parse_utils.py 21.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from copy import copy
17 18
from typing import Any, Dict, List, Tuple

19
from tests import is_attr, is_input, is_output, is_vec
20
from type_mapping import opmaker_attr_types_map
21 22 23 24 25 26 27 28 29 30 31 32


def to_named_dict(items: List[Dict]) -> Dict[str, Dict]:
    named_dict = {}
    for item in items:
        if "name" not in item:
            raise KeyError(f"name not in {item}")
        name = item["name"]
        named_dict[name] = item
    return named_dict


33
def parse_arg(op_name: str, s: str) -> Dict[str, str]:
34 35 36 37 38
    """parse an argument in following formats:
    1. typename name
    2. typename name = default_value
    """
    typename, rest = [item.strip() for item in s.split(" ", 1)]
39 40
    assert (
        len(typename) > 0
41
    ), f"The arg typename should not be empty. Please check the args of {op_name} in yaml."
42

43 44
    assert (
        rest.count("=") <= 1
45
    ), f"There is more than 1 = in an arg in {op_name}"
46 47
    if rest.count("=") == 1:
        name, default_value = [item.strip() for item in rest.split("=", 1)]
48 49
        assert (
            len(name) > 0
50
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
51 52
        assert (
            len(default_value) > 0
53
        ), f"The default value should not be empty. Please check the args of {op_name} in yaml."
54 55 56
        return {
            "typename": typename,
            "name": name,
57
            "default_value": default_value,
58 59 60
        }
    else:
        name = rest.strip()
61 62
        assert (
            len(name) > 0
63
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
64 65 66
        return {"typename": typename, "name": name}


67
def parse_input_and_attr(
68
    op_name: str, arguments: str
69
) -> Tuple[List, List, Dict, Dict]:
70
    args_str = arguments.strip()
71 72
    assert args_str.startswith('(') and args_str.endswith(')'), (
        f"Args declaration should start with '(' and end with ')', "
73
        f"please check the args of {op_name} in yaml."
74
    )
75 76 77 78 79 80 81 82 83
    args_str = args_str[1:-1]
    args = parse_plain_list(args_str)

    inputs = []
    attrs = []

    met_attr_with_default_value = False

    for arg in args:
84
        item = parse_arg(op_name, arg)
85 86 87
        typename = item["typename"]
        name = item["name"]
        if is_input(typename):
88 89
            assert len(attrs) == 0, (
                f"The input Tensor should appear before attributes. "
90
                f"please check the position of {op_name}:input({name}) "
91 92
                f"in yaml."
            )
93 94 95
            inputs.append(item)
        elif is_attr(typename):
            if met_attr_with_default_value:
96 97
                assert (
                    "default_value" in item
98
                ), f"{op_name}: Arguments with default value should not precede those without default value"
99 100
            elif "default_value" in item:
                met_attr_with_default_value = True
101 102
            if typename.startswith('Scalar') or typename == 'IntArray':
                item['data_type'] = opmaker_attr_types_map[typename]
103 104
            attrs.append(item)
        else:
105
            raise KeyError(f"{op_name}: Invalid argument type {typename}.")
106 107 108
    return inputs, attrs


109
def parse_output(op_name: str, s: str) -> Dict[str, str]:
110 111 112
    """parse an output, typename or typename(name)."""
    match = re.search(
        r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
113 114
        s,
    )
115 116 117 118 119 120 121
    typename = match.group("out_type")
    name = match.group("name")
    size_expr = match.group("expr")

    name = name[1:-1] if name is not None else 'out'
    size_expr = size_expr[1:-1] if size_expr is not None else None

122
    assert is_output(typename), (
123
        f"Invalid output type: {typename} in op : {op_name}."
124 125
        f"Supported types are Tensor and Tensor[]"
    )
126
    if size_expr is not None:
127
        assert is_vec(typename), (
128
            f"Invalid output size: output {name} in op : {op_name} is "
129 130
            f"not a vector but has size expr"
        )
131 132 133 134 135
        return {"typename": typename, "name": name, "size": size_expr}
    else:
        return {"typename": typename, "name": name}


