parse_utils.py 23.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from copy import copy
17 18
from typing import Any, Dict, List, Tuple

C
Charles-hit 已提交
19
from tests_utils import is_attr, is_input, is_output, is_vec
20
from type_mapping import opmaker_attr_types_map
21 22


23
def to_named_dict(items: List[Dict], is_op=False) -> Dict[str, Dict]:
24
    named_dict = {}
25 26 27 28 29 30 31
    if is_op:
        for item in items:
            if "name" not in item:
                raise KeyError(f"name not in {item}")
            item["name"] = (
                item["name"] if item["name"][-1] != '_' else item["name"][:-1]
            )
32 33 34 35 36 37
            if "forward" in item:
                item["forward"]["name"] = (
                    item["forward"]["name"]
                    if item["forward"]["name"][-1] != '_'
                    else item["forward"]["name"][:-1]
                )
38 39 40 41 42 43 44 45
            name = item["name"]
            named_dict[name] = item
    else:
        for item in items:
            if "name" not in item:
                raise KeyError(f"name not in {item}")
            name = item["name"]
            named_dict[name] = item
46 47 48
    return named_dict


49
def parse_arg(op_name: str, s: str) -> Dict[str, str]:
50 51 52 53
    """parse an argument in following formats:
    1. typename name
    2. typename name = default_value
    """
54
    typename, rest = (item.strip() for item in s.split(" ", 1))
55 56
    assert (
        len(typename) > 0
57
    ), f"The arg typename should not be empty. Please check the args of {op_name} in yaml."
58

59 60
    assert (
        rest.count("=") <= 1
61
    ), f"There is more than 1 = in an arg in {op_name}"
62
    if rest.count("=") == 1:
63
        name, default_value = (item.strip() for item in rest.split("=", 1))
64 65
        assert (
            len(name) > 0
66
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
67 68
        assert (
            len(default_value) > 0
69
        ), f"The default value should not be empty. Please check the args of {op_name} in yaml."
70 71 72
        return {
            "typename": typename,
            "name": name,
73
            "default_value": default_value,
74 75 76
        }
    else:
        name = rest.strip()
77 78
        assert (
            len(name) > 0
79
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
80 81 82
        return {"typename": typename, "name": name}


83
def parse_input_and_attr(
84
    op_name: str, arguments: str
85
) -> Tuple[List, List, Dict, Dict]:
86
    args_str = arguments.strip()
87 88
    assert args_str.startswith('(') and args_str.endswith(')'), (
        f"Args declaration should start with '(' and end with ')', "
89
        f"please check the args of {op_name} in yaml."
90
    )
91 92 93 94 95 96 97 98 99
    args_str = args_str[1:-1]
    args = parse_plain_list(args_str)

    inputs = []
    attrs = []

    met_attr_with_default_value = False

    for arg in args:
100
        item = parse_arg(op_name, arg)
101 102 103
        typename = item["typename"]
        name = item["name"]
        if is_input(typename):
104 105
            assert len(attrs) == 0, (
                f"The input Tensor should appear before attributes. "
106
                f"please check the position of {op_name}:input({name}) "
107 108
                f"in yaml."
            )
109 110 111
            inputs.append(item)
        elif is_attr(typename):
            if met_attr_with_default_value:
112 113
                assert (
                    "default_value" in item
114
                ), f"{op_name}: Arguments with default value should not precede those without default value"
115 116
            elif "default_value" in item:
                met_attr_with_default_value = True
117 118
            if typename.startswith('Scalar') or typename == 'IntArray':
                item['data_type'] = opmaker_attr_types_map[typename]
119 120
            attrs.append(item)
        else:
121
            raise KeyError(f"{op_name}: Invalid argument type {typename}.")
122 123 124
    return inputs, attrs


