parse_utils.py 22.1 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from copy import copy
17 18
from typing import Any, Dict, List, Tuple

19
from tests import is_attr, is_input, is_output, is_vec
20
from type_mapping import opmaker_attr_types_map
21 22 23 24 25 26 27 28 29 30 31 32


def to_named_dict(items: List[Dict]) -> Dict[str, Dict]:
    named_dict = {}
    for item in items:
        if "name" not in item:
            raise KeyError(f"name not in {item}")
        name = item["name"]
        named_dict[name] = item
    return named_dict


33
def parse_arg(op_name: str, s: str) -> Dict[str, str]:
34 35 36 37 38
    """parse an argument in following formats:
    1. typename name
    2. typename name = default_value
    """
    typename, rest = [item.strip() for item in s.split(" ", 1)]
39 40
    assert (
        len(typename) > 0
41
    ), f"The arg typename should not be empty. Please check the args of {op_name} in yaml."
42

43 44
    assert (
        rest.count("=") <= 1
45
    ), f"There is more than 1 = in an arg in {op_name}"
46 47
    if rest.count("=") == 1:
        name, default_value = [item.strip() for item in rest.split("=", 1)]
48 49
        assert (
            len(name) > 0
50
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
51 52
        assert (
            len(default_value) > 0
53
        ), f"The default value should not be empty. Please check the args of {op_name} in yaml."
54 55 56
        return {
            "typename": typename,
            "name": name,
57
            "default_value": default_value,
58 59 60
        }
    else:
        name = rest.strip()
61 62
        assert (
            len(name) > 0
63
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
64 65 66
        return {"typename": typename, "name": name}


67
def parse_input_and_attr(
68
    op_name: str, arguments: str
69
) -> Tuple[List, List, Dict, Dict]:
70
    args_str = arguments.strip()
71 72
    assert args_str.startswith('(') and args_str.endswith(')'), (
        f"Args declaration should start with '(' and end with ')', "
73
        f"please check the args of {op_name} in yaml."
74
    )
75 76 77 78 79 80 81 82 83
    args_str = args_str[1:-1]
    args = parse_plain_list(args_str)

    inputs = []
    attrs = []

    met_attr_with_default_value = False

    for arg in args:
84
        item = parse_arg(op_name, arg)
85 86 87
        typename = item["typename"]
        name = item["name"]
        if is_input(typename):
88 89
            assert len(attrs) == 0, (
                f"The input Tensor should appear before attributes. "
90
                f"please check the position of {op_name}:input({name}) "
91 92
                f"in yaml."
            )
93 94 95
            inputs.append(item)
        elif is_attr(typename):
            if met_attr_with_default_value:
96 97
                assert (
                    "default_value" in item
98
                ), f"{op_name}: Arguments with default value should not precede those without default value"
99 100
            elif "default_value" in item:
                met_attr_with_default_value = True
101 102
            if typename.startswith('Scalar') or typename == 'IntArray':
                item['data_type'] = opmaker_attr_types_map[typename]
103 104
            attrs.append(item)
        else:
105
            raise KeyError(f"{op_name}: Invalid argument type {typename}.")
106 107 108
    return inputs, attrs


109
def parse_output(op_name: str, s: str) -> Dict[str, str]:
110 111 112
    """parse an output, typename or typename(name)."""
    match = re.search(
        r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
113 114
        s,
    )
115 116 117 118 119 120 121
    typename = match.group("out_type")
    name = match.group("name")
    size_expr = match.group("expr")

    name = name[1:-1] if name is not None else 'out'
    size_expr = size_expr[1:-1] if size_expr is not None else None

122
    assert is_output(typename), (
123
        f"Invalid output type: {typename} in op : {op_name}."
124 125
        f"Supported types are Tensor and Tensor[]"
    )
126
    if size_expr is not None:
127
        assert is_vec(typename), (
128
            f"Invalid output size: output {name} in op : {op_name} is "
129 130
            f"not a vector but has size expr"
        )
131 132 133 134 135
        return {"typename": typename, "name": name, "size": size_expr}
    else:
        return {"typename": typename, "name": name}


