adamw.py 25.0 KB
Newer Older
Z
zhaoyingli 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
M
MRXLT 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import warnings
from collections import defaultdict
17
from collections.abc import Callable
18

M
MRXLT 已提交
19
import paddle
20

21
from .. import _C_ops
22 23 24
from ..base import core, framework
from ..base.dygraph import base as imperative_base
from ..base.framework import Parameter, Variable
25
from ..nn.clip import GradientClipBase
26 27 28
from .lr import LRScheduler
from .optimizer import Optimizer

29 30
__all__ = []

M
MRXLT 已提交
31

32
class AdamW(Optimizer):
33
    r"""
34
    The AdamW optimizer is implemented based on the AdamW Optimization
M
MRXLT 已提交
35 36 37 38 39 40 41
    in paper `DECOUPLED WEIGHT DECAY REGULARIZATION <https://arxiv.org/pdf/1711.05101.pdf>`_.
    it can resolves the problem of L2 regularization failure in the Adam optimizer.

    .. math::

        t & = t + 1

42
        moment\_1\_out & = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad
43

44
        moment\_2\_out & = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad
M
MRXLT 已提交
45

46
        learning\_rate & = learning\_rate *
47
            \frac{\sqrt{1 - {\beta}_2^t}}{1 - {beta}_1^t}
M
MRXLT 已提交
48

49
        param\_out & = param - learning\_rate * (\frac{moment\_1}{\sqrt{moment\_2} + \epsilon} + \lambda * param)
M
MRXLT 已提交
50 51 52


    Args:
53 54
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
55 56 57
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``.
            This parameter is required in dygraph mode. And you can specify different options for
            different parameter groups such as the learning rate, weight decay, etc,
58
            then the parameters are list of dict. Note that the learning_rate in parameter groups
59
            represents the scale of base learning_rate.
60
            The default value is None in static graph mode, at this time all parameters will be updated.
M
MRXLT 已提交
61 62 63 64 65 66 67 68
        beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
M
MRXLT 已提交
69
        weight_decay (float|Tensor, optional): The weight decay coefficient, it can be float or Tensor. The default value is 0.01.
70
        lr_ratio (function|None, optional): If it is not None,
71
            the learning rate will be updated with layer-wise learning rate ratio.
72 73
            Otherwise, the learning rate is the original.
            Default: None.
M
MRXLT 已提交
74
        apply_decay_param_fun (function|None, optional): If it is not None,
75
            only tensors that makes apply_decay_param_fun(Tensor.name)==True
H
hutuxian 已提交
76
            will be updated with weight decay. It only works when we want to specify tensors.
M
MRXLT 已提交
77
            Default: None.
78 79
        grad_clip (GradientClipBase, optional): Gradient clipping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three clipping strategies
80 81
            ( :ref:`api_base_clip_GradientClipByGlobalNorm` , :ref:`api_base_clip_GradientClipByNorm` ,
            :ref:`api_base_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
M
MRXLT 已提交
82 83 84 85 86 87 88
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
89
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
90 91 92
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
H
hua-zi 已提交
93
    Notes:
M
MRXLT 已提交
94 95 96 97
        **Currently, AdamW doesn't support sparse parameter optimization.**

    Examples:
        .. code-block:: python
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
            >>> import paddle

            >>> linear = paddle.nn.Linear(10, 10)
            >>> inp = paddle.rand([10,10], dtype="float32")
            >>> out = linear(inp)
            >>> loss = paddle.mean(out)

            >>> beta1 = paddle.to_tensor([0.9], dtype="float32")
            >>> beta2 = paddle.to_tensor([0.99], dtype="float32")

            >>> opt = paddle.optimizer.AdamW(learning_rate=0.1,
            ...         parameters=linear.parameters(),
            ...         beta1=beta1,
            ...         beta2=beta2,
            ...         weight_decay=0.01
            ... )
            >>> loss.backward()
            >>> opt.step()
            >>> opt.clear_grad()


            >>> # Note that the learning_rate of linear_2 is 0.01.
            >>> linear_1 = paddle.nn.Linear(10, 10)
            >>> linear_2 = paddle.nn.Linear(10, 10)
            >>> inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            >>> out = linear_1(inp)
            >>> out = linear_2(out)
            >>> loss = paddle.mean(out)
            >>> opt = paddle.optimizer.AdamW(
            ...     learning_rate=0.1,
            ...     parameters=[{
            ...         'params': linear_1.parameters()
            ...     }, {
            ...         'params': linear_2.parameters(),
            ...         'weight_decay': 0.001,
            ...         'learning_rate': 0.1,
            ...         'beta1': 0.8
            ...     }],
            ...     weight_decay=0.01,
            ...     beta1=0.9
            ... )
            >>> loss.backward()
            >>> opt.step()
            >>> opt.clear_grad()
143

