parse_utils.py 18.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from copy import copy
17 18
from typing import Any, Dict, List, Tuple

19
from tests import is_attr, is_input, is_output, is_vec
20
from type_mapping import opmaker_attr_types_map
21 22 23 24 25 26 27 28 29 30 31 32


def to_named_dict(items: List[Dict]) -> Dict[str, Dict]:
    named_dict = {}
    for item in items:
        if "name" not in item:
            raise KeyError(f"name not in {item}")
        name = item["name"]
        named_dict[name] = item
    return named_dict


33
def parse_arg(op_name: str, s: str) -> Dict[str, str]:
34 35 36 37 38
    """parse an argument in following formats:
    1. typename name
    2. typename name = default_value
    """
    typename, rest = [item.strip() for item in s.split(" ", 1)]
39 40
    assert (
        len(typename) > 0
41
    ), f"The arg typename should not be empty. Please check the args of {op_name} in yaml."
42

43 44
    assert (
        rest.count("=") <= 1
45
    ), f"There is more than 1 = in an arg in {op_name}"
46 47
    if rest.count("=") == 1:
        name, default_value = [item.strip() for item in rest.split("=", 1)]
48 49
        assert (
            len(name) > 0
50
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
51 52
        assert (
            len(default_value) > 0
53
        ), f"The default value should not be empty. Please check the args of {op_name} in yaml."
54 55 56
        return {
            "typename": typename,
            "name": name,
57
            "default_value": default_value,
58 59 60
        }
    else:
        name = rest.strip()
61 62
        assert (
            len(name) > 0
63
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
64 65 66
        return {"typename": typename, "name": name}


67
def parse_input_and_attr(
68
    op_name: str, arguments: str
69
) -> Tuple[List, List, Dict, Dict]:
70
    args_str = arguments.strip()
71 72
    assert args_str.startswith('(') and args_str.endswith(')'), (
        f"Args declaration should start with '(' and end with ')', "
73
        f"please check the args of {op_name} in yaml."
74
    )
75 76 77 78 79 80 81 82 83
    args_str = args_str[1:-1]
    args = parse_plain_list(args_str)

    inputs = []
    attrs = []

    met_attr_with_default_value = False

    for arg in args:
84
        item = parse_arg(op_name, arg)
85 86 87
        typename = item["typename"]
        name = item["name"]
        if is_input(typename):
88 89
            assert len(attrs) == 0, (
                f"The input Tensor should appear before attributes. "
90
                f"please check the position of {op_name}:input({name}) "
91 92
                f"in yaml."
            )
93 94 95
            inputs.append(item)
        elif is_attr(typename):
            if met_attr_with_default_value:
96 97
                assert (
                    "default_value" in item
98
                ), f"{op_name}: Arguments with default value should not precede those without default value"
99 100
            elif "default_value" in item:
                met_attr_with_default_value = True
101 102
            if typename.startswith('Scalar') or typename == 'IntArray':
                item['data_type'] = opmaker_attr_types_map[typename]
103 104
            attrs.append(item)
        else:
105
            raise KeyError(f"{op_name}: Invalid argument type {typename}.")
106 107 108
    return inputs, attrs


109
def parse_output(op_name: str, s: str) -> Dict[str, str]:
110 111 112
    """parse an output, typename or typename(name)."""
    match = re.search(
        r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
113 114
        s,
    )
115 116 117 118 119 120 121
    typename = match.group("out_type")
    name = match.group("name")
    size_expr = match.group("expr")

    name = name[1:-1] if name is not None else 'out'
    size_expr = size_expr[1:-1] if size_expr is not None else None

122
    assert is_output(typename), (
123
        f"Invalid output type: {typename} in op : {op_name}."
124 125
        f"Supported types are Tensor and Tensor[]"
    )
126
    if size_expr is not None:
127
        assert is_vec(typename), (
128
            f"Invalid output size: output {name} in op : {op_name} is "
129 130
            f"not a vector but has size expr"
        )
131 132 133 134 135
        return {"typename": typename, "name": name, "size": size_expr}
    else:
        return {"typename": typename, "name": name}