136
def parse_outputs(op_name: str, outputs: str) -> List[Dict]:
137 138 139
    outputs = parse_plain_list(outputs, sep=",")
    output_items = []
    for output in outputs:
140
        output_items.append(parse_output(op_name, output))
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    return output_items


def parse_infer_meta(infer_meta: Dict[str, Any]) -> Dict[str, Any]:
    infer_meta = copy(infer_meta)  # to prevent mutating the input
    if "param" not in infer_meta:
        infer_meta["param"] = None
    return infer_meta


def parse_candidates(s: str) -> Dict[str, Any]:
    "parse candidates joined by either '>'(ordered) or ','(unordered)"
    delimiter = ">" if ">" in s else ","
    ordered = delimiter == ">"
    candidates = parse_plain_list(s, delimiter)
    return {"ordered": ordered, "candidates": candidates}


def parse_plain_list(s: str, sep=",") -> List[str]:
    items = [item.strip() for item in s.strip().split(sep)]
    return items


164
def parse_kernel(op_name: str, kernel_config: Dict[str, Any]) -> Dict[str, Any]:
165 166 167 168 169 170
    # kernel :
    #    func : [], Kernel functions (example: scale, scale_sr)
    #    param : [], Input params of kernel
    #    backend : str, the names of param to choose the kernel backend, default is None
    #    layout : str, the names of param to choose the kernel layout, default is None
    #    data_type : str, the names of param to choose the kernel data_type, default is None
171
    #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
172
    kernel = {
173
        'func': [],  # up to 2 function names
174 175 176
        'param': None,
        'backend': None,
        'layout': None,
177
        'data_type': None,
178
        'dispatch': {},
179
        'force_backend': None,
180 181 182 183
    }
    if 'param' in kernel_config:
        kernel['param'] = kernel_config['param']

184 185 186
    if 'force_backend' in kernel_config:
        kernel['force_backend'] = kernel_config["force_backend"]

187 188 189 190 191 192 193
    if 'backend' in kernel_config:
        kernel['backend'] = parse_candidates(kernel_config["backend"])

    if 'layout' in kernel_config:
        kernel['layout'] = parse_candidates(kernel_config["layout"])

    if 'data_type' in kernel_config:
194 195 196 197 198 199 200 201 202 203 204 205 206 207
        data_type_item = parse_candidates(kernel_config["data_type"])
        params_num = len(data_type_item['candidates'])
        data_type_item['to_complex_flag'] = [False] * params_num
        for i in range(params_num):
            complex_match_result = re.match(
                r"complex\((?P<param_name>\w+)\)",
                data_type_item['candidates'][i],
            )
            if complex_match_result:
                data_type_item['candidates'][i] = complex_match_result.group(
                    'param_name'
                )
                data_type_item['to_complex_flag'][i] = True
        kernel['data_type'] = data_type_item
208 209

    kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
210 211
        kernel_config['func']
    )
212 213 214 215 216 217 218 219 220 221 222

    def parse_kernel_in_out_type(in_out_str):
        if len(in_out_str) == 0:
            return None
        tmp_in_out_list = in_out_str[1:-1].split('->')
        inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
        outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]

        # check the tensor type
        for item in inputs:
            assert item in [
223 224 225 226
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
227
            ], f"{op_name} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
228 229
        for item in outputs:
            assert item in [
230 231 232 233
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
234
            ], f"{op_name} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
235 236 237 238 239 240

        return (inputs, outputs)

    for func_item in kernel_funcs:
        kernel['func'].append(func_item[0])
        kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
241 242
            func_item[1]
        )
243

244 245 246
    return kernel


247
def parse_inplace(op_name: str, inplace_cfg: str) -> Dict[str, str]:
248 249 250 251 252 253 254 255 256
    inplace_map = {}
    inplace_cfg = inplace_cfg.lstrip("(").rstrip(")")
    pairs = parse_plain_list(inplace_cfg)
    for pair in pairs:
        in_name, out_name = parse_plain_list(pair, sep="->")
        inplace_map[out_name] = in_name
    return inplace_map


257
def parse_invoke(op_name: str, invoke_config: str) -> Dict[str, Any]:
258 259 260 261 262 263 264 265 266
    invoke_config = invoke_config.strip()
    func, rest = invoke_config.split("(", 1)
    func = func.strip()
    args = rest.rstrip(")").strip()
    invocation = {"func": func, "args": args}
    return invocation


def extract_type_and_name(records: List[Dict]) -> List[Dict]:
267
    """extract type and name from forward call, it is simpler than forward op ."""
268 269 270
    extracted = [
        {"name": item["name"], "typename": item["typename"]} for item in records
    ]
271 272 273
    return extracted