125
def parse_output(op_name: str, s: str) -> Dict[str, str]:
126 127 128
    """parse an output, typename or typename(name)."""
    match = re.search(
        r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
129 130
        s,
    )
131 132 133 134 135 136 137
    typename = match.group("out_type")
    name = match.group("name")
    size_expr = match.group("expr")

    name = name[1:-1] if name is not None else 'out'
    size_expr = size_expr[1:-1] if size_expr is not None else None

138
    assert is_output(typename), (
139
        f"Invalid output type: {typename} in op : {op_name}."
140 141
        f"Supported types are Tensor and Tensor[]"
    )
142
    if size_expr is not None:
143
        assert is_vec(typename), (
144
            f"Invalid output size: output {name} in op : {op_name} is "
145 146
            f"not a vector but has size expr"
        )
147 148 149 150 151
        return {"typename": typename, "name": name, "size": size_expr}
    else:
        return {"typename": typename, "name": name}


152
def parse_outputs(op_name: str, outputs: str) -> List[Dict]:
153 154
    if outputs is None:
        return []
155 156 157
    outputs = parse_plain_list(outputs, sep=",")
    output_items = []
    for output in outputs:
158
        output_items.append(parse_output(op_name, output))
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    return output_items


def parse_infer_meta(infer_meta: Dict[str, Any]) -> Dict[str, Any]:
    infer_meta = copy(infer_meta)  # to prevent mutating the input
    if "param" not in infer_meta:
        infer_meta["param"] = None
    return infer_meta


def parse_candidates(s: str) -> Dict[str, Any]:
    "parse candidates joined by either '>'(ordered) or ','(unordered)"
    delimiter = ">" if ">" in s else ","
    ordered = delimiter == ">"
    candidates = parse_plain_list(s, delimiter)
174
    candidates = list(filter(None, candidates))
175 176 177 178
    return {"ordered": ordered, "candidates": candidates}


def parse_plain_list(s: str, sep=",") -> List[str]:
179 180 181 182 183 184 185
    if sep == ",":
        patten = re.compile(r',(?![^{]*\})')  # support "int[] a={1,2}"
        items = re.split(patten, s.strip())
        items = [x.strip() for x in items]
        return items
    else:
        return [item.strip() for item in s.strip().split(sep)]
186 187


188
def parse_kernel(op_name: str, kernel_config: Dict[str, Any]) -> Dict[str, Any]:
189 190 191 192 193 194
    # kernel :
    #    func : [], Kernel functions (example: scale, scale_sr)
    #    param : [], Input params of kernel
    #    backend : str, the names of param to choose the kernel backend, default is None
    #    layout : str, the names of param to choose the kernel layout, default is None
    #    data_type : str, the names of param to choose the kernel data_type, default is None
195
    #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
196
    kernel = {
197
        'func': [],  # up to 2 function names
198 199 200
        'param': None,
        'backend': None,
        'layout': None,
201
        'data_type': None,
202
        'dispatch': {},
203
        'force_backend': None,
204 205 206 207
    }
    if 'param' in kernel_config:
        kernel['param'] = kernel_config['param']

208 209 210
    if 'force_backend' in kernel_config:
        kernel['force_backend'] = kernel_config["force_backend"]

211 212 213 214 215 216 217
    if 'backend' in kernel_config:
        kernel['backend'] = parse_candidates(kernel_config["backend"])

    if 'layout' in kernel_config:
        kernel['layout'] = parse_candidates(kernel_config["layout"])

    if 'data_type' in kernel_config:
218 219 220 221 222 223 224 225 226 227 228 229 230 231
        data_type_item = parse_candidates(kernel_config["data_type"])
        params_num = len(data_type_item['candidates'])
        data_type_item['to_complex_flag'] = [False] * params_num
        for i in range(params_num):
            complex_match_result = re.match(
                r"complex\((?P<param_name>\w+)\)",
                data_type_item['candidates'][i],
            )
            if complex_match_result:
                data_type_item['candidates'][i] = complex_match_result.group(
                    'param_name'
                )
                data_type_item['to_complex_flag'][i] = True
        kernel['data_type'] = data_type_item
232 233

    kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
234 235
        kernel_config['func']
    )
236 237 238 239 240 241 242 243 244 245 246

    def parse_kernel_in_out_type(in_out_str):
        if len(in_out_str) == 0:
            return None
        tmp_in_out_list = in_out_str[1:-1].split('->')
        inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
        outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]