136
def parse_outputs(op_name: str, outputs: str) -> List[Dict]:
137 138 139
    outputs = parse_plain_list(outputs, sep=",")
    output_items = []
    for output in outputs:
140
        output_items.append(parse_output(op_name, output))
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    return output_items


def parse_infer_meta(infer_meta: Dict[str, Any]) -> Dict[str, Any]:
    infer_meta = copy(infer_meta)  # to prevent mutating the input
    if "param" not in infer_meta:
        infer_meta["param"] = None
    return infer_meta


def parse_candidates(s: str) -> Dict[str, Any]:
    "parse candidates joined by either '>'(ordered) or ','(unordered)"
    delimiter = ">" if ">" in s else ","
    ordered = delimiter == ">"
    candidates = parse_plain_list(s, delimiter)
    return {"ordered": ordered, "candidates": candidates}


def parse_plain_list(s: str, sep=",") -> List[str]:
    items = [item.strip() for item in s.strip().split(sep)]
    return items


164
def parse_kernel(op_name: str, kernel_config: Dict[str, Any]) -> Dict[str, Any]:
165 166 167 168 169 170
    # kernel :
    #    func : [], Kernel functions (example: scale, scale_sr)
    #    param : [], Input params of kernel
    #    backend : str, the names of param to choose the kernel backend, default is None
    #    layout : str, the names of param to choose the kernel layout, default is None
    #    data_type : str, the names of param to choose the kernel data_type, default is None
171
    #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
172
    kernel = {
173
        'func': [],  # up to 2 function names
174 175 176
        'param': None,
        'backend': None,
        'layout': None,
177
        'data_type': None,
178
        'dispatch': {},
179 180 181 182 183 184 185 186 187 188 189
    }
    if 'param' in kernel_config:
        kernel['param'] = kernel_config['param']

    if 'backend' in kernel_config:
        kernel['backend'] = parse_candidates(kernel_config["backend"])

    if 'layout' in kernel_config:
        kernel['layout'] = parse_candidates(kernel_config["layout"])

    if 'data_type' in kernel_config:
190 191 192 193 194 195 196 197 198 199 200 201 202 203
        data_type_item = parse_candidates(kernel_config["data_type"])
        params_num = len(data_type_item['candidates'])
        data_type_item['to_complex_flag'] = [False] * params_num
        for i in range(params_num):
            complex_match_result = re.match(
                r"complex\((?P<param_name>\w+)\)",
                data_type_item['candidates'][i],
            )
            if complex_match_result:
                data_type_item['candidates'][i] = complex_match_result.group(
                    'param_name'
                )
                data_type_item['to_complex_flag'][i] = True
        kernel['data_type'] = data_type_item
204 205

    kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
206 207
        kernel_config['func']
    )
208 209 210 211 212 213 214 215 216 217 218

    def parse_kernel_in_out_type(in_out_str):
        if len(in_out_str) == 0:
            return None
        tmp_in_out_list = in_out_str[1:-1].split('->')
        inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
        outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]

        # check the tensor type
        for item in inputs:
            assert item in [
219 220 221 222
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
223
            ], f"{op_name} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
224 225
        for item in outputs:
            assert item in [
226 227 228 229
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
230
            ], f"{op_name} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
231 232 233 234 235 236

        return (inputs, outputs)

    for func_item in kernel_funcs:
        kernel['func'].append(func_item[0])
        kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
237 238
            func_item[1]
        )
239

240 241 242
    return kernel


243
def parse_inplace(op_name: str, inplace_cfg: str) -> Dict[str, str]:
244 245 246 247 248 249 250 251 252
    inplace_map = {}
    inplace_cfg = inplace_cfg.lstrip("(").rstrip(")")
    pairs = parse_plain_list(inplace_cfg)
    for pair in pairs:
        in_name, out_name = parse_plain_list(pair, sep="->")
        inplace_map[out_name] = in_name
    return inplace_map


253
def parse_invoke(op_name: str, invoke_config: str) -> Dict[str, Any]:
254 255 256 257 258 259 260 261 262
    invoke_config = invoke_config.strip()
    func, rest = invoke_config.split("(", 1)
    func = func.strip()
    args = rest.rstrip(")").strip()
    invocation = {"func": func, "args": args}
    return invocation


def extract_type_and_name(records: List[Dict]) -> List[Dict]:
263
    """extract type and name from forward call, it is simpler than forward op ."""
264 265 266
    extracted = [
        {"name": item["name"], "typename": item["typename"]} for item in records
    ]
267 268 269
    return extracted