M
MRXLT 已提交
144 145
    """

146 147 148 149 150
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameters=None,
        weight_decay=0.01,
        lr_ratio=None,
        apply_decay_param_fun=None,
        grad_clip=None,
        lazy_mode=False,
        multi_precision=False,
        name=None,
    ):
M
MRXLT 已提交
166 167 168 169 170 171 172 173 174 175
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        if not 0 <= beta1 < 1:
            raise ValueError("Invaild value of beta1, expect beta1 in [0,1).")
        if not 0 <= beta2 < 1:
            raise ValueError("Invaild value of beta2, expect beta2 in [0,1).")
        if not 0 <= epsilon:
            raise ValueError("Invaild value of epsilon, expect epsilon >= 0.")
176 177 178
        if not isinstance(weight_decay, float) and not isinstance(
            weight_decay, framework.Variable
        ):
179
            raise TypeError("weight_decay should be float or Tensor.")
180 181
        if lr_ratio is not None:
            assert isinstance(lr_ratio, Callable)
182 183 184
            if (
                not core.is_compiled_with_cuda()
                and not core.is_compiled_with_xpu()
185 186
                and paddle.device.get_device().split(":")[0]
                not in paddle.device.get_all_custom_device_type()
187
            ):
J
jjyaoao 已提交
188
                raise NotImplementedError("'lr_ratio' is unimplemented in CPU.")
189

190 191 192 193 194 195 196
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
197 198 199 200
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
201 202 203 204
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
205 206
                    " as list of dict"
                )
207 208 209 210 211
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

        self._name = name
212
        if framework.in_dygraph_mode():
213 214 215 216 217 218 219
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )

        if not isinstance(learning_rate, (float, LRScheduler)):
            raise TypeError(
220 221 222
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
223 224 225 226 227 228 229 230 231 232 233
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )

        self._dtype = None
        # Infer the dtype form parameter
        if self._parameter_list:
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
234 235 236
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
237 238 239 240 241 242
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype

        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
243
        self._learning_rate_map = {}
244 245 246 247
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
248
        self._accumulators = defaultdict(lambda: {})
249 250 251
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
252
        self._param_device_map = {}
253
        self.clear_gradients = self.clear_grad
M
MRXLT 已提交
254

R
Roc 已提交
255
        self.type = "adamw"
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        self._learning_rate = learning_rate
        self._params_name = set()
        self._apply_decay_param_fun = apply_decay_param_fun
        self._weight_decay = weight_decay
        self._grad_clip = grad_clip
        self._lr_ratio = lr_ratio
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._lazy_mode = lazy_mode
        self._multi_precision = multi_precision
        self._master_weights = {}

        self._default_dict = {
            'weight_decay': weight_decay,
            'beta1': beta1,
            'beta2': beta2,
            'epsilon': epsilon,
            'lazy_mode': lazy_mode,
275
            'grad_clip': grad_clip,
276 277 278 279 280 281 282 283
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
R
Roc 已提交
284

285 286 287
        self._use_multi_tensor = None
        self.regularization = None
        self._auxiliary_vars = {}
W
wanghuancoder 已提交
288
        self._already_create_accumulater = set()
R
Roc 已提交
289

290 291
        self._create_master_grad_states()

R
Roc 已提交
292 293 294 295 296 297 298 299 300
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

301
    def _add_param_group(self, param_group):
302
        """
303 304
        Add a param group to parameter_list.

