(0, x) + \min(0, \alpha * (e^(x/\alpha) - 1))$$

)DOC");
  }
};

654 655
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
656
  void Make() override {
Z
zhupengyang 已提交
657 658 659 660 661 662 663 664
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
665
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
666
    AddComment(R"DOC(
K
kexinzhao 已提交
667
Relu6 Activation Operator.
K
Kexin Zhao 已提交
668

669
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
670 671

)DOC");
672 673 674
  }
};

675 676
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
677
  void Make() override {
678
    AddInput("X", "Input of Pow operator");
679 680 681 682 683
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
684
    AddOutput("Out", "Output of Pow operator");
685
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
686
    AddComment(R"DOC(
K
kexinzhao 已提交
687
Pow Activation Operator.
K
Kexin Zhao 已提交
688

689
$$out = x^{factor}$$
K
Kexin Zhao 已提交
690 691

)DOC");
692 693 694 695 696
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
697
  void Make() override {
698 699
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
700
             " A Tensor with type float32, float64.");
701 702 703
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
704 705
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
706
    AddComment(R"DOC(
K
kexinzhao 已提交
707
STanh Activation Operator.
K
Kexin Zhao 已提交
708

Y
Yan Chunwei 已提交
709
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
710 711

)DOC");
Q
qijun 已提交
712 713 714
  }
};

715 716
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
717
  void Make() override {
718
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
719
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
720 721
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
722
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
723
    AddComment(R"DOC(
Y
yuyang18 已提交
724
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
725

Y
yuyang18 已提交
726
..  math::
K
Kexin Zhao 已提交
727

Y
yuyang18 已提交
728
    out = \begin{cases}
Y
yuyang18 已提交
729
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
730 731
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
732
)DOC");
733 734 735
  }
};

736 737
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
738
  void Make() override {
739 740 741 742 743
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
744
        .SetDefault(0.2f);
745 746 747
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
748
        .SetDefault(0.5f);
749
    AddComment(R"DOC(
K
kexinzhao 已提交
750
HardSigmoid Activation Operator.
751

752
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
753
which is much faster than sigmoid.
754

755
$$out = \max(0, \min(1, slope * x + offset))$$
756

K
Kexin Zhao 已提交
757
)DOC");
758 759 760
  }
};

A
Abhinav Arora 已提交
761 762
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
763
  void Make() override {
A
Abhinav Arora 已提交
764
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
765
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
766 767 768 769
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
    AddComment(R"DOC(
Swish Activation Operator.

770
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
771 772 773 774 775

)DOC");
  }
};

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
class MishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Mish operator");
    AddOutput("Out", "Output of Mish operator");
    AddAttr<float>(
        "threshold",
        "Constant threshold of softplus in Mish operator. Approximate value "
        "of softplus will be used if absolute value of input is greater than "
        ":attr:`threshold`")
        .SetDefault(20.f);
    AddComment(R"DOC(
Mish Activation Operator.

..  math::
    softplus(x) = \begin{cases}
            x, \text{if } x > \text{threshold} \\
            \ln(1 + e^{x}),  \text{otherwise}
          \end{cases}

    out = x * \tanh(softplus(x))

)DOC");
  }
};

H
huangjun12 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

818
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
819 820 821 822 823 824 825 826 827

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
828
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
M
minghaoBD 已提交
829
REGISTER_ACTIVATION_OP_MAKER(Silu, SiluDoc);
D
dzhwinter 已提交
830 831
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
R
ronnywang 已提交
832
REGISTER_ACTIVATION_OP_MAKER(Expm1, Expm1Doc);
D
dzhwinter 已提交
833 834 835 836
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
837
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
838 839 840
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
J
joejiong 已提交
841
REGISTER_ACTIVATION_OP_MAKER(Tan, TanDoc);
D
dzhwinter 已提交
842
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
843 844
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
X
xiaoting 已提交
845 846 847
REGISTER_ACTIVATION_OP_MAKER(Acosh, AcoshDoc);
REGISTER_ACTIVATION_OP_MAKER(Asinh, AsinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Atanh, AtanhDoc);
D
dzhwinter 已提交
848 849 850
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
J
joejiong 已提交
851
REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc);
J
joejiong 已提交
852
REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc);
853
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
854 855 856
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