274 275
def parse_forward(op_name: str, forward_config: str) -> Dict[str, Any]:
    # op_name (const Tensor& input, ... , int attr, ...) -> Tensor(out)
276
    result = re.search(
277
        r"(?P<op>[a-z][a-z0-9_]+)\s*(?P<args>\([^\)]+\))\s*->\s*(?P<outputs>.+)",
278 279
        forward_config,
    )
280 281
    op = result.group("op")
    outputs = parse_outputs(op_name, result.group("outputs"))
282 283
    outputs = extract_type_and_name(outputs)

284
    inputs, attrs = parse_input_and_attr(op_name, result.group("args"))
285 286 287
    inputs = extract_type_and_name(inputs)
    attrs = extract_type_and_name(attrs)
    forward_cfg = {
288
        "name": op,
289 290
        "inputs": inputs,
        "attrs": attrs,
291
        "outputs": outputs,
292 293 294 295
    }
    return forward_cfg


J
Jiabin Yang 已提交
296 297 298 299 300
def parse_composite(
    op_name: str,
    composite_config: str,
) -> Dict[str, Any]:
    # composite_config: func(args1, args2,.....)
301 302 303 304 305 306 307
    result = re.search(
        r"(?P<func_name>[a-z][a-z0-9_]+)\s*\((?P<func_args>[^\)]+)\)",
        composite_config,
    )

    func_name = result.group("func_name")
    func_args = result.group("func_args")
J
Jiabin Yang 已提交
308 309 310 311 312 313 314

    composite_dict = {}
    composite_dict["func_name"] = func_name
    composite_dict["func_args"] = func_args
    return composite_dict


315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
def check_op_config(op_entry, op_name):
    base_key_set = (
        'op',
        'backward_op',
        'forward',
        'args',
        'output',
        'infer_meta',
        'kernel',
        'backward',
        'invoke',
        'inplace',
        'view',
        'optional',
        'intermediate',
        'no_need_buffer',
        'data_transform',
J
Jiabin Yang 已提交
332
        'composite',
333 334
    )
    infer_meta_key_set = ('func', 'param')
335 336 337 338 339 340 341 342
    kernel_key_set = (
        'func',
        'param',
        'data_type',
        'layout',
        'backend',
        'force_backend',
    )
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    for key in op_entry.keys():
        assert (
            key in base_key_set
        ), f"Op ({op_name}) : invalid key ({key}) in Yaml."

    if 'infer_meta' in op_entry:
        for infer_meta_key in op_entry['infer_meta'].keys():
            assert (
                infer_meta_key in infer_meta_key_set
            ), f"Op ({op_name}) : invalid key (infer_meta.{infer_meta_key}) in Yaml."

    if 'kernel' in op_entry:
        for kernel_key in op_entry['kernel'].keys():
            assert (
                kernel_key in kernel_key_set
            ), f"Op ({op_name}) : invalid key (kernel.{kernel_key}) in Yaml."


361 362 363 364
def parse_op_entry(op_entry: Dict[str, Any], name_field="op"):
    op_name = op_entry[name_field]
    inputs, attrs = parse_input_and_attr(op_name, op_entry["args"])
    outputs = parse_outputs(op_name, op_entry["output"])
J
Jiabin Yang 已提交
365 366
    if "composite" in op_entry:
        composite_dict = parse_composite(op_name, op_entry["composite"])
367
    check_op_config(op_entry, op_name)
368 369 370 371 372 373
    # validate default value of DataType and DataLayout
    for attr in attrs:
        if "default_value" in attr:
            typename = attr["typename"]
            default_value = attr["default_value"]
            if typename == "DataType":
374 375
                assert (
                    "DataType" in default_value
376
                ), f"invalid DataType default value in {op_name}"
377
                # remove namespace
378
                default_value = default_value[default_value.find("DataType") :]
379 380
                attr["default_value"] = default_value
            elif typename == "DataLayout":
381 382
                assert (
                    "DataLayout" in default_value
383
                ), f"invalid DataLayout default value in {op_name}"
384 385 386
                default_value = default_value[
                    default_value.find("DataLayout") :
                ]
387 388 389 390 391 392 393 394 395
                attr["default_value"] = default_value

    input_names = [item["name"] for item in inputs]
    attr_names = [item["name"] for item in attrs]
    output_names = [item["name"] for item in outputs]