305
        Args:
306 307
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
308
        """
309 310 311 312 313 314
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
315 316
                "but received set, please use list instead."
            )
317 318
        else:
            param_group['params'] = list(params)
319

320 321 322 323 324 325 326 327 328 329
        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
330 331
                "some parameters appear in more than one parameter group"
            )
332

333 334
        for param in param_group['params']:
            param.optimize_attr['learning_rate'] = param_group.get(
335 336
                'learning_rate', 1.0
            )
337 338 339 340 341

        self._param_groups.append(param_group)

    def _add_moments_pows(self, p):
        acc_dtype = p.dtype
342
        if self._is_dtype_fp16_or_bf16(acc_dtype):
343 344 345 346 347 348 349
            acc_dtype = core.VarDesc.VarType.FP32
        self._add_accumulator(self._moment1_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(self._moment2_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(
            name=self._beta1_pow_acc_str,
            param=p,
            dtype=acc_dtype,
350 351 352
            fill_value=0.9
            if isinstance(self._beta1, Variable)
            else self._beta1,
353
            shape=[1],
354 355 356
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
357 358 359 360
        self._add_accumulator(
            name=self._beta2_pow_acc_str,
            param=p,
            dtype=acc_dtype,
361 362 363
            fill_value=0.999
            if isinstance(self._beta2, Variable)
            else self._beta2,
364
            shape=[1],
365 366 367
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
368 369 370 371 372 373 374 375

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
W
wanghuancoder 已提交
376 377
            if p.name in self._already_create_accumulater:
                continue
378
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
379 380
                master_p = self._create_master_weight(p)
                self._add_moments_pows(master_p)
W
wanghuancoder 已提交
381
                self._already_create_accumulater.add(p.name)
382
                continue
383
            if (
384
                self._is_dtype_fp16_or_bf16(p.dtype)
385 386
                and not self._multi_precision
            ):
387
                warnings.warn(
388
                    "Accumulating with FP16 or BF16 in optimizer can lead to poor accuracy or slow convergence."
389 390 391
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
            self._add_moments_pows(p)
W
wanghuancoder 已提交
392
            self._already_create_accumulater.add(p.name)
393

W
WangXi 已提交
394
    def _append_optimize_op(self, block, param_and_grad):
R
Roc 已提交
395 396 397 398 399 400 401
        assert isinstance(block, framework.Block)
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
        param, grad = param_and_grad

        # Whether we should do weight decay for the parameter.
        with_decay = True
402 403 404 405
        if (
            self._apply_decay_param_fun is not None
            and not self._apply_decay_param_fun(param.name)
        ):
R
Roc 已提交
406 407
            with_decay = False

408
        moment1 = self._get_accumulator_master(
409 410
            self._moment1_acc_str, param_and_grad[0]
        )
411
        moment2 = self._get_accumulator_master(
412 413
            self._moment2_acc_str, param_and_grad[0]
        )
414
        beta1_pow_acc = self._get_accumulator_master(
415 416
            self._beta1_pow_acc_str, param_and_grad[0]
        )
417
        beta2_pow_acc = self._get_accumulator_master(
418 419
            self._beta2_pow_acc_str, param_and_grad[0]
        )
420 421
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
422 423 424 425 426 427
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
R
Roc 已提交
428 429
        lr = self._create_param_lr(param_and_grad)

Z
zhaoyingli 已提交
430
        # create the adamw optimize op
431
        if framework.in_dygraph_mode():
432 433 434 435 436 437 438 439 440
            lr_ratio_ = (
                1.0
                if self._lr_ratio is None
                else self._lr_ratio(param_and_grad[0])
            )

            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
441
                else self._beta1.item(0)
442 443 444 445
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
446
                else self._beta2.item(0)
447
            )
448

449 450 451 452 453 454 455 456 457
            _, _, _, _, _, _ = _C_ops.adamw_(
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
W
wanghuancoder 已提交
458
                None,
459 460 461 462 463 464 465 466 467 468 469
                _beta1,
                _beta2,
                self._epsilon,
                lr_ratio_,
                self._weight_decay,
                with_decay,
                self._lazy_mode,
                1000,
                find_master,
                False,
            )
R
Roc 已提交
470 471
            return None
        else:
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
            inputs = {
                "Param": [param_and_grad[0]],
                "Grad": [param_and_grad[1]],
                "LearningRate": [lr],
                "Moment1": [moment1],
                "Moment2": [moment2],
                "Beta1Pow": [beta1_pow_acc],
                "Beta2Pow": [beta2_pow_acc],
            }