857
template <ActBwdOpFwdDeps kDepValue>
858 859 860 861 862
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
863 864
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
865
      if (ctx->HasOutput("DX")) {
866 867 868
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
869
      if (ctx->HasOutput("DDOut")) {
870 871 872
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
873
    }
874 875
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
876
      if (ctx->HasOutput("DOut")) {
877 878 879
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
880 881 882 883
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
884 885 886 887
      if (ctx->HasOutput("DOutNew")) {
        ctx->ShareDim("Out", "DOutNew");
        ctx->ShareLoD("Out", "DOutNew");
      }
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
904 905
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
906 907 908 909 910
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
911 912
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
913
      if (ctx->HasOutput("DDOut")) {
914 915 916
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
917 918 919 920 921 922 923 924 925 926
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

927 928 929 930 931 932
template <ActBwdOpFwdDeps kDepValue>
class ActivationOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
933 934
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
935 936 937 938 939 940 941 942 943
      if (ctx->HasOutput("DX")) {
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
944 945
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
      if (ctx->HasOutput("D_DOut")) {
        ctx->ShareDim("Out", "D_DOut");
        ctx->ShareLoD("Out", "D_DOut");
      }
      if (ctx->HasOutput("D_OutNew")) {
        ctx->ShareDim("Out", "D_OutNew");
        ctx->ShareLoD("Out", "D_OutNew");
      }
      if (ctx->HasOutput("D_DDx")) {
        ctx->ShareDim("DDX", "D_DDx");
        ctx->ShareLoD("DDX", "D_DDx");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
template <typename T>
class SigmoidDoubleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
template <typename T>
class SigmoidTripleGradMaker
    : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("sigmoid_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
template <typename T>
class TanhDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_grad_grad");
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DOutNew", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
template <typename T>
class TanhTripleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("tanh_triple_grad");
    // Out, DDX, DOut, D_DDOut, D_DOut_New   // input
    // D_OutNew, D_DOut, D_DDx               // output
    // input1: Out
    op->SetInput("Out", this->Input("Out"));
    // input2: ddx
    op->SetInput("DDX", this->Input("DDX"));
    // input3: dout
    op->SetInput("DOut", this->Input("DOut"));
    // input4: d_ddout
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));
    // input5: d_dout_new
    op->SetInput("D_DOut_New", this->OutputGrad("DOutNew"));
    op->SetAttrMap(this->Attrs());

    // output: d_dOut, d_OutNew, d_ddx
    op->SetOutput("D_OutNew", this->InputGrad("Out"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDx", this->InputGrad("DDX"));
  }
};
1067 1068
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
H
hong 已提交
1069 1070
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1071
 public:
H
hong 已提交
1072
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1073 1074

 protected:
1075
  void Apply(GradOpPtr<T> op) const override {
1076 1077
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
1078
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
1079
    // input2: ddx
H
hong 已提交
1080 1081
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1082
    // output: ddy
H
hong 已提交
1083
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1084 1085 1086
  }
};

1087 1088
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
1089
template <typename T>
1090
class LeakyReluDoubleGradMaker
H
hong 已提交
1091
    : public ::paddle::framework::SingleGradOpMaker<T> {
1092
 public:
H
hong 已提交
1093
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1094 1095

 protected:
1096
  void Apply(GradOpPtr<T> op) const override {
1097
    op->SetType("leaky_relu_grad_grad");
1098 1099
    // input1: X
    op->SetInput("X", this->Input("X"));
1100
    // X@GRAD@GRAD: ddx
H
hong 已提交
1101 1102
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
1103
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1104
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1105 1106 1107
  }
};

D
Double_V 已提交
1108 1109 1110 1111 1112 1113 1114 1115
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
1116
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
// celu grad: dx=dy if y>0 else dy*(x/alpha).exp()
// celu gradgrad: ddx=ddy if y>0 else ddy*(x/alpha).exp()/alpha
template <typename T>
class CELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("celu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
1154 1155
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
1156 1157
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
1158
 public:
H
hong 已提交
1159
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
1160 1161

 protected:
1162
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
1163
    op->SetType("sqrt_grad_grad");
H
hong 已提交
1164 1165 1166 1167 1168 1169
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
1170 1171 1172
  }
};