        # check the tensor type
        for item in inputs:
            assert item in [
247 248 249 250
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
251
            ], f"{op_name} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
252 253
        for item in outputs:
            assert item in [
254 255 256 257
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
258
            ], f"{op_name} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
259 260 261 262 263 264

        return (inputs, outputs)

    for func_item in kernel_funcs:
        kernel['func'].append(func_item[0])
        kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
265 266
            func_item[1]
        )
267

268 269 270
    return kernel


271 272 273 274 275 276 277 278
def delete_bracket(name: str):
    if name[0] == "(":
        name = name.lstrip("(")
    if name[-1] == ")":
        name = name.rstrip(")")
    return name


279
def parse_inplace(op_name: str, inplace_cfg: str) -> Dict[str, str]:
280 281 282 283 284
    inplace_map = {}
    inplace_cfg = inplace_cfg.lstrip("(").rstrip(")")
    pairs = parse_plain_list(inplace_cfg)
    for pair in pairs:
        in_name, out_name = parse_plain_list(pair, sep="->")
285 286
        in_name = delete_bracket(in_name)
        out_name = delete_bracket(out_name)
287 288 289 290
        inplace_map[out_name] = in_name
    return inplace_map


291
def parse_invoke(op_name: str, invoke_config: str) -> Dict[str, Any]:
292 293 294
    invoke_config = invoke_config.strip()
    func, rest = invoke_config.split("(", 1)
    func = func.strip()
L
lzydev 已提交
295
    args = rest[:-1].strip()  # deal the last ')'
296 297 298 299 300
    invocation = {"func": func, "args": args}
    return invocation


def extract_type_and_name(records: List[Dict]) -> List[Dict]:
301
    """extract type and name from forward call, it is simpler than forward op ."""
302 303 304
    extracted = [
        {"name": item["name"], "typename": item["typename"]} for item in records
    ]
305 306 307
    return extracted


308 309
def parse_forward(op_name: str, forward_config: str) -> Dict[str, Any]:
    # op_name (const Tensor& input, ... , int attr, ...) -> Tensor(out)
310
    result = re.search(
311
        r"(?P<op>[a-z][a-z0-9_]+)\s*(?P<args>\([^\)]+\))\s*->\s*(?P<outputs>.+)",
312 313
        forward_config,
    )
314 315
    op = result.group("op")
    outputs = parse_outputs(op_name, result.group("outputs"))
316 317
    outputs = extract_type_and_name(outputs)

318
    inputs, attrs = parse_input_and_attr(op_name, result.group("args"))
319 320 321
    inputs = extract_type_and_name(inputs)
    attrs = extract_type_and_name(attrs)
    forward_cfg = {
322
        "name": op,
323 324
        "inputs": inputs,
        "attrs": attrs,
325
        "outputs": outputs,
326 327 328 329
    }
    return forward_cfg


J
Jiabin Yang 已提交
330 331 332 333 334
def parse_composite(
    op_name: str,
    composite_config: str,
) -> Dict[str, Any]:
    # composite_config: func(args1, args2,.....)
335 336 337 338 339 340 341
    result = re.search(
        r"(?P<func_name>[a-z][a-z0-9_]+)\s*\((?P<func_args>[^\)]+)\)",
        composite_config,
    )

    func_name = result.group("func_name")
    func_args = result.group("func_args")
J
Jiabin Yang 已提交
342 343 344 345 346 347 348

    composite_dict = {}
    composite_dict["func_name"] = func_name
    composite_dict["func_args"] = func_args
    return composite_dict


