parse_utils.py 22.4 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from copy import copy
17 18
from typing import Any, Dict, List, Tuple

C
Charles-hit 已提交
19
from tests_utils import is_attr, is_input, is_output, is_vec
20
from type_mapping import opmaker_attr_types_map
21 22


23
def to_named_dict(items: List[Dict], is_op=False) -> Dict[str, Dict]:
24
    named_dict = {}
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    if is_op:
        for item in items:
            if "name" not in item:
                raise KeyError(f"name not in {item}")
            item["name"] = (
                item["name"] if item["name"][-1] != '_' else item["name"][:-1]
            )
            name = item["name"]
            named_dict[name] = item
    else:
        for item in items:
            if "name" not in item:
                raise KeyError(f"name not in {item}")
            name = item["name"]
            named_dict[name] = item
40 41 42
    return named_dict


43
def parse_arg(op_name: str, s: str) -> Dict[str, str]:
44 45 46 47 48
    """parse an argument in following formats:
    1. typename name
    2. typename name = default_value
    """
    typename, rest = [item.strip() for item in s.split(" ", 1)]
49 50
    assert (
        len(typename) > 0
51
    ), f"The arg typename should not be empty. Please check the args of {op_name} in yaml."
52

53 54
    assert (
        rest.count("=") <= 1
55
    ), f"There is more than 1 = in an arg in {op_name}"
56 57
    if rest.count("=") == 1:
        name, default_value = [item.strip() for item in rest.split("=", 1)]
58 59
        assert (
            len(name) > 0
60
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
61 62
        assert (
            len(default_value) > 0
63
        ), f"The default value should not be empty. Please check the args of {op_name} in yaml."
64 65 66
        return {
            "typename": typename,
            "name": name,
67
            "default_value": default_value,
68 69 70
        }
    else:
        name = rest.strip()
71 72
        assert (
            len(name) > 0
73
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
74 75 76
        return {"typename": typename, "name": name}


77
def parse_input_and_attr(
78
    op_name: str, arguments: str
79
) -> Tuple[List, List, Dict, Dict]:
80
    args_str = arguments.strip()
81 82
    assert args_str.startswith('(') and args_str.endswith(')'), (
        f"Args declaration should start with '(' and end with ')', "
83
        f"please check the args of {op_name} in yaml."
84
    )
85 86 87 88 89 90 91 92 93
    args_str = args_str[1:-1]
    args = parse_plain_list(args_str)

    inputs = []
    attrs = []

    met_attr_with_default_value = False

    for arg in args:
94
        item = parse_arg(op_name, arg)
95 96 97
        typename = item["typename"]
        name = item["name"]
        if is_input(typename):
98 99
            assert len(attrs) == 0, (
                f"The input Tensor should appear before attributes. "
100
                f"please check the position of {op_name}:input({name}) "
101 102
                f"in yaml."
            )
103 104 105
            inputs.append(item)
        elif is_attr(typename):
            if met_attr_with_default_value:
106 107
                assert (
                    "default_value" in item
108
                ), f"{op_name}: Arguments with default value should not precede those without default value"
109 110
            elif "default_value" in item:
                met_attr_with_default_value = True
111 112
            if typename.startswith('Scalar') or typename == 'IntArray':
                item['data_type'] = opmaker_attr_types_map[typename]
113 114
            attrs.append(item)
        else:
115
            raise KeyError(f"{op_name}: Invalid argument type {typename}.")
116 117 118
    return inputs, attrs


119
def parse_output(op_name: str, s: str) -> Dict[str, str]:
120 121 122
    """parse an output, typename or typename(name)."""
    match = re.search(
        r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
123 124
        s,
    )
125 126 127 128 129 130 131
    typename = match.group("out_type")
    name = match.group("name")
    size_expr = match.group("expr")

    name = name[1:-1] if name is not None else 'out'
    size_expr = size_expr[1:-1] if size_expr is not None else None

132
    assert is_output(typename), (
133
        f"Invalid output type: {typename} in op : {op_name}."
134 135
        f"Supported types are Tensor and Tensor[]"
    )
136
    if size_expr is not None:
137
        assert is_vec(typename), (
138
            f"Invalid output size: output {name} in op : {op_name} is "
139 140
            f"not a vector but has size expr"
        )
141 142 143 144 145
        return {"typename": typename, "name": name, "size": size_expr}
    else:
        return {"typename": typename, "name": name}