W
whs 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
// rsqrt Grad: dx = -0.5 * dy * y * y * y
// rsqrt GradGrad: ddy = -0.5 * ddx * y * y * y, dy = (3/y) * ddx
template <typename T>
class RsqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("rsqrt_grad_grad");
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1192 1193
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
1194 1195
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
1196
 public:
H
hong 已提交
1197
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1198 1199

 protected:
1200
  void Apply(GradOpPtr<T> op) const override {
1201
    op->SetType("square_grad_grad");
H
hong 已提交
1202
    op->SetInput("X", this->Input("X"));
1203
    // Out@GRAD: dy
H
hong 已提交
1204
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
1205
    // X@GRAD@GRAD: ddx
H
hong 已提交
1206
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
1207

H
hong 已提交
1208
    op->SetAttrMap(this->Attrs());
1209 1210

    // X@GRAD: dx
H
hong 已提交
1211
    op->SetOutput("DX", this->InputGrad("X"));
1212
    // Out@GRAD@GRAD: ddy
H
hong 已提交
1213
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
1214 1215 1216
  }
};

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
// log Grad: dx = dout / x
// log Grad Grad: ddout = ddx / x; dx = -(dout / x) * (ddx / x)
template <typename T>
class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("log_grad_grad");
    op->SetInput("X", this->Input("X"));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // X@GRAD: dx
    op->SetOutput("DX", this->InputGrad("X"));
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

1239
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
1240 1241
                           {framework::GradVarName("Out"),  // dout
                            framework::GradVarName("X")});  // dx
1242
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
1243
                           {"DDX", "DDOut"});
1244 1245
DECLARE_INPLACE_OP_INFERER(ActivationTripleGradOpInplaceInferer,
                           {"DDX", "D_DOut"});
1246

W
wangzhen38 已提交
1247 1248
class LogitOp : public framework::OperatorWithKernel {
 public:
1249 1250
  LogitOp(const std::string& type,
          const framework::VariableNameMap& inputs,
W
wangzhen38 已提交
1251 1252 1253 1254 1255
          const framework::VariableNameMap& outputs,
          const framework::AttributeMap& attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext* ctx) const override {
1256 1257
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"),
                      true,
W
wangzhen38 已提交
1258 1259
                      platform::errors::InvalidArgument(
                          "Input(%s) of LogitOp should not be null.", "X"));
1260 1261
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"),
                      true,
W
wangzhen38 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
                      platform::errors::InvalidArgument(
                          "Output(%s) of LogitOp should not be null.", "Out"));

    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

class LogitGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
1286 1287
        ctx->HasInput(framework::GradVarName("Out")),
        true,
W
wangzhen38 已提交
1288 1289
        platform::errors::InvalidArgument(
            "Input(%s) of LogitGradOp should not be null.", "DOut"));
1290 1291
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"),
                      true,
W
wangzhen38 已提交
1292 1293 1294
                      platform::errors::InvalidArgument(
                          "Input(%s) of LogitGradOp should not be null.", "X"));
    PADDLE_ENFORCE_EQ(
1295 1296
        ctx->HasOutput(framework::GradVarName("X")),
        true,
W
wangzhen38 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        platform::errors::InvalidArgument(
            "Output(%s) of LogitGradOp should not be null.", "DX"));
    auto x_grad_name = framework::GradVarName("X");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

H
hong 已提交
1314 1315
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
1316
 public:
H
hong 已提交
1317
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
1318 1319

 protected:
1320
  void Apply(GradOpPtr<T> op) const override {
1321
    op->SetType("pow_grad");
H
hong 已提交
1322 1323 1324 1325 1326
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
1345
      const std::string& var_name,
1346
      const phi::DenseTensor& tensor,
1347 1348 1349 1350
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
1351 1352
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
1373
      const std::string& var_name,
1374
      const phi::DenseTensor& tensor,
1375 1376 1377 1378
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
1379 1380
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
1381 1382
  }
};
1383
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
1384 1385 1386 1387
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1388
namespace plat = paddle::platform;
1389