270 271
def parse_forward(op_name: str, forward_config: str) -> Dict[str, Any]:
    # op_name (const Tensor& input, ... , int attr, ...) -> Tensor(out)
272
    result = re.search(
273
        r"(?P<op>[a-z][a-z0-9_]+)\s*(?P<args>\([^\)]+\))\s*->\s*(?P<outputs>.+)",
274 275
        forward_config,
    )
276 277
    op = result.group("op")
    outputs = parse_outputs(op_name, result.group("outputs"))
278 279
    outputs = extract_type_and_name(outputs)

280
    inputs, attrs = parse_input_and_attr(op_name, result.group("args"))
281 282 283
    inputs = extract_type_and_name(inputs)
    attrs = extract_type_and_name(attrs)
    forward_cfg = {
284
        "name": op,
285 286
        "inputs": inputs,
        "attrs": attrs,
287
        "outputs": outputs,
288 289 290 291
    }
    return forward_cfg


J
Jiabin Yang 已提交
292 293 294 295 296
def parse_composite(
    op_name: str,
    composite_config: str,
) -> Dict[str, Any]:
    # composite_config: func(args1, args2,.....)
297 298 299 300 301 302 303
    result = re.search(
        r"(?P<func_name>[a-z][a-z0-9_]+)\s*\((?P<func_args>[^\)]+)\)",
        composite_config,
    )

    func_name = result.group("func_name")
    func_args = result.group("func_args")
J
Jiabin Yang 已提交
304 305 306 307 308 309 310

    composite_dict = {}
    composite_dict["func_name"] = func_name
    composite_dict["func_args"] = func_args
    return composite_dict


311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
def check_op_config(op_entry, op_name):
    base_key_set = (
        'op',
        'backward_op',
        'forward',
        'args',
        'output',
        'infer_meta',
        'kernel',
        'backward',
        'invoke',
        'inplace',
        'view',
        'optional',
        'intermediate',
        'no_need_buffer',
        'data_transform',
J
Jiabin Yang 已提交
328
        'composite',
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    )
    infer_meta_key_set = ('func', 'param')
    kernel_key_set = ('func', 'param', 'data_type', 'layout', 'backend')
    for key in op_entry.keys():
        assert (
            key in base_key_set
        ), f"Op ({op_name}) : invalid key ({key}) in Yaml."

    if 'infer_meta' in op_entry:
        for infer_meta_key in op_entry['infer_meta'].keys():
            assert (
                infer_meta_key in infer_meta_key_set
            ), f"Op ({op_name}) : invalid key (infer_meta.{infer_meta_key}) in Yaml."

    if 'kernel' in op_entry:
        for kernel_key in op_entry['kernel'].keys():
            assert (
                kernel_key in kernel_key_set
            ), f"Op ({op_name}) : invalid key (kernel.{kernel_key}) in Yaml."


350 351 352 353
def parse_op_entry(op_entry: Dict[str, Any], name_field="op"):
    op_name = op_entry[name_field]
    inputs, attrs = parse_input_and_attr(op_name, op_entry["args"])
    outputs = parse_outputs(op_name, op_entry["output"])
J
Jiabin Yang 已提交
354 355
    if "composite" in op_entry:
        composite_dict = parse_composite(op_name, op_entry["composite"])
356
    check_op_config(op_entry, op_name)
357 358 359 360 361 362
    # validate default value of DataType and DataLayout
    for attr in attrs:
        if "default_value" in attr:
            typename = attr["typename"]
            default_value = attr["default_value"]
            if typename == "DataType":
363 364
                assert (
                    "DataType" in default_value
365
                ), f"invalid DataType default value in {op_name}"
366
                # remove namespace
367
                default_value = default_value[default_value.find("DataType") :]
368 369
                attr["default_value"] = default_value
            elif typename == "DataLayout":
370 371
                assert (
                    "DataLayout" in default_value
372
                ), f"invalid DataLayout default value in {op_name}"
373 374 375
                default_value = default_value[
                    default_value.find("DataLayout") :
                ]
376 377 378 379 380 381 382 383 384
                attr["default_value"] = default_value

    input_names = [item["name"] for item in inputs]
    attr_names = [item["name"] for item in attrs]
    output_names = [item["name"] for item in outputs]