136
def parse_outputs(op_name: str, outputs: str) -> List[Dict]:
137 138 139
    outputs = parse_plain_list(outputs, sep=",")
    output_items = []
    for output in outputs:
140
        output_items.append(parse_output(op_name, output))
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    return output_items


def parse_infer_meta(infer_meta: Dict[str, Any]) -> Dict[str, Any]:
    infer_meta = copy(infer_meta)  # to prevent mutating the input
    if "param" not in infer_meta:
        infer_meta["param"] = None
    return infer_meta


def parse_candidates(s: str) -> Dict[str, Any]:
    "parse candidates joined by either '>'(ordered) or ','(unordered)"
    delimiter = ">" if ">" in s else ","
    ordered = delimiter == ">"
    candidates = parse_plain_list(s, delimiter)
    return {"ordered": ordered, "candidates": candidates}


def parse_plain_list(s: str, sep=",") -> List[str]:
    items = [item.strip() for item in s.strip().split(sep)]
    return items


164
def parse_kernel(op_name: str, kernel_config: Dict[str, Any]) -> Dict[str, Any]:
165 166 167 168 169 170
    # kernel :
    #    func : [], Kernel functions (example: scale, scale_sr)
    #    param : [], Input params of kernel
    #    backend : str, the names of param to choose the kernel backend, default is None
    #    layout : str, the names of param to choose the kernel layout, default is None
    #    data_type : str, the names of param to choose the kernel data_type, default is None
171
    #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
172
    kernel = {
173
        'func': [],  # up to 2 function names
174 175 176
        'param': None,
        'backend': None,
        'layout': None,
177
        'data_type': None,
178
        'dispatch': {},
179 180 181 182 183 184 185 186 187 188 189 190
    }
    if 'param' in kernel_config:
        kernel['param'] = kernel_config['param']

    if 'backend' in kernel_config:
        kernel['backend'] = parse_candidates(kernel_config["backend"])

    if 'layout' in kernel_config:
        kernel['layout'] = parse_candidates(kernel_config["layout"])

    if 'data_type' in kernel_config:
        kernel['data_type'] = parse_candidates(kernel_config["data_type"])
191 192

    kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
193 194
        kernel_config['func']
    )
195 196 197 198 199 200 201 202 203 204 205

    def parse_kernel_in_out_type(in_out_str):
        if len(in_out_str) == 0:
            return None
        tmp_in_out_list = in_out_str[1:-1].split('->')
        inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
        outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]

        # check the tensor type
        for item in inputs:
            assert item in [
206 207 208 209
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
210
            ], f"{op_name} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
211 212
        for item in outputs:
            assert item in [
213 214 215 216
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
217
            ], f"{op_name} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
218 219 220 221 222 223

        return (inputs, outputs)

    for func_item in kernel_funcs:
        kernel['func'].append(func_item[0])
        kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
224 225
            func_item[1]
        )
226

227 228 229
    return kernel


230
def parse_inplace(op_name: str, inplace_cfg: str) -> Dict[str, str]:
231 232 233 234 235 236 237 238 239
    inplace_map = {}
    inplace_cfg = inplace_cfg.lstrip("(").rstrip(")")
    pairs = parse_plain_list(inplace_cfg)
    for pair in pairs:
        in_name, out_name = parse_plain_list(pair, sep="->")
        inplace_map[out_name] = in_name
    return inplace_map


240
def parse_invoke(op_name: str, invoke_config: str) -> Dict[str, Any]:
241 242 243 244 245 246 247 248 249
    invoke_config = invoke_config.strip()
    func, rest = invoke_config.split("(", 1)
    func = func.strip()
    args = rest.rstrip(")").strip()
    invocation = {"func": func, "args": args}
    return invocation


def extract_type_and_name(records: List[Dict]) -> List[Dict]:
250
    """extract type and name from forward call, it is simpler than forward op ."""
251 252 253
    extracted = [
        {"name": item["name"], "typename": item["typename"]} for item in records
    ]
254 255 256
    return extracted


257 258
def parse_forward(op_name: str, forward_config: str) -> Dict[str, Any]:
    # op_name (const Tensor& input, ... , int attr, ...) -> Tensor(out)
259
    result = re.search(
260
        r"(?P<op>[a-z][a-z0-9_]+)\s*(?P<args>\([^\)]+\))\s*->\s*(?P<outputs>.+)",
261 262
        forward_config,
    )
263 264
    op = result.group("op")
    outputs = parse_outputs(op_name, result.group("outputs"))
265 266
    outputs = extract_type_and_name(outputs)

267
    inputs, attrs = parse_input_and_attr(op_name, result.group("args"))
268 269 270
    inputs = extract_type_and_name(inputs)
    attrs = extract_type_and_name(attrs)
    forward_cfg = {
271
        "name": op,
272 273
        "inputs": inputs,
        "attrs": attrs,
274
        "outputs": outputs,
275 276 277 278
    }
    return forward_cfg