146
def parse_outputs(op_name: str, outputs: str) -> List[Dict]:
147 148 149
    outputs = parse_plain_list(outputs, sep=",")
    output_items = []
    for output in outputs:
150
        output_items.append(parse_output(op_name, output))
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    return output_items


def parse_infer_meta(infer_meta: Dict[str, Any]) -> Dict[str, Any]:
    infer_meta = copy(infer_meta)  # to prevent mutating the input
    if "param" not in infer_meta:
        infer_meta["param"] = None
    return infer_meta


def parse_candidates(s: str) -> Dict[str, Any]:
    "parse candidates joined by either '>'(ordered) or ','(unordered)"
    delimiter = ">" if ">" in s else ","
    ordered = delimiter == ">"
    candidates = parse_plain_list(s, delimiter)
    return {"ordered": ordered, "candidates": candidates}


def parse_plain_list(s: str, sep=",") -> List[str]:
    items = [item.strip() for item in s.strip().split(sep)]
    return items


174
def parse_kernel(op_name: str, kernel_config: Dict[str, Any]) -> Dict[str, Any]:
175 176 177 178 179 180
    # kernel :
    #    func : [], Kernel functions (example: scale, scale_sr)
    #    param : [], Input params of kernel
    #    backend : str, the names of param to choose the kernel backend, default is None
    #    layout : str, the names of param to choose the kernel layout, default is None
    #    data_type : str, the names of param to choose the kernel data_type, default is None
181
    #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
182
    kernel = {
183
        'func': [],  # up to 2 function names
184 185 186
        'param': None,
        'backend': None,
        'layout': None,
187
        'data_type': None,
188
        'dispatch': {},
189
        'force_backend': None,
190 191 192 193
    }
    if 'param' in kernel_config:
        kernel['param'] = kernel_config['param']

194 195 196
    if 'force_backend' in kernel_config:
        kernel['force_backend'] = kernel_config["force_backend"]

197 198 199 200 201 202 203
    if 'backend' in kernel_config:
        kernel['backend'] = parse_candidates(kernel_config["backend"])

    if 'layout' in kernel_config:
        kernel['layout'] = parse_candidates(kernel_config["layout"])

    if 'data_type' in kernel_config:
204 205 206 207 208 209 210 211 212 213 214 215 216 217
        data_type_item = parse_candidates(kernel_config["data_type"])
        params_num = len(data_type_item['candidates'])
        data_type_item['to_complex_flag'] = [False] * params_num
        for i in range(params_num):
            complex_match_result = re.match(
                r"complex\((?P<param_name>\w+)\)",
                data_type_item['candidates'][i],
            )
            if complex_match_result:
                data_type_item['candidates'][i] = complex_match_result.group(
                    'param_name'
                )
                data_type_item['to_complex_flag'][i] = True
        kernel['data_type'] = data_type_item
218 219

    kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
220 221
        kernel_config['func']
    )
222 223 224 225 226 227 228 229 230 231 232

    def parse_kernel_in_out_type(in_out_str):
        if len(in_out_str) == 0:
            return None
        tmp_in_out_list = in_out_str[1:-1].split('->')
        inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
        outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]

        # check the tensor type
        for item in inputs:
            assert item in [
233 234 235 236
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
237
            ], f"{op_name} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
238 239
        for item in outputs:
            assert item in [
240 241 242 243
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
244
            ], f"{op_name} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
245 246 247 248 249 250

        return (inputs, outputs)

    for func_item in kernel_funcs:
        kernel['func'].append(func_item[0])
        kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
251 252
            func_item[1]
        )
253

254 255 256
    return kernel


257
def parse_inplace(op_name: str, inplace_cfg: str) -> Dict[str, str]:
258 259 260 261 262 263 264 265 266
    inplace_map = {}
    inplace_cfg = inplace_cfg.lstrip("(").rstrip(")")
    pairs = parse_plain_list(inplace_cfg)
    for pair in pairs:
        in_name, out_name = parse_plain_list(pair, sep="->")
        inplace_map[out_name] = in_name
    return inplace_map