    # add optional tag for every input
    for input in inputs:
        input["optional"] = False
385 386 387
    for output in outputs:
        output["optional"] = False

388 389
    if "optional" in op_entry:
        optional_args = parse_plain_list(op_entry["optional"])
390
        for name in optional_args:
391
            assert (
392 393
                name in input_names or name in output_names
            ), f"{op_name} has an optional tensor: '{name}' which is not in input or output."
394 395 396
        for input in inputs:
            if input["name"] in optional_args:
                input["optional"] = True
397 398 399
        for output in outputs:
            if output["name"] in optional_args:
                output["optional"] = True
400 401 402 403

    # add intermediate tag for every output
    for output in outputs:
        output["intermediate"] = False
404 405
    if "intermediate" in op_entry:
        intermediate_outs = parse_plain_list(op_entry["intermediate"])
406
        for name in intermediate_outs:
407 408
            assert (
                name in output_names
409
            ), f"{op_name} has an intermediate output: '{name}' which is not an output."
410 411 412 413 414 415 416
        for output in outputs:
            if output["name"] in intermediate_outs:
                output["intermediate"] = True

    # add no_need_buffer for every input
    for input in inputs:
        input["no_need_buffer"] = False
417 418
    if "no_need_buffer" in op_entry:
        no_buffer_args = parse_plain_list(op_entry["no_need_buffer"])
419
        for name in no_buffer_args:
420 421
            assert (
                name in input_names
422
            ), f"{op_name} has an no buffer input: '{name}' which is not an input."
423 424 425 426 427 428
        for input in inputs:
            if input["name"] in no_buffer_args:
                input["no_need_buffer"] = True
    else:
        no_buffer_args = None

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    # add data_transform tag for every input.
    # the format is {data_transform : {skip_transform : [x, z], support_trans_dtype : y}}
    for input in inputs:
        input["data_transform"] = {}
    if "data_transform" in op_entry:
        skip_trans_args = []
        support_trans_args = []
        data_trans = op_entry["data_transform"]
        if "skip_transform" in data_trans:
            skip_trans_args = parse_plain_list(data_trans["skip_transform"])
            for name in skip_trans_args:
                assert (
                    name in input_names
                ), f"{op_name} has an skip_transform input: '{name}' which is not an input."
            data_trans["skip_transform"] = skip_trans_args
        if "support_trans_dtype" in data_trans:
            support_trans_args = parse_plain_list(
                data_trans["support_trans_dtype"]
            )
            for name in support_trans_args:
                assert (
                    name in input_names
                ), f"{op_name} has an support_trans_dtype input: '{name}' which is not an input."
            data_trans["support_trans_dtype"] = support_trans_args
        for input in inputs:
            if input["name"] in skip_trans_args:
                input["data_transform"]["skip_trans_args"] = True
            else:
                input["data_transform"]["skip_trans_args"] = False
            if input["name"] in support_trans_args:
                input["data_transform"]["support_trans_dtype"] = True
            else:
                input["data_transform"]["support_trans_dtype"] = False
    else:
        data_trans = None
464

465 466
    op = {
        "name": op_name,
467 468 469
        "inputs": inputs,
        "attrs": attrs,
        "outputs": outputs,
470
        "no_need_buffer": no_buffer_args,
471
        "data_transform": data_trans,
472 473
    }

474 475
    # invokes another op ?
    is_base_op = "invoke" not in op_entry
476

477
    if is_base_op:
478
        # kernel
479
        kernel = parse_kernel(op_name, op_entry["kernel"])
480 481 482 483
        if kernel["param"] is None:
            kernel["param"] = input_names + attr_names

        # infer meta
484
        infer_meta = parse_infer_meta(op_entry["infer_meta"])
485 486 487 488
        if infer_meta["param"] is None:
            infer_meta["param"] = copy(kernel["param"])

        # inplace
489 490
        if "inplace" in op_entry:
            inplace_pairs = parse_inplace(op_name, op_entry["inplace"])
491 492
        else:
            inplace_pairs = None
493
        op.update(
494 495 496 497 498 499
            {
                "infer_meta": infer_meta,
                "kernel": kernel,
                "inplace": inplace_pairs,
            }
        )
500 501
    else:
        # invoke
502 503
        invoke = parse_invoke(op_name, op_entry["invoke"])
        op["invoke"] = invoke
504