    # add optional tag for every input
    for input in inputs:
        input["optional"] = False
396 397 398
    for output in outputs:
        output["optional"] = False

399 400
    if "optional" in op_entry:
        optional_args = parse_plain_list(op_entry["optional"])
401
        for name in optional_args:
402
            assert (
403 404
                name in input_names or name in output_names
            ), f"{op_name} has an optional tensor: '{name}' which is not in input or output."
405 406 407
        for input in inputs:
            if input["name"] in optional_args:
                input["optional"] = True
408 409 410
        for output in outputs:
            if output["name"] in optional_args:
                output["optional"] = True
411 412 413 414

    # add intermediate tag for every output
    for output in outputs:
        output["intermediate"] = False
415 416
    if "intermediate" in op_entry:
        intermediate_outs = parse_plain_list(op_entry["intermediate"])
417
        for name in intermediate_outs:
418 419
            assert (
                name in output_names
420
            ), f"{op_name} has an intermediate output: '{name}' which is not an output."
421 422 423 424 425 426 427
        for output in outputs:
            if output["name"] in intermediate_outs:
                output["intermediate"] = True

    # add no_need_buffer for every input
    for input in inputs:
        input["no_need_buffer"] = False
428 429
    if "no_need_buffer" in op_entry:
        no_buffer_args = parse_plain_list(op_entry["no_need_buffer"])
430
        for name in no_buffer_args:
431 432
            assert (
                name in input_names
433
            ), f"{op_name} has an no buffer input: '{name}' which is not an input."
434 435 436 437 438 439
        for input in inputs:
            if input["name"] in no_buffer_args:
                input["no_need_buffer"] = True
    else:
        no_buffer_args = None

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    # add data_transform tag for every input.
    # the format is {data_transform : {skip_transform : [x, z], support_trans_dtype : y}}
    for input in inputs:
        input["data_transform"] = {}
    if "data_transform" in op_entry:
        skip_trans_args = []
        support_trans_args = []
        data_trans = op_entry["data_transform"]
        if "skip_transform" in data_trans:
            skip_trans_args = parse_plain_list(data_trans["skip_transform"])
            for name in skip_trans_args:
                assert (
                    name in input_names
                ), f"{op_name} has an skip_transform input: '{name}' which is not an input."
            data_trans["skip_transform"] = skip_trans_args
        if "support_trans_dtype" in data_trans:
            support_trans_args = parse_plain_list(
                data_trans["support_trans_dtype"]
            )
            for name in support_trans_args:
                assert (
                    name in input_names
                ), f"{op_name} has an support_trans_dtype input: '{name}' which is not an input."
            data_trans["support_trans_dtype"] = support_trans_args
        for input in inputs:
            if input["name"] in skip_trans_args:
                input["data_transform"]["skip_trans_args"] = True
            else:
                input["data_transform"]["skip_trans_args"] = False
            if input["name"] in support_trans_args:
                input["data_transform"]["support_trans_dtype"] = True
            else:
                input["data_transform"]["support_trans_dtype"] = False
    else:
        data_trans = None
475

476 477
    op = {
        "name": op_name,
478 479 480
        "inputs": inputs,
        "attrs": attrs,
        "outputs": outputs,
481
        "no_need_buffer": no_buffer_args,
482
        "data_transform": data_trans,
483 484
    }

485 486
    # invokes another op ?
    is_base_op = "invoke" not in op_entry
487

488
    if is_base_op:
489
        # kernel
490
        kernel = parse_kernel(op_name, op_entry["kernel"])
491 492 493 494
        if kernel["param"] is None:
            kernel["param"] = input_names + attr_names

        # infer meta
495
        infer_meta = parse_infer_meta(op_entry["infer_meta"])
496 497 498 499
        if infer_meta["param"] is None:
            infer_meta["param"] = copy(kernel["param"])

        # inplace
500 501
        if "inplace" in op_entry:
            inplace_pairs = parse_inplace(op_name, op_entry["inplace"])
502 503
        else:
            inplace_pairs = None
504
        op.update(
505 506 507 508 509 510
            {
                "infer_meta": infer_meta,
                "kernel": kernel,
                "inplace": inplace_pairs,
            }
        )
511 512
    else:
        # invoke
513 514
        invoke = parse_invoke(op_name, op_entry["invoke"])
        op["invoke"] = invoke
515