267
def parse_invoke(op_name: str, invoke_config: str) -> Dict[str, Any]:
268 269 270 271 272 273 274 275 276
    invoke_config = invoke_config.strip()
    func, rest = invoke_config.split("(", 1)
    func = func.strip()
    args = rest.rstrip(")").strip()
    invocation = {"func": func, "args": args}
    return invocation


def extract_type_and_name(records: List[Dict]) -> List[Dict]:
277
    """extract type and name from forward call, it is simpler than forward op ."""
278 279 280
    extracted = [
        {"name": item["name"], "typename": item["typename"]} for item in records
    ]
281 282 283
    return extracted


284 285
def parse_forward(op_name: str, forward_config: str) -> Dict[str, Any]:
    # op_name (const Tensor& input, ... , int attr, ...) -> Tensor(out)
286
    result = re.search(
287
        r"(?P<op>[a-z][a-z0-9_]+)\s*(?P<args>\([^\)]+\))\s*->\s*(?P<outputs>.+)",
288 289
        forward_config,
    )
290 291
    op = result.group("op")
    outputs = parse_outputs(op_name, result.group("outputs"))
292 293
    outputs = extract_type_and_name(outputs)

294
    inputs, attrs = parse_input_and_attr(op_name, result.group("args"))
295 296 297
    inputs = extract_type_and_name(inputs)
    attrs = extract_type_and_name(attrs)
    forward_cfg = {
298
        "name": op,
299 300
        "inputs": inputs,
        "attrs": attrs,
301
        "outputs": outputs,
302 303 304 305
    }
    return forward_cfg


J
Jiabin Yang 已提交
306 307 308 309 310
def parse_composite(
    op_name: str,
    composite_config: str,
) -> Dict[str, Any]:
    # composite_config: func(args1, args2,.....)
311 312 313 314 315 316 317
    result = re.search(
        r"(?P<func_name>[a-z][a-z0-9_]+)\s*\((?P<func_args>[^\)]+)\)",
        composite_config,
    )

    func_name = result.group("func_name")
    func_args = result.group("func_args")
J
Jiabin Yang 已提交
318 319 320 321 322 323 324

    composite_dict = {}
    composite_dict["func_name"] = func_name
    composite_dict["func_args"] = func_args
    return composite_dict


325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
def check_op_config(op_entry, op_name):
    base_key_set = (
        'op',
        'backward_op',
        'forward',
        'args',
        'output',
        'infer_meta',
        'kernel',
        'backward',
        'invoke',
        'inplace',
        'view',
        'optional',
        'intermediate',
        'no_need_buffer',
        'data_transform',
J
Jiabin Yang 已提交
342
        'composite',
343 344
    )
    infer_meta_key_set = ('func', 'param')
345 346 347 348 349 350 351 352
    kernel_key_set = (
        'func',
        'param',
        'data_type',
        'layout',
        'backend',
        'force_backend',
    )
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    for key in op_entry.keys():
        assert (
            key in base_key_set
        ), f"Op ({op_name}) : invalid key ({key}) in Yaml."

    if 'infer_meta' in op_entry:
        for infer_meta_key in op_entry['infer_meta'].keys():
            assert (
                infer_meta_key in infer_meta_key_set
            ), f"Op ({op_name}) : invalid key (infer_meta.{infer_meta_key}) in Yaml."

    if 'kernel' in op_entry:
        for kernel_key in op_entry['kernel'].keys():
            assert (
                kernel_key in kernel_key_set
            ), f"Op ({op_name}) : invalid key (kernel.{kernel_key}) in Yaml."


371 372 373 374
def parse_op_entry(op_entry: Dict[str, Any], name_field="op"):
    op_name = op_entry[name_field]
    inputs, attrs = parse_input_and_attr(op_name, op_entry["args"])
    outputs = parse_outputs(op_name, op_entry["output"])
J
Jiabin Yang 已提交
375 376
    if "composite" in op_entry:
        composite_dict = parse_composite(op_name, op_entry["composite"])
377
    check_op_config(op_entry, op_name)
378 379 380 381 382 383
    # validate default value of DataType and DataLayout
    for attr in attrs:
        if "default_value" in attr:
            typename = attr["typename"]
            default_value = attr["default_value"]
            if typename == "DataType":
384 385
                assert (
                    "DataType" in default_value
386
                ), f"invalid DataType default value in {op_name}"
387
                # remove namespace
388
                default_value = default_value[default_value.find("DataType") :]
389 390
                attr["default_value"] = default_value
            elif typename == "DataLayout":
391 392
                assert (
                    "DataLayout" in default_value
393
                ), f"invalid DataLayout default value in {op_name}"
394 395 396
                default_value = default_value[
                    default_value.find("DataLayout") :
                ]
397 398 399 400 401 402 403 404 405
                attr["default_value"] = default_value

    input_names = [item["name"] for item in inputs]
    attr_names = [item["name"] for item in attrs]
    output_names = [item["name"] for item in outputs]