J
Jiabin Yang 已提交
505 506 507 508
    # has composite ?
    if "composite" in op_entry:
        op.update({"composite": composite_dict})

509
    # backward
510 511
    if "backward" in op_entry:
        backward = op_entry["backward"]
512 513
    else:
        backward = None
514
    op["backward"] = backward
515

516 517 518 519 520
    # forward for backward_ops
    is_backward_op = name_field == "backward_op"
    if is_backward_op:
        if "forward" in op_entry:
            forward = parse_forward(op_name, op_entry["forward"])
521
            # validate_fb
522
            validate_backward_inputs(
523
                op_name, forward["inputs"], forward["outputs"], inputs
524
            )
525 526
            validate_backward_attrs(op_name, forward["attrs"], attrs)
            validate_backward_outputs(op_name, forward["inputs"], outputs)
527 528
        else:
            forward = None
529 530
        op["forward"] = forward
    return op
531 532


533
def validate_backward_attrs(op, forward_attrs, backward_attrs):
534 535 536
    if len(forward_attrs) >= len(backward_attrs):
        return
    num_exceptional_attrs = len(backward_attrs) - len(forward_attrs)
537 538
    # this is a not-that-clean trick to allow backward op to has more attrs
    # than the forward op , as long as they all have default value
539
    for i in range(-num_exceptional_attrs, 0):
540 541
        assert (
            "default_value" in backward_attrs[i]
542
        ), f"{op } has exceptional attr without default value"
543 544


545
def validate_backward_inputs(
546
    op, forward_inputs, forward_outputs, backward_inputs
547
):
548 549 550 551 552
    foward_input_names = [item["name"] for item in forward_inputs]
    forward_output_names = [item["name"] for item in forward_outputs]
    backward_input_names = [item["name"] for item in backward_inputs]

    assert len(backward_input_names) <= len(foward_input_names) + 2 * len(
553
        forward_output_names
554
    ), f"{op } has too many inputs."
555 556


557
def validate_backward_outputs(op, forward_inputs, backward_outputs):
558
    assert len(backward_outputs) <= len(
559
        forward_inputs
560
    ), f"{op } has too many outputs"
561 562


563 564 565 566
def cross_validate(ops):
    for name, op in ops.items():
        if "forward" in op:
            fw_call = op["forward"]
567
            fw_name = fw_call["name"]
568
            if fw_name not in ops:
569
                print(
570
                    f"Something Wrong here, this backward op ({name})'s forward op ({fw_name}) does not exist."
571 572
                )
            else:
573 574
                fw_op = ops[fw_name]
                if "backward" not in fw_op or fw_op["backward"] is None:
575
                    print(
576
                        f"Something Wrong here, {name}'s forward op ({fw_name}) does not claim {name} as its backward."
577 578
                    )
                else:
579
                    assert (
580
                        fw_op["backward"] == name
581
                    ), f"{name}: backward and forward name mismatch"
582 583

                assert len(fw_call["inputs"]) <= len(
584 585 586
                    fw_op["inputs"]
                ), f"{name}: forward call has more inputs than the op "
                for (input, input_) in zip(fw_call["inputs"], fw_op["inputs"]):
587 588 589
                    assert (
                        input["typename"] == input_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"
590 591

                assert len(fw_call["attrs"]) <= len(
592 593 594
                    fw_op["attrs"]
                ), f"{name}: forward call has more attrs than the op "
                for (attr, attr_) in zip(fw_call["attrs"], fw_op["attrs"]):
595 596 597 598 599 600
                    if attr["typename"] == "Scalar":
                        # special case for Scalar, fw_call can omit the type
                        assert re.match(
                            r"Scalar(\(\w+\))*", attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
                    else:
601 602 603
                        assert (
                            attr["typename"] == attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
604 605

                assert len(fw_call["outputs"]) == len(
606 607
                    fw_op["outputs"]
                ), f"{name}: forward call has more outputs than the op "
608
                for (output, output_) in zip(
609
                    fw_call["outputs"], fw_op["outputs"]
610 611 612 613
                ):
                    assert (
                        output["typename"] == output_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"