1390 1391
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
1392 1393 1394
      KERNEL_TYPE,                                                          \
      ops::ActivationOp,                                                    \
      ops::OP_NAME##OpMaker,                                                \
1395
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
1396 1397 1398 1399
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
1400
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
1401 1402 1403 1404
                       ops::ActFwdInplaceInferer,                           \
                       void>::type);                                        \
  REGISTER_OPERATOR(KERNEL_TYPE##_grad,                                     \
                    ops::ActivationOpGrad,                                  \
1405
                    ops::ActivationGradOpInplaceInferer);
1406

L
Leo Chen 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
#define REGISTER_ACTIVATION_CPU_KERNEL(                                     \
    act_type, op_name, functor, grad_functor)                               \
  REGISTER_OP_CPU_KERNEL(                                                   \
      act_type,                                                             \
      ops::ActivationKernel<phi::CPUContext, ops::functor<float>>,          \
      ops::ActivationKernel<phi::CPUContext, ops::functor<double>>);        \
  REGISTER_OP_CPU_KERNEL(                                                   \
      act_type##_grad,                                                      \
      ops::ActivationGradKernel<phi::CPUContext, ops::grad_functor<float>>, \
      ops::ActivationGradKernel<phi::CPUContext, ops::grad_functor<double>>);
1417

1418 1419
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
1420

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
REGISTER_ACTIVATION_OP(cos, Cos, CosFunctor, CosGradFunctor)
REGISTER_ACTIVATION_OP(tan, Tan, TanFunctor, TanGradFunctor);
REGISTER_ACTIVATION_OP(acos, Acos, AcosFunctor, AcosGradFunctor);
REGISTER_ACTIVATION_OP(sin, Sin, SinFunctor, SinGradFunctor);
REGISTER_ACTIVATION_OP(asin, Asin, AsinFunctor, AsinGradFunctor);
REGISTER_ACTIVATION_OP(atan, Atan, AtanFunctor, AtanGradFunctor);
REGISTER_ACTIVATION_OP(sinh, Sinh, SinhFunctor, SinhGradFunctor);
REGISTER_ACTIVATION_OP(cosh, Cosh, CoshFunctor, CoshGradFunctor);
REGISTER_ACTIVATION_OP(asinh, Asinh, AsinhFunctor, AsinhGradFunctor);
REGISTER_ACTIVATION_OP(acosh, Acosh, AcoshFunctor, AcoshGradFunctor);
REGISTER_ACTIVATION_OP(atanh, Atanh, AtanhFunctor, AtanhGradFunctor);
1432
REGISTER_ACTIVATION_OP(brelu, BRelu, BReluFunctor, BReluGradFunctor);
1433 1434 1435 1436
REGISTER_ACTIVATION_OP(thresholded_relu,
                       ThresholdedRelu,
                       ThresholdedReluFunctor,
                       ThresholdedReluGradFunctor);
1437
REGISTER_ACTIVATION_OP(relu6, Relu6, Relu6Functor, Relu6GradFunctor);
1438 1439 1440
REGISTER_ACTIVATION_OP(hard_shrink,
                       HardShrink,
                       HardShrinkFunctor,
Y
YuanRisheng 已提交
1441
                       HardShrinkGradFunctor);
1442 1443 1444
REGISTER_ACTIVATION_OP(softshrink,
                       SoftShrink,
                       SoftShrinkFunctor,
Y
YuanRisheng 已提交
1445
                       SoftShrinkGradFunctor);
1446 1447 1448
REGISTER_ACTIVATION_OP(tanh_shrink,
                       TanhShrink,
                       TanhShrinkFunctor,
Y
YuanRisheng 已提交
1449 1450
                       TanhShrinkGradFunctor);
REGISTER_ACTIVATION_OP(silu, Silu, SiluFunctor, SiluGradFunctor);
1451 1452 1453 1454
REGISTER_ACTIVATION_OP(softsign,
                       Softsign,
                       SoftsignFunctor,
                       SoftsignGradFunctor);
1455 1456 1457
REGISTER_ACTIVATION_OP(hard_sigmoid,
                       HardSigmoid,
                       HardSigmoidFunctor,
Y
YuanRisheng 已提交
1458
                       HardSigmoidGradFunctor);
1459 1460 1461
REGISTER_ACTIVATION_OP(logsigmoid,
                       LogSigmoid,
                       LogSigmoidFunctor,
Y
YuanRisheng 已提交
1462
                       LogSigmoidGradFunctor);
1463
REGISTER_ACTIVATION_OP(expm1, Expm1, Expm1Functor, Expm1GradFunctor);
1464 1465 1466
REGISTER_ACTIVATION_OP(softplus,
                       Softplus,
                       SoftplusFunctor,
1467 1468 1469
                       SoftplusGradFunctor);
REGISTER_ACTIVATION_OP(mish, Mish, MishFunctor, MishGradFunctor);
REGISTER_ACTIVATION_OP(stanh, STanh, STanhFunctor, STanhGradFunctor);
1470 1471 1472
REGISTER_ACTIVATION_OP(reciprocal,
                       Reciprocal,
                       ReciprocalFunctor,
1473 1474
                       ReciprocalGradFunctor);