            # Pass found_inf to adamw, to skip update for not only param, but also momentum and beta_pow
            found_inf = self._get_auxiliary_var('found_inf')

            if found_inf:
                inputs['SkipUpdate'] = found_inf

            outputs = {
                "ParamOut": [param_and_grad[0]],
                "Moment1Out": [moment1],
                "Moment2Out": [moment2],
                "Beta1PowOut": [beta1_pow_acc],
                "Beta2PowOut": [beta2_pow_acc],
            }
            attrs = {
                "lazy_mode": self._lazy_mode,
                "min_row_size_to_use_multithread": 1000,
                "multi_precision": find_master,
                "with_decay": with_decay,
                "coeff": self._weight_decay,
                "lr_ratio": 1.0
                if self._lr_ratio is None
                else self._lr_ratio(param_and_grad[0]),
            }

            if isinstance(self._beta1, Variable):
                inputs['Beta1Tensor'] = self._beta1
            else:
                attrs['beta1'] = self._beta1
            if isinstance(self._beta2, Variable):
                inputs['Beta2Tensor'] = self._beta2
            else:
                attrs['beta2'] = self._beta2
            if isinstance(self._epsilon, Variable):
                inputs['EpsilonTensor'] = self._epsilon
            else:
                attrs['epsilon'] = self._epsilon

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

            adamw_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
R
Roc 已提交
530

531
            return adamw_op
M
MRXLT 已提交
532 533 534

    def __str__(self):
        return " ".join(["Weight Decay, params:", ",".join(self._params_name)])
535

536
    @imperative_base.no_grad
537
    @framework.non_static_only
538 539 540 541 542 543 544 545 546 547
    def step(self):
        """
        Execute the optimizer and update parameters once.

        Returns:
            None

        Examples:
            .. code-block:: python

548 549 550 551 552 553 554 555 556 557 558
                >>> import paddle

                >>> a = paddle.rand([2,13], dtype="float32")
                >>> linear = paddle.nn.Linear(13, 5)
                >>> # This can be any optimizer supported by dygraph.
                >>> opt = paddle.optimizer.AdamW(learning_rate = 0.01,
                ...                             parameters = linear.parameters())
                >>> out = linear(a)
                >>> out.backward()
                >>> opt.step()
                >>> opt.clear_grad()
559
        """
560
        if paddle.base.dygraph.base.in_declarative_mode():
561 562 563
            self._declarative_step()
            return

564 565 566 567 568 569 570 571
        if not isinstance(self._parameter_list[0], dict):
            params_grads = []
            for param in self._parameter_list:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    if framework.in_dygraph_mode():
572 573 574 575 576
                        if (
                            hasattr(grad_var, "is_selected_rows")
                            and grad_var.is_selected_rows()
                            and self.regularization is not None
                        ):
577 578 579 580
                            raise RuntimeError(
                                "AdamW don't support weight_decay with sparse parameters, please set it to None."
                            )
                    else:
581 582 583 584 585
                        if (
                            hasattr(grad_var, "_is_sparse")
                            and grad_var._is_sparse()
                            and self.regularization is not None
                        ):
586 587 588 589 590
                            raise RuntimeError(
                                "AdamW don't support weight_decay with sparse parameters, please set it to None."
                            )
                    params_grads.append((param, grad_var))

591 592 593
            optimize_ops = self._apply_optimize(
                loss=None, startup_program=None, params_grads=params_grads
            )
594 595 596
        else:
            # optimize parameters in groups
            for param_group in self._param_groups:
597
                params_grads = defaultdict(lambda: [])
598 599 600 601 602 603
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        if framework.in_dygraph_mode():
604 605 606 607 608
                            if (
                                hasattr(grad_var, "is_selected_rows")
                                and grad_var.is_selected_rows()
                                and self.regularization is not None
                            ):
609 610 611 612
                                raise RuntimeError(
                                    "AdamW don't support weight_decay with sparse parameters, please set it to None."
                                )
                        else:
613 614 615 616 617
                            if (
                                hasattr(grad_var, "_is_sparse")
                                and grad_var._is_sparse()
                                and self.regularization is not None
                            ):
618 619 620 621 622
                                raise RuntimeError(
                                    "AdamW don't support weight_decay with sparse parameters, please set it to None."
                                )
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
623 624 625 626 627
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
                    loss=None, startup_program=None, params_grads=params_grads
                )
628

629
    def _update_param_group(self, parameters):
630 631 632
        self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
        self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
633 634 635 636 637 638
        self._lazy_mode = parameters.get(
            'lazy_mode', self._default_dict['lazy_mode']
        )
        self._weight_decay = parameters.get(
            'weight_decay', self._default_dict['weight_decay']
        )
639
        parameters = parameters.get('params')
640

641
        return parameters