349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
def check_op_config(op_entry, op_name):
    base_key_set = (
        'op',
        'backward_op',
        'forward',
        'args',
        'output',
        'infer_meta',
        'kernel',
        'backward',
        'invoke',
        'inplace',
        'view',
        'optional',
        'intermediate',
        'no_need_buffer',
        'data_transform',
J
Jiabin Yang 已提交
366
        'composite',
367
        'support_dygraph_mode',
368
    )
369
    infer_meta_key_set = ('func', 'param', 'spmd_rule')
370 371 372 373 374 375 376 377
    kernel_key_set = (
        'func',
        'param',
        'data_type',
        'layout',
        'backend',
        'force_backend',
    )
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    for key in op_entry.keys():
        assert (
            key in base_key_set
        ), f"Op ({op_name}) : invalid key ({key}) in Yaml."

    if 'infer_meta' in op_entry:
        for infer_meta_key in op_entry['infer_meta'].keys():
            assert (
                infer_meta_key in infer_meta_key_set
            ), f"Op ({op_name}) : invalid key (infer_meta.{infer_meta_key}) in Yaml."

    if 'kernel' in op_entry:
        for kernel_key in op_entry['kernel'].keys():
            assert (
                kernel_key in kernel_key_set
            ), f"Op ({op_name}) : invalid key (kernel.{kernel_key}) in Yaml."


396 397 398 399
def parse_op_entry(op_entry: Dict[str, Any], name_field="op"):
    op_name = op_entry[name_field]
    inputs, attrs = parse_input_and_attr(op_name, op_entry["args"])
    outputs = parse_outputs(op_name, op_entry["output"])
J
Jiabin Yang 已提交
400 401
    if "composite" in op_entry:
        composite_dict = parse_composite(op_name, op_entry["composite"])
402
    check_op_config(op_entry, op_name)
403 404 405 406 407 408
    # validate default value of DataType and DataLayout
    for attr in attrs:
        if "default_value" in attr:
            typename = attr["typename"]
            default_value = attr["default_value"]
            if typename == "DataType":
409 410
                assert (
                    "DataType" in default_value
411
                ), f"invalid DataType default value in {op_name}"
412
                # remove namespace
413
                default_value = default_value[default_value.find("DataType") :]
414 415
                attr["default_value"] = default_value
            elif typename == "DataLayout":
416 417
                assert (
                    "DataLayout" in default_value
418
                ), f"invalid DataLayout default value in {op_name}"
419 420 421
                default_value = default_value[
                    default_value.find("DataLayout") :
                ]
422 423 424 425 426 427 428 429 430
                attr["default_value"] = default_value

    input_names = [item["name"] for item in inputs]
    attr_names = [item["name"] for item in attrs]
    output_names = [item["name"] for item in outputs]

    # add optional tag for every input
    for input in inputs:
        input["optional"] = False
431 432 433
    for output in outputs:
        output["optional"] = False

434 435
    if "optional" in op_entry:
        optional_args = parse_plain_list(op_entry["optional"])
436
        for name in optional_args:
437
            assert (
438 439
                name in input_names or name in output_names
            ), f"{op_name} has an optional tensor: '{name}' which is not in input or output."
440 441 442
        for input in inputs:
            if input["name"] in optional_args:
                input["optional"] = True
443 444 445
        for output in outputs:
            if output["name"] in optional_args:
                output["optional"] = True
446 447 448 449

    # add intermediate tag for every output
    for output in outputs:
        output["intermediate"] = False
450 451
    if "intermediate" in op_entry:
        intermediate_outs = parse_plain_list(op_entry["intermediate"])
452
        for name in intermediate_outs:
453 454
            assert (
                name in output_names
455
            ), f"{op_name} has an intermediate output: '{name}' which is not an output."
456 457 458 459 460 461 462
        for output in outputs:
            if output["name"] in intermediate_outs:
                output["intermediate"] = True