1475 1476 1477
REGISTER_ACTIVATION_OP(log2, Log2, Log2Functor, Log2GradFunctor);
REGISTER_ACTIVATION_OP(log10, Log10, Log10Functor, Log10GradFunctor);
REGISTER_ACTIVATION_OP(log1p, Log1p, Log1pFunctor, Log1pGradFunctor);
1478 1479 1480
REGISTER_ACTIVATION_OP(hard_swish,
                       HardSwish,
                       HardSwishFunctor,
Y
YuanRisheng 已提交
1481 1482 1483 1484 1485
                       HardSwishGradFunctor);
REGISTER_ACTIVATION_OP(swish, Swish, SwishFunctor, SwishGradFunctor);
REGISTER_ACTIVATION_OP(round, Round, RoundFunctor, ZeroGradFunctor);
REGISTER_ACTIVATION_OP(floor, Floor, FloorFunctor, ZeroGradFunctor);
REGISTER_ACTIVATION_OP(ceil, Ceil, CeilFunctor, ZeroGradFunctor);
1486

1487 1488 1489 1490
/* ==========================    sigmoid register  =============================
 */
// 1. Register Sigmoid Operator
REGISTER_OPERATOR(
1491 1492 1493
    sigmoid,
    ops::ActivationOp,
    ops::SigmoidOpMaker,
1494 1495 1496 1497 1498 1499
    ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SigmoidGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::SigmoidGradFunctor<float>>(),
1500 1501
                     ops::ActFwdInplaceInferer,
                     void>::type);
1502 1503

// 2. Register Sigmoid Grad Operator
1504 1505
REGISTER_OPERATOR(sigmoid_grad,
                  ops::ActivationOpGrad,
1506 1507
                  ops::ActivationGradOpInplaceInferer,
                  ops::SigmoidDoubleGradMaker<paddle::framework::OpDesc>,
1508
                  ops::SigmoidDoubleGradMaker<paddle::imperative::OpBase>);
1509 1510 1511 1512

// 3. Register Sigmoid DoubleGrad Operator
REGISTER_OPERATOR(
    sigmoid_grad_grad,
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
    ops::ActivationOpDoubleGrad<ops::SigmoidGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::SigmoidTripleGradMaker<paddle::framework::OpDesc>,
    ops::SigmoidTripleGradMaker<paddle::imperative::OpBase>);

// 4. Register Sigmoid TripleGrad Operator
REGISTER_OPERATOR(sigmoid_triple_grad,
                  ops::ActivationOpTripleGrad<
                      ops::SigmoidTripleGradFunctor<float>::FwdDeps()>,
                  ops::ActivationTripleGradOpInplaceInferer);
1523 1524 1525