    # add optional tag for every input
    for input in inputs:
        input["optional"] = False
406 407 408
    for output in outputs:
        output["optional"] = False

409 410
    if "optional" in op_entry:
        optional_args = parse_plain_list(op_entry["optional"])
411
        for name in optional_args:
412
            assert (
413 414
                name in input_names or name in output_names
            ), f"{op_name} has an optional tensor: '{name}' which is not in input or output."
415 416 417
        for input in inputs:
            if input["name"] in optional_args:
                input["optional"] = True
418 419 420
        for output in outputs:
            if output["name"] in optional_args:
                output["optional"] = True
421 422 423 424

    # add intermediate tag for every output
    for output in outputs:
        output["intermediate"] = False
425 426
    if "intermediate" in op_entry:
        intermediate_outs = parse_plain_list(op_entry["intermediate"])
427
        for name in intermediate_outs:
428 429
            assert (
                name in output_names
430
            ), f"{op_name} has an intermediate output: '{name}' which is not an output."
431 432 433 434 435 436 437
        for output in outputs:
            if output["name"] in intermediate_outs:
                output["intermediate"] = True

    # add no_need_buffer for every input
    for input in inputs:
        input["no_need_buffer"] = False
438 439
    if "no_need_buffer" in op_entry:
        no_buffer_args = parse_plain_list(op_entry["no_need_buffer"])
440
        for name in no_buffer_args:
441 442
            assert (
                name in input_names
443
            ), f"{op_name} has an no buffer input: '{name}' which is not an input."
444 445 446 447 448 449
        for input in inputs:
            if input["name"] in no_buffer_args:
                input["no_need_buffer"] = True
    else:
        no_buffer_args = None

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
    # add data_transform tag for every input.
    # the format is {data_transform : {skip_transform : [x, z], support_trans_dtype : y}}
    for input in inputs:
        input["data_transform"] = {}
    if "data_transform" in op_entry:
        skip_trans_args = []
        support_trans_args = []
        data_trans = op_entry["data_transform"]
        if "skip_transform" in data_trans:
            skip_trans_args = parse_plain_list(data_trans["skip_transform"])
            for name in skip_trans_args:
                assert (
                    name in input_names
                ), f"{op_name} has an skip_transform input: '{name}' which is not an input."
            data_trans["skip_transform"] = skip_trans_args
        if "support_trans_dtype" in data_trans:
            support_trans_args = parse_plain_list(
                data_trans["support_trans_dtype"]
            )
            for name in support_trans_args:
                assert (
                    name in input_names
                ), f"{op_name} has an support_trans_dtype input: '{name}' which is not an input."
            data_trans["support_trans_dtype"] = support_trans_args
        for input in inputs:
            if input["name"] in skip_trans_args:
                input["data_transform"]["skip_trans_args"] = True
            else:
                input["data_transform"]["skip_trans_args"] = False
            if input["name"] in support_trans_args:
                input["data_transform"]["support_trans_dtype"] = True
            else:
                input["data_transform"]["support_trans_dtype"] = False
    else:
        data_trans = None
485

486 487
    op = {
        "name": op_name,
488 489 490
        "inputs": inputs,
        "attrs": attrs,
        "outputs": outputs,
491
        "no_need_buffer": no_buffer_args,
492
        "data_transform": data_trans,
493 494
    }

495 496
    # invokes another op ?
    is_base_op = "invoke" not in op_entry
497

498
    if is_base_op:
499
        # kernel
500
        kernel = parse_kernel(op_name, op_entry["kernel"])
501 502 503 504
        if kernel["param"] is None:
            kernel["param"] = input_names + attr_names

        # infer meta
505
        infer_meta = parse_infer_meta(op_entry["infer_meta"])
506 507 508 509
        if infer_meta["param"] is None:
            infer_meta["param"] = copy(kernel["param"])