    # add no_need_buffer for every input
    for input in inputs:
        input["no_need_buffer"] = False
463 464
    if "no_need_buffer" in op_entry:
        no_buffer_args = parse_plain_list(op_entry["no_need_buffer"])
465
        for name in no_buffer_args:
466 467
            assert (
                name in input_names
468
            ), f"{op_name} has an no buffer input: '{name}' which is not an input."
469 470 471 472 473 474
        for input in inputs:
            if input["name"] in no_buffer_args:
                input["no_need_buffer"] = True
    else:
        no_buffer_args = None

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
    # add data_transform tag for every input.
    # the format is {data_transform : {skip_transform : [x, z], support_trans_dtype : y}}
    for input in inputs:
        input["data_transform"] = {}
    if "data_transform" in op_entry:
        skip_trans_args = []
        support_trans_args = []
        data_trans = op_entry["data_transform"]
        if "skip_transform" in data_trans:
            skip_trans_args = parse_plain_list(data_trans["skip_transform"])
            for name in skip_trans_args:
                assert (
                    name in input_names
                ), f"{op_name} has an skip_transform input: '{name}' which is not an input."
            data_trans["skip_transform"] = skip_trans_args
        if "support_trans_dtype" in data_trans:
            support_trans_args = parse_plain_list(
                data_trans["support_trans_dtype"]
            )
            for name in support_trans_args:
                assert (
                    name in input_names
                ), f"{op_name} has an support_trans_dtype input: '{name}' which is not an input."
            data_trans["support_trans_dtype"] = support_trans_args
        for input in inputs:
            if input["name"] in skip_trans_args:
                input["data_transform"]["skip_trans_args"] = True
            else:
                input["data_transform"]["skip_trans_args"] = False
            if input["name"] in support_trans_args:
                input["data_transform"]["support_trans_dtype"] = True
            else:
                input["data_transform"]["support_trans_dtype"] = False
    else:
        data_trans = None
510

511 512
    op = {
        "name": op_name,
513 514 515
        "inputs": inputs,
        "attrs": attrs,
        "outputs": outputs,
516
        "no_need_buffer": no_buffer_args,
517
        "data_transform": data_trans,
518 519
    }

X
xiaoguoguo626807 已提交
520 521 522 523 524 525
    # op should be is_base_op or is_invoke_op or is_only_composite_op
    is_base_op = True
    if "invoke" in op_entry:
        is_base_op = False
    if "composite" in op_entry and "kernel" not in op_entry:
        is_base_op = False
526

527
    if is_base_op:
528
        # kernel
529 530 531 532 533
        if "kernel" in op_entry:
            kernel = parse_kernel(op_name, op_entry["kernel"])
            if kernel["param"] is None:
                kernel["param"] = input_names + attr_names
            op.update({"kernel": kernel})
534 535

        # infer meta
536 537 538 539 540 541 542
        if "infer_meta" in op_entry:
            infer_meta = parse_infer_meta(op_entry["infer_meta"])
            if infer_meta["param"] is None:
                infer_meta["param"] = copy(kernel["param"])
            op.update({"infer_meta": infer_meta})
        # else:
        #     assert(outputs == []), f"No infer_meta is given in {op_name}."
543 544

        # inplace
545 546
        if "inplace" in op_entry:
            inplace_pairs = parse_inplace(op_name, op_entry["inplace"])
547 548
        else:
            inplace_pairs = None
549 550 551 552 553
        # view
        if "view" in op_entry:
            view_pairs = parse_inplace(op_name, op_entry["view"])
        else:
            view_pairs = None
554
        op.update(
555 556
            {
                "inplace": inplace_pairs,
557
                "view": view_pairs,
558 559
            }
        )
X
xiaoguoguo626807 已提交
560 561 562 563 564

    # has invoke ?
    if "invoke" in op_entry:
        invoke_dict = parse_invoke(op_name, op_entry["invoke"])
        op.update({"invoke": invoke_dict})
565

J
Jiabin Yang 已提交
566 567 568 569
    # has composite ?
    if "composite" in op_entry:
        op.update({"composite": composite_dict})