/* ========================================================================== */

1526 1527
/* ==========================    tanh register  ============================= */
REGISTER_OPERATOR(
1528 1529 1530 1531
    tanh,
    ops::ActivationOp,
    ops::TanhOpMaker,
    ops::ActivationOpInferVarType,
1532 1533 1534 1535 1536
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::TanhGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::TanhGradFunctor<float>>(),
1537 1538 1539 1540
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(tanh_grad,
                  ops::ActivationOpGrad,
1541 1542 1543 1544 1545 1546
                  ops::ActivationGradOpInplaceInferer,
                  ops::TanhDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::TanhDoubleGradMaker<paddle::imperative::OpBase>)
REGISTER_OPERATOR(
    tanh_grad_grad,
    ops::ActivationOpDoubleGrad<ops::TanhGradFunctor<float>::FwdDeps()>,
1547 1548 1549 1550 1551 1552 1553 1554
    ops::ActivationDoubleGradOpInplaceInferer,
    ops::TanhTripleGradMaker<paddle::framework::OpDesc>,
    ops::TanhTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    tanh_triple_grad,
    ops::ActivationOpTripleGrad<ops::TanhTripleGradFunctor<float>::FwdDeps()>,
    ops::ActivationTripleGradOpInplaceInferer);
1555 1556 1557

/* ========================================================================== */

1558
/* ==========================    relu register  ============================= */
1559
REGISTER_OPERATOR(
1560 1561 1562 1563
    relu,
    ops::ActivationOp,
    ops::ReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1564 1565 1566 1567
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1568
    ops::ActFwdInplaceInferer);
1569 1570
REGISTER_OPERATOR(relu_grad,
                  ops::ActivationOpGrad,
1571
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1572 1573
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
1574 1575
REGISTER_OPERATOR(
    relu_grad_grad,
1576
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
1577
    ops::ActivationDoubleGradOpInplaceInferer);
1578

1579
/* ========================================================================== */
1580

1581
/* ======================== leaky relu register  ============================ */
1582
REGISTER_OPERATOR(
1583 1584 1585
    leaky_relu,
    ops::ActivationOp,
    ops::LeakyReluOpMaker,
1586
    ops::ActivationOpInferVarType,
H
hong 已提交
1587 1588 1589 1590
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1591
    ops::ActFwdInplaceInferer);
1592 1593
REGISTER_OPERATOR(leaky_relu_grad,
                  ops::ActivationOpGrad,
1594
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1595 1596
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1597 1598
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1599
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1600
    ops::ActivationDoubleGradOpInplaceInferer);
1601 1602 1603

/* ========================================================================== */

D
Double_V 已提交
1604
/* ========================    elu  register     ============================ */
1605 1606 1607
REGISTER_OPERATOR(elu,
                  ops::ActivationOp,
                  ops::ELUOpMaker,
Z
zhupengyang 已提交
1608 1609 1610 1611
                  ops::ActivationOpInferVarType,
                  ops::ELUGradOpMaker<paddle::framework::OpDesc>,
                  ops::ELUGradOpMaker<paddle::imperative::OpBase>,
                  ops::ActFwdInplaceInferer);
1612 1613
REGISTER_OPERATOR(elu_grad,
                  ops::ActivationOpGrad,
1614
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1615 1616 1617 1618 1619
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1620
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1621 1622 1623

/* ========================================================================== */

W
wangzhen38 已提交
1624 1625
/* ========================    logit  register     ============================
 */
1626 1627 1628
REGISTER_OPERATOR(logit,
                  ops::LogitOp,
                  ops::LogitOpMaker,
W
wangzhen38 已提交
1629 1630 1631
                  ops::LogitGradOpMaker<paddle::framework::OpDesc>,
                  ops::LogitGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(logit_grad, ops::LogitGradOp);
1632

W
wangzhen38 已提交
1633 1634
/* ========================================================================== */

1635 1636 1637
/* ========================    celu  register     ============================
 */
REGISTER_OPERATOR(
1638 1639 1640 1641
    celu,
    ops::ActivationOp,
    ops::CELUOpMaker,
    ops::ActivationOpInferVarType,
1642 1643 1644 1645 1646
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::CELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
1647 1648
REGISTER_OPERATOR(celu_grad,
                  ops::ActivationOpGrad,
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
                  ops::ActivationGradOpInplaceInferer,
                  ops::CELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::CELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    celu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::CELUGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