279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
def check_op_config(op_entry, op_name):
    base_key_set = (
        'op',
        'backward_op',
        'forward',
        'args',
        'output',
        'infer_meta',
        'kernel',
        'backward',
        'invoke',
        'inplace',
        'view',
        'optional',
        'intermediate',
        'no_need_buffer',
        'data_transform',
    )
    infer_meta_key_set = ('func', 'param')
    kernel_key_set = ('func', 'param', 'data_type', 'layout', 'backend')
    for key in op_entry.keys():
        assert (
            key in base_key_set
        ), f"Op ({op_name}) : invalid key ({key}) in Yaml."

    if 'infer_meta' in op_entry:
        for infer_meta_key in op_entry['infer_meta'].keys():
            assert (
                infer_meta_key in infer_meta_key_set
            ), f"Op ({op_name}) : invalid key (infer_meta.{infer_meta_key}) in Yaml."

    if 'kernel' in op_entry:
        for kernel_key in op_entry['kernel'].keys():
            assert (
                kernel_key in kernel_key_set
            ), f"Op ({op_name}) : invalid key (kernel.{kernel_key}) in Yaml."


317 318 319 320
def parse_op_entry(op_entry: Dict[str, Any], name_field="op"):
    op_name = op_entry[name_field]
    inputs, attrs = parse_input_and_attr(op_name, op_entry["args"])
    outputs = parse_outputs(op_name, op_entry["output"])
321

322 323
    check_op_config(op_entry, op_name)

324 325 326 327 328 329
    # validate default value of DataType and DataLayout
    for attr in attrs:
        if "default_value" in attr:
            typename = attr["typename"]
            default_value = attr["default_value"]
            if typename == "DataType":
330 331
                assert (
                    "DataType" in default_value
332
                ), f"invalid DataType default value in {op_name}"
333
                # remove namespace
334
                default_value = default_value[default_value.find("DataType") :]
335 336
                attr["default_value"] = default_value
            elif typename == "DataLayout":
337 338
                assert (
                    "DataLayout" in default_value
339
                ), f"invalid DataLayout default value in {op_name}"
340 341 342
                default_value = default_value[
                    default_value.find("DataLayout") :
                ]
343 344 345 346 347 348 349 350 351
                attr["default_value"] = default_value

    input_names = [item["name"] for item in inputs]
    attr_names = [item["name"] for item in attrs]
    output_names = [item["name"] for item in outputs]

    # add optional tag for every input
    for input in inputs:
        input["optional"] = False
352 353
    if "optional" in op_entry:
        optional_args = parse_plain_list(op_entry["optional"])
354
        for name in optional_args:
355 356
            assert (
                name in input_names
357
            ), f"{op_name} has an optional input: '{name}' which is not an input."
358 359 360 361 362 363 364
        for input in inputs:
            if input["name"] in optional_args:
                input["optional"] = True

    # add intermediate tag for every output
    for output in outputs:
        output["intermediate"] = False
365 366
    if "intermediate" in op_entry:
        intermediate_outs = parse_plain_list(op_entry["intermediate"])
367
        for name in intermediate_outs:
368 369
            assert (
                name in output_names
370
            ), f"{op_name} has an intermediate output: '{name}' which is not an output."
371 372 373 374 375 376 377
        for output in outputs:
            if output["name"] in intermediate_outs:
                output["intermediate"] = True

    # add no_need_buffer for every input
    for input in inputs:
        input["no_need_buffer"] = False
378 379
    if "no_need_buffer" in op_entry:
        no_buffer_args = parse_plain_list(op_entry["no_need_buffer"])
380
        for name in no_buffer_args:
381 382
            assert (
                name in input_names
383
            ), f"{op_name} has an no buffer input: '{name}' which is not an input."
384 385 386 387 388 389 390 391
        for input in inputs:
            if input["name"] in no_buffer_args:
                input["no_need_buffer"] = True
    else:
        no_buffer_args = None

    # TODO(chenfeiyu): data_transform

392 393
    op = {
        "name": op_name,
394 395 396
        "inputs": inputs,
        "attrs": attrs,
        "outputs": outputs,
397
        "no_need_buffer": no_buffer_args,
398 399
    }

400 401
    # invokes another op ?
    is_base_op = "invoke" not in op_entry
402

403
    if is_base_op:
404
        # kernel
405
        kernel = parse_kernel(op_name, op_entry["kernel"])
406 407 408 409
        if kernel["param"] is None:
            kernel["param"] = input_names + attr_names

        # infer meta
410
        infer_meta = parse_infer_meta(op_entry["infer_meta"])
411 412 413 414
        if infer_meta["param"] is None:
            infer_meta["param"] = copy(kernel["param"])