        # inplace
510 511
        if "inplace" in op_entry:
            inplace_pairs = parse_inplace(op_name, op_entry["inplace"])
512 513
        else:
            inplace_pairs = None
514
        op.update(
515 516 517 518 519 520
            {
                "infer_meta": infer_meta,
                "kernel": kernel,
                "inplace": inplace_pairs,
            }
        )
521 522
    else:
        # invoke
523 524
        invoke = parse_invoke(op_name, op_entry["invoke"])
        op["invoke"] = invoke
525

J
Jiabin Yang 已提交
526 527 528 529
    # has composite ?
    if "composite" in op_entry:
        op.update({"composite": composite_dict})

530
    # backward
531 532
    if "backward" in op_entry:
        backward = op_entry["backward"]
533 534
    else:
        backward = None
535
    op["backward"] = backward
536

537 538 539 540 541
    # forward for backward_ops
    is_backward_op = name_field == "backward_op"
    if is_backward_op:
        if "forward" in op_entry:
            forward = parse_forward(op_name, op_entry["forward"])
542
            # validate_fb
543
            validate_backward_inputs(
544
                op_name, forward["inputs"], forward["outputs"], inputs
545
            )
546 547
            validate_backward_attrs(op_name, forward["attrs"], attrs)
            validate_backward_outputs(op_name, forward["inputs"], outputs)
548 549
        else:
            forward = None
550 551
        op["forward"] = forward
    return op
552 553


554
def validate_backward_attrs(op, forward_attrs, backward_attrs):
555 556 557
    if len(forward_attrs) >= len(backward_attrs):
        return
    num_exceptional_attrs = len(backward_attrs) - len(forward_attrs)
558 559
    # this is a not-that-clean trick to allow backward op to has more attrs
    # than the forward op , as long as they all have default value
560
    for i in range(-num_exceptional_attrs, 0):
561 562
        assert (
            "default_value" in backward_attrs[i]
563
        ), f"{op } has exceptional attr without default value"
564 565


566
def validate_backward_inputs(
567
    op, forward_inputs, forward_outputs, backward_inputs
568
):
569 570 571 572 573
    foward_input_names = [item["name"] for item in forward_inputs]
    forward_output_names = [item["name"] for item in forward_outputs]
    backward_input_names = [item["name"] for item in backward_inputs]

    assert len(backward_input_names) <= len(foward_input_names) + 2 * len(
574
        forward_output_names
575
    ), f"{op } has too many inputs."
576 577


578
def validate_backward_outputs(op, forward_inputs, backward_outputs):
579
    assert len(backward_outputs) <= len(
580
        forward_inputs
581
    ), f"{op } has too many outputs"
582 583


584 585 586 587
def cross_validate(ops):
    for name, op in ops.items():
        if "forward" in op:
            fw_call = op["forward"]
588
            fw_name = fw_call["name"]
589
            if fw_name not in ops:
590
                print(
591
                    f"Something Wrong here, this backward op ({name})'s forward op ({fw_name}) does not exist."
592 593
                )
            else:
594 595
                fw_op = ops[fw_name]
                if "backward" not in fw_op or fw_op["backward"] is None:
596
                    print(
597
                        f"Something Wrong here, {name}'s forward op ({fw_name}) does not claim {name} as its backward."
598 599
                    )
                else:
600
                    assert (
601
                        fw_op["backward"] == name
602
                    ), f"{name}: backward and forward name mismatch"
603 604

                assert len(fw_call["inputs"]) <= len(
605 606 607
                    fw_op["inputs"]
                ), f"{name}: forward call has more inputs than the op "
                for (input, input_) in zip(fw_call["inputs"], fw_op["inputs"]):
608 609 610
                    assert (
                        input["typename"] == input_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"
611 612

                assert len(fw_call["attrs"]) <= len(
613 614 615
                    fw_op["attrs"]
                ), f"{name}: forward call has more attrs than the op "
                for (attr, attr_) in zip(fw_call["attrs"], fw_op["attrs"]):
616 617 618 619 620 621
                    if attr["typename"] == "Scalar":
                        # special case for Scalar, fw_call can omit the type
                        assert re.match(
                            r"Scalar(\(\w+\))*", attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
                    else:
622 623 624
                        assert (
                            attr["typename"] == attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
625 626

                assert len(fw_call["outputs"]) == len(
627 628
                    fw_op["outputs"]
                ), f"{name}: forward call has more outputs than the op "
629
                for (output, output_) in zip(
630
                    fw_call["outputs"], fw_op["outputs"]
631 632 633 634
                ):
                    assert (
                        output["typename"] == output_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"