570
    # backward
571 572
    if "backward" in op_entry:
        backward = op_entry["backward"]
573 574
    else:
        backward = None
575
    op["backward"] = backward
576

577 578 579 580 581
    # forward for backward_ops
    is_backward_op = name_field == "backward_op"
    if is_backward_op:
        if "forward" in op_entry:
            forward = parse_forward(op_name, op_entry["forward"])
582
            # validate_fb
583
            validate_backward_inputs(
584
                op_name, forward["inputs"], forward["outputs"], inputs
585
            )
586 587
            validate_backward_attrs(op_name, forward["attrs"], attrs)
            validate_backward_outputs(op_name, forward["inputs"], outputs)
588 589
        else:
            forward = None
590 591
        op["forward"] = forward
    return op
592 593


594
def validate_backward_attrs(op, forward_attrs, backward_attrs):
595 596 597
    if len(forward_attrs) >= len(backward_attrs):
        return
    num_exceptional_attrs = len(backward_attrs) - len(forward_attrs)
598 599
    # this is a not-that-clean trick to allow backward op to has more attrs
    # than the forward op , as long as they all have default value
600
    for i in range(-num_exceptional_attrs, 0):
601 602
        assert (
            "default_value" in backward_attrs[i]
603
        ), f"{op } has exceptional attr without default value"
604 605


606
def validate_backward_inputs(
607
    op, forward_inputs, forward_outputs, backward_inputs
608
):
609 610 611 612 613
    foward_input_names = [item["name"] for item in forward_inputs]
    forward_output_names = [item["name"] for item in forward_outputs]
    backward_input_names = [item["name"] for item in backward_inputs]

    assert len(backward_input_names) <= len(foward_input_names) + 2 * len(
614
        forward_output_names
615
    ), f"{op } has too many inputs."
616 617


618
def validate_backward_outputs(op, forward_inputs, backward_outputs):
619
    assert len(backward_outputs) <= len(
620
        forward_inputs
621
    ), f"{op } has too many outputs"
622 623


624 625 626 627
def cross_validate(ops):
    for name, op in ops.items():
        if "forward" in op:
            fw_call = op["forward"]
628
            fw_name = fw_call["name"]
629
            if fw_name not in ops:
630
                print(
631
                    f"Something Wrong here, this backward op ({name})'s forward op ({fw_name}) does not exist."
632 633
                )
            else:
634 635
                fw_op = ops[fw_name]
                if "backward" not in fw_op or fw_op["backward"] is None:
636
                    print(
637
                        f"Something Wrong here, {name}'s forward op ({fw_name}) does not claim {name} as its backward."
638 639
                    )
                else:
640
                    assert (
641
                        fw_op["backward"] == name
642
                    ), f"{name}: backward and forward name mismatch"
643 644

                assert len(fw_call["inputs"]) <= len(
645 646
                    fw_op["inputs"]
                ), f"{name}: forward call has more inputs than the op "
647
                for input, input_ in zip(fw_call["inputs"], fw_op["inputs"]):
648 649 650
                    assert (
                        input["typename"] == input_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"
651 652

                assert len(fw_call["attrs"]) <= len(
653 654
                    fw_op["attrs"]
                ), f"{name}: forward call has more attrs than the op "
655
                for attr, attr_ in zip(fw_call["attrs"], fw_op["attrs"]):
656 657 658 659 660 661
                    if attr["typename"] == "Scalar":
                        # special case for Scalar, fw_call can omit the type
                        assert re.match(
                            r"Scalar(\(\w+\))*", attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
                    else:
662 663 664
                        assert (
                            attr["typename"] == attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
665 666

                assert len(fw_call["outputs"]) == len(
667 668
                    fw_op["outputs"]
                ), f"{name}: forward call has more outputs than the op "
669
                for output, output_ in zip(
670
                    fw_call["outputs"], fw_op["outputs"]
671 672 673 674
                ):
                    assert (
                        output["typename"] == output_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"