J
Jiabin Yang 已提交
516 517 518 519
    # has composite ?
    if "composite" in op_entry:
        op.update({"composite": composite_dict})

520
    # backward
521 522
    if "backward" in op_entry:
        backward = op_entry["backward"]
523 524
    else:
        backward = None
525
    op["backward"] = backward
526

527 528 529 530 531
    # forward for backward_ops
    is_backward_op = name_field == "backward_op"
    if is_backward_op:
        if "forward" in op_entry:
            forward = parse_forward(op_name, op_entry["forward"])
532
            # validate_fb
533
            validate_backward_inputs(
534
                op_name, forward["inputs"], forward["outputs"], inputs
535
            )
536 537
            validate_backward_attrs(op_name, forward["attrs"], attrs)
            validate_backward_outputs(op_name, forward["inputs"], outputs)
538 539
        else:
            forward = None
540 541
        op["forward"] = forward
    return op
542 543


544
def validate_backward_attrs(op, forward_attrs, backward_attrs):
545 546 547
    if len(forward_attrs) >= len(backward_attrs):
        return
    num_exceptional_attrs = len(backward_attrs) - len(forward_attrs)
548 549
    # this is a not-that-clean trick to allow backward op to has more attrs
    # than the forward op , as long as they all have default value
550
    for i in range(-num_exceptional_attrs, 0):
551 552
        assert (
            "default_value" in backward_attrs[i]
553
        ), f"{op } has exceptional attr without default value"
554 555


556
def validate_backward_inputs(
557
    op, forward_inputs, forward_outputs, backward_inputs
558
):
559 560 561 562 563
    foward_input_names = [item["name"] for item in forward_inputs]
    forward_output_names = [item["name"] for item in forward_outputs]
    backward_input_names = [item["name"] for item in backward_inputs]

    assert len(backward_input_names) <= len(foward_input_names) + 2 * len(
564
        forward_output_names
565
    ), f"{op } has too many inputs."
566 567


568
def validate_backward_outputs(op, forward_inputs, backward_outputs):
569
    assert len(backward_outputs) <= len(
570
        forward_inputs
571
    ), f"{op } has too many outputs"
572 573


574 575 576 577
def cross_validate(ops):
    for name, op in ops.items():
        if "forward" in op:
            fw_call = op["forward"]
578
            fw_name = fw_call["name"]
579
            if fw_name not in ops:
580
                print(
581
                    f"Something Wrong here, this backward op ({name})'s forward op ({fw_name}) does not exist."
582 583
                )
            else:
584 585
                fw_op = ops[fw_name]
                if "backward" not in fw_op or fw_op["backward"] is None:
586
                    print(
587
                        f"Something Wrong here, {name}'s forward op ({fw_name}) does not claim {name} as its backward."
588 589
                    )
                else:
590
                    assert (
591
                        fw_op["backward"] == name
592
                    ), f"{name}: backward and forward name mismatch"
593 594

                assert len(fw_call["inputs"]) <= len(
595 596 597
                    fw_op["inputs"]
                ), f"{name}: forward call has more inputs than the op "
                for (input, input_) in zip(fw_call["inputs"], fw_op["inputs"]):
598 599 600
                    assert (
                        input["typename"] == input_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"
601 602

                assert len(fw_call["attrs"]) <= len(
603 604 605
                    fw_op["attrs"]
                ), f"{name}: forward call has more attrs than the op "
                for (attr, attr_) in zip(fw_call["attrs"], fw_op["attrs"]):
606 607 608 609 610 611
                    if attr["typename"] == "Scalar":
                        # special case for Scalar, fw_call can omit the type
                        assert re.match(
                            r"Scalar(\(\w+\))*", attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
                    else:
612 613 614
                        assert (
                            attr["typename"] == attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
615 616

                assert len(fw_call["outputs"]) == len(
617 618
                    fw_op["outputs"]
                ), f"{name}: forward call has more outputs than the op "
619
                for (output, output_) in zip(
620
                    fw_call["outputs"], fw_op["outputs"]
621 622 623 624
                ):
                    assert (
                        output["typename"] == output_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"