/* ========================================================================== */

L
lvmengsi 已提交
1659 1660
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
1661 1662 1663 1664
    sqrt,
    ops::ActivationOp,
    ops::SqrtOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1665 1666 1667 1668
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1669
    ops::ActFwdInplaceInferer);
1670 1671
REGISTER_OPERATOR(sqrt_grad,
                  ops::ActivationOpGrad,
1672
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1673 1674
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1675 1676
REGISTER_OPERATOR(
    sqrt_grad_grad,
1677
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1678
    ops::ActivationDoubleGradOpInplaceInferer);
1679

L
lvmengsi 已提交
1680 1681
/* ========================================================================== */

W
whs 已提交
1682 1683 1684
/* ===========================   rsqrt register  =============================
 */
REGISTER_OPERATOR(
1685 1686 1687 1688
    rsqrt,
    ops::ActivationOp,
    ops::RsqrtOpMaker,
    ops::ActivationOpInferVarType,
W
whs 已提交
1689 1690 1691 1692 1693
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::RsqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
1694 1695
REGISTER_OPERATOR(rsqrt_grad,
                  ops::ActivationOpGrad,
W
whs 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
                  ops::ActivationGradOpInplaceInferer,
                  ops::RsqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::RsqrtDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    rsqrt_grad_grad,
    ops::ActivationOpDoubleGrad<ops::RsqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

/* ========================================================================== */

1706 1707
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
1708 1709 1710
    square,
    ops::ActivationOp,
    ops::SquareOpMaker,
1711
    ops::ActivationOpInferVarType,
H
hong 已提交
1712 1713 1714 1715
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1716
    ops::ActFwdInplaceInferer);
1717 1718
REGISTER_OPERATOR(square_grad,
                  ops::ActivationOpGrad,
1719
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1720 1721
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1722 1723
REGISTER_OPERATOR(
    square_grad_grad,
1724
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1725
    ops::ActivationDoubleGradOpInplaceInferer);
1726 1727

/* ========================================================================== */
1728 1729 1730 1731

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
1732 1733 1734 1735
    pow,
    ops::PowOp,
    ops::PowOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1736 1737
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1738
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1739 1740 1741 1742
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(pow_grad,
                  ops::PowOpGrad,
1743
                  ops::ActivationGradOpInplaceInferer);
1744 1745 1746 1747
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
1748 1749 1750 1751
    exp,
    ops::ActivationOp,
    ops::ExpOpMaker,
    ops::ActivationOpInferVarType,
1752 1753 1754 1755 1756
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
1757 1758 1759 1760
                     ops::ActFwdInplaceInferer,
                     void>::type);
REGISTER_OPERATOR(exp_grad,
                  ops::ActivationOpGrad,
1761
                  ops::ActivationGradOpInplaceInferer);
1762

1763 1764
/* ==========================  Log register ==================================*/
REGISTER_OPERATOR(
1765 1766 1767 1768
    log,
    ops::ActivationOp,
    ops::LogOpMaker,
    ops::ActivationOpInferVarType,
1769 1770 1771 1772 1773
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
1774 1775
REGISTER_OPERATOR(log_grad,
                  ops::ActivationOpGrad,
1776 1777 1778 1779 1780 1781 1782 1783 1784
                  ops::ActivationGradOpInplaceInferer,
                  ops::LogDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LogDoubleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    log_grad_grad,
    ops::ActivationOpDoubleGrad<ops::LogGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

1804 1805
REGISTER_OP_VERSION(softplus).AddCheckpoint(
    R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
1806 1807
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
1808 1809 1810 1811 1812 1813 1814
    paddle::framework::compatible::OpVersionDesc()
        .NewAttr("beta", "The beta value of the new formula", 1.0f)
        .NewAttr("threshold", "The threshold value of the new formula", 20.0f));

REGISTER_OP_VERSION(mish).AddCheckpoint(
    R"ROC(add new attributes [use_mkldnn], and when computing softplus the formula is changed as the new veriosn of softplus)ROC",
    paddle::framework::compatible::OpVersionDesc().NewAttr(
1815 1816
        "use_mkldnn",
        "(bool, default false) Only used in mkldnn kernel",
1817
        false));
1818

1819
/* ========================================================================== */