Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
884011a4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
884011a4
编写于
9月 01, 2021
作者:
Z
zhaoyingli
提交者:
GitHub
9月 01, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
reverse xpu adamw to the combination of ops version. (#35286)
上级
572bad8a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
67 addition
and
2 deletion
+67
-2
python/paddle/optimizer/adamw.py
python/paddle/optimizer/adamw.py
+67
-2
未找到文件。
python/paddle/optimizer/adamw.py
浏览文件 @
884011a4
...
...
@@ -162,6 +162,7 @@ class AdamW(Adam):
self
.
_params_name
=
set
()
self
.
_apply_decay_param_fun
=
apply_decay_param_fun
self
.
_coeff
=
coeff
self
.
_lr_to_coeff
=
dict
()
super
(
AdamW
,
self
).
__init__
(
learning_rate
=
learning_rate
,
...
...
@@ -177,6 +178,9 @@ class AdamW(Adam):
self
.
type
=
"adamw"
if
core
.
is_compiled_with_xpu
():
self
.
type
=
"adam"
# Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
self
.
_auxiliary_vars
=
dict
()
...
...
@@ -189,7 +193,63 @@ class AdamW(Adam):
else
:
return
None
def
_append_decoupled_weight_decay
(
self
,
block
,
param_and_grad
):
"""
Add decoupled weight decay op.
parameter = parameter - parameter * coeff * lr
Args:
block: block in which variable is to be created
param_and_grad: (parameters, gradients) pairs,
the parameters need to decay.
Raises:
Exception: The type of coeff and parameter is not consistent.
"""
if
isinstance
(
param_and_grad
,
dict
):
param_and_grad
=
self
.
_update_param_group
(
param_and_grad
)
param
,
grad
=
param_and_grad
if
self
.
_apply_decay_param_fun
is
not
None
\
and
not
self
.
_apply_decay_param_fun
(
param
.
name
):
return
if
isinstance
(
self
.
_learning_rate
,
float
):
learning_rate
=
self
.
_learning_rate
else
:
# NOTE. We add this function to the _append_optimize_op(),
# for we must make sure _create_param_lr() be called after
# optimizer._create_global_learning_rate().
learning_rate
=
self
.
_create_param_lr
(
param_and_grad
)
with
block
.
program
.
_optimized_guard
(
[
param
,
grad
]),
framework
.
name_scope
(
'weight decay'
):
self
.
_params_name
.
add
(
param
.
name
)
# If it has been calculated, the result will be reused.
# NOTE(wangxi): In dygraph mode, apply_gradient will be executed
# every step, so need clear _lr_to_coeff every step,
# we do this in _create_optimization_pass
decay_coeff
=
self
.
_lr_to_coeff
.
get
(
learning_rate
,
None
)
if
decay_coeff
is
None
:
# NOTE(wangxi): for pipeline to set device:all
with
paddle
.
static
.
device_guard
(
None
):
decay_coeff
=
1.0
-
learning_rate
*
self
.
_coeff
self
.
_lr_to_coeff
[
learning_rate
]
=
decay_coeff
find_master
=
(
self
.
_multi_precision
and
param
.
dtype
==
core
.
VarDesc
.
VarType
.
FP16
)
if
find_master
:
master_weight
=
self
.
_master_weights
[
param
.
name
]
scaled_param
=
master_weight
*
decay_coeff
paddle
.
fluid
.
layers
.
assign
(
input
=
scaled_param
,
output
=
master_weight
)
else
:
scaled_param
=
param
*
decay_coeff
paddle
.
fluid
.
layers
.
assign
(
input
=
scaled_param
,
output
=
param
)
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
if
paddle
.
is_compiled_with_xpu
():
self
.
_append_decoupled_weight_decay
(
block
,
param_and_grad
)
return
super
(
AdamW
,
self
).
_append_optimize_op
(
block
,
param_and_grad
)
assert
isinstance
(
block
,
framework
.
Block
)
if
isinstance
(
param_and_grad
,
dict
):
...
...
@@ -201,8 +261,6 @@ class AdamW(Adam):
if
self
.
_apply_decay_param_fun
is
not
None
\
and
not
self
.
_apply_decay_param_fun
(
param
.
name
):
with_decay
=
False
else
:
self
.
_params_name
.
add
(
param
.
name
)
moment1
=
self
.
_get_accumulator
(
self
.
_moment1_acc_str
,
param_and_grad
[
0
])
...
...
@@ -291,6 +349,13 @@ class AdamW(Adam):
return
adamw_op
def
_create_optimization_pass
(
self
,
parameters_and_grads
):
optimize_ops
=
super
(
AdamW
,
self
).
_create_optimization_pass
(
parameters_and_grads
)
# In dygraph mode, clear _lr_to_coeff after applied gradient
self
.
_lr_to_coeff
=
dict
()
return
optimize_ops
def
__str__
(
self
):
return
" "
.
join
([
"Weight Decay, params:"
,
","
.
join
(
self
.
_params_name
)])
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录