        # inplace
415 416
        if "inplace" in op_entry:
            inplace_pairs = parse_inplace(op_name, op_entry["inplace"])
417 418
        else:
            inplace_pairs = None
419
        op.update(
420 421 422 423 424 425
            {
                "infer_meta": infer_meta,
                "kernel": kernel,
                "inplace": inplace_pairs,
            }
        )
426 427
    else:
        # invoke
428 429
        invoke = parse_invoke(op_name, op_entry["invoke"])
        op["invoke"] = invoke
430 431

    # backward
432 433
    if "backward" in op_entry:
        backward = op_entry["backward"]
434 435
    else:
        backward = None
436
    op["backward"] = backward
437

438 439 440 441 442
    # forward for backward_ops
    is_backward_op = name_field == "backward_op"
    if is_backward_op:
        if "forward" in op_entry:
            forward = parse_forward(op_name, op_entry["forward"])
443
            # validate_fb
444
            validate_backward_inputs(
445
                op_name, forward["inputs"], forward["outputs"], inputs
446
            )
447 448
            validate_backward_attrs(op_name, forward["attrs"], attrs)
            validate_backward_outputs(op_name, forward["inputs"], outputs)
449 450
        else:
            forward = None
451 452
        op["forward"] = forward
    return op
453 454


455
def validate_backward_attrs(op, forward_attrs, backward_attrs):
456 457 458
    if len(forward_attrs) >= len(backward_attrs):
        return
    num_exceptional_attrs = len(backward_attrs) - len(forward_attrs)
459 460
    # this is a not-that-clean trick to allow backward op to has more attrs
    # than the forward op , as long as they all have default value
461
    for i in range(-num_exceptional_attrs, 0):
462 463
        assert (
            "default_value" in backward_attrs[i]
464
        ), f"{op } has exceptional attr without default value"
465 466


467
def validate_backward_inputs(
468
    op, forward_inputs, forward_outputs, backward_inputs
469
):
470 471 472 473 474
    foward_input_names = [item["name"] for item in forward_inputs]
    forward_output_names = [item["name"] for item in forward_outputs]
    backward_input_names = [item["name"] for item in backward_inputs]

    assert len(backward_input_names) <= len(foward_input_names) + 2 * len(
475
        forward_output_names
476
    ), f"{op } has too many inputs."
477 478


479
def validate_backward_outputs(op, forward_inputs, backward_outputs):
480
    assert len(backward_outputs) <= len(
481
        forward_inputs
482
    ), f"{op } has too many outputs"
483 484


485 486 487 488
def cross_validate(ops):
    for name, op in ops.items():
        if "forward" in op:
            fw_call = op["forward"]
489
            fw_name = fw_call["name"]
490
            if fw_name not in ops:
491
                print(
492
                    f"Something Wrong here, this backward op ({name})'s forward op ({fw_name}) does not exist."
493 494
                )
            else:
495 496
                fw_op = ops[fw_name]
                if "backward" not in fw_op or fw_op["backward"] is None:
497
                    print(
498
                        f"Something Wrong here, {name}'s forward op ({fw_name}) does not claim {name} as its backward."
499 500
                    )
                else:
501
                    assert (
502
                        fw_op["backward"] == name
503
                    ), f"{name}: backward and forward name mismatch"
504 505

                assert len(fw_call["inputs"]) <= len(
506 507 508
                    fw_op["inputs"]
                ), f"{name}: forward call has more inputs than the op "
                for (input, input_) in zip(fw_call["inputs"], fw_op["inputs"]):
509 510 511
                    assert (
                        input["typename"] == input_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"
512 513

                assert len(fw_call["attrs"]) <= len(
514 515 516
                    fw_op["attrs"]
                ), f"{name}: forward call has more attrs than the op "
                for (attr, attr_) in zip(fw_call["attrs"], fw_op["attrs"]):
517 518 519 520 521 522
                    if attr["typename"] == "Scalar":
                        # special case for Scalar, fw_call can omit the type
                        assert re.match(
                            r"Scalar(\(\w+\))*", attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
                    else:
523 524 525
                        assert (
                            attr["typename"] == attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
526 527

                assert len(fw_call["outputs"]) == len(
528 529
                    fw_op["outputs"]
                ), f"{name}: forward call has more outputs than the op "
530
                for (output, output_) in zip(
531
                    fw_call["outputs"], fw_op["outputs"]
532 533 534 535
                ):
                    assert (
                        output["typename"] == output_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"