adamw.py 24.6 KB
Newer Older
Z
zhaoyingli 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
M
MRXLT 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import warnings
from collections import defaultdict
17
from collections.abc import Callable
18

M
MRXLT 已提交
19
import paddle
20

21
from .. import _C_ops
22
from ..fluid import core, framework
23 24
from ..fluid.dygraph import base as imperative_base
from ..fluid.framework import Parameter, Variable
25
from ..nn.clip import GradientClipBase
26 27 28
from .lr import LRScheduler
from .optimizer import Optimizer

29 30
__all__ = []

M
MRXLT 已提交
31

32
class AdamW(Optimizer):
33
    r"""
34
    The AdamW optimizer is implemented based on the AdamW Optimization
M
MRXLT 已提交
35 36 37 38 39 40 41
    in paper `DECOUPLED WEIGHT DECAY REGULARIZATION <https://arxiv.org/pdf/1711.05101.pdf>`_.
    it can resolves the problem of L2 regularization failure in the Adam optimizer.

    .. math::

        t & = t + 1

42
        moment\_1\_out & = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad
43

44
        moemnt\_2\_out & = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad
M
MRXLT 已提交
45

46
        learning\_rate & = learning\_rate *
47
            \frac{\sqrt{1 - {\beta}_2^t}}{1 - {beta}_1^t}
M
MRXLT 已提交
48

49
        param\_out & = param - learning\_rate * (\frac{moment\_1}{\sqrt{moment\_2} + \epsilon} + \lambda * param)
M
MRXLT 已提交
50 51 52


    Args:
53 54
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
55 56 57 58 59
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``.
            This parameter is required in dygraph mode. And you can specify different options for
            different parameter groups such as the learning rate, weight decay, etc,
            then the parameters are list of dict. Note that the learning_rate in paramter groups
            represents the scale of base learning_rate.
60
            The default value is None in static graph mode, at this time all parameters will be updated.
M
MRXLT 已提交
61 62 63 64 65 66 67 68
        beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
M
MRXLT 已提交
69
        weight_decay (float|Tensor, optional): The weight decay coefficient, it can be float or Tensor. The default value is 0.01.
70
        lr_ratio (function|None, optional): If it is not None,
71 72 73
            the learning rate will be updated with layerwise learning rate ratio.
            Otherwise, the learning rate is the original.
            Default: None.
M
MRXLT 已提交
74
        apply_decay_param_fun (function|None, optional): If it is not None,
75
            only tensors that makes apply_decay_param_fun(Tensor.name)==True
H
hutuxian 已提交
76
            will be updated with weight decay. It only works when we want to specify tensors.
M
MRXLT 已提交
77
            Default: None.
78 79 80
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
81 82 83 84 85 86 87 88
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
89
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
90 91 92
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
H
hua-zi 已提交
93
    Notes:
M
MRXLT 已提交
94 95 96 97
        **Currently, AdamW doesn't support sparse parameter optimization.**

    Examples:
        .. code-block:: python
98

M
MRXLT 已提交
99 100 101
            import paddle

            linear = paddle.nn.Linear(10, 10)
102
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
103 104 105 106 107 108
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

109
            opt = paddle.optimizer.AdamW(learning_rate=0.1,
M
MRXLT 已提交
110 111 112 113
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
H
hua-zi 已提交
114
            loss.backward()
115 116
            opt.step()
            opt.clear_grad()
M
MRXLT 已提交
117

118 119 120 121 122 123 124 125

            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
126
            opt = paddle.optimizer.AdamW(
127 128 129 130 131 132 133 134 135 136
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'beta1': 0.8
                }],
                weight_decay=0.01,
137
                beta1=0.9)
H
hua-zi 已提交
138
            loss.backward()
139 140
            opt.step()
            opt.clear_grad()
141

M
MRXLT 已提交
142 143
    """

144 145 146 147 148
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameters=None,
        weight_decay=0.01,
        lr_ratio=None,
        apply_decay_param_fun=None,
        grad_clip=None,
        lazy_mode=False,
        multi_precision=False,
        name=None,
    ):
M
MRXLT 已提交
164 165 166 167 168 169 170 171 172 173
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        if not 0 <= beta1 < 1:
            raise ValueError("Invaild value of beta1, expect beta1 in [0,1).")
        if not 0 <= beta2 < 1:
            raise ValueError("Invaild value of beta2, expect beta2 in [0,1).")
        if not 0 <= epsilon:
            raise ValueError("Invaild value of epsilon, expect epsilon >= 0.")
174 175 176
        if not isinstance(weight_decay, float) and not isinstance(
            weight_decay, framework.Variable
        ):
177
            raise TypeError("weight_decay should be float or Tensor.")
178 179
        if lr_ratio is not None:
            assert isinstance(lr_ratio, Callable)
180 181 182 183
            if (
                not core.is_compiled_with_cuda()
                and not core.is_compiled_with_xpu()
            ):
184
                raise NotImplementedError(
185
                    "'lr_ratio' is unimplemented in CPU, and NPU"
186
                )
187

188 189 190 191 192 193 194
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
195 196 197 198
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
199 200 201 202
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
203 204
                    " as list of dict"
                )
205 206 207 208 209 210 211 212 213 214 215 216 217
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

        self._name = name
        if framework._non_static_mode():
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )

        if not isinstance(learning_rate, (float, LRScheduler)):
            raise TypeError(
218 219 220
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
221 222 223 224 225 226 227 228 229 230 231
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )

        self._dtype = None
        # Infer the dtype form parameter
        if self._parameter_list:
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
232 233 234
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
235 236 237 238 239 240
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype

        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
241
        self._learning_rate_map = {}
242 243 244 245
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
246
        self._accumulators = defaultdict(lambda: {})
247 248 249
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
250
        self._param_device_map = {}
251
        self.clear_gradients = self.clear_grad
M
MRXLT 已提交
252

R
Roc 已提交
253
        self.type = "adamw"
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        self._learning_rate = learning_rate
        self._params_name = set()
        self._apply_decay_param_fun = apply_decay_param_fun
        self._weight_decay = weight_decay
        self._grad_clip = grad_clip
        self._lr_ratio = lr_ratio
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._lazy_mode = lazy_mode
        self._multi_precision = multi_precision
        self._master_weights = {}

        self._default_dict = {
            'weight_decay': weight_decay,
            'beta1': beta1,
            'beta2': beta2,
            'epsilon': epsilon,
            'lazy_mode': lazy_mode,
273
            'grad_clip': grad_clip,
274 275 276 277 278 279 280 281
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
R
Roc 已提交
282

283 284 285
        self._use_multi_tensor = None
        self.regularization = None
        self._auxiliary_vars = {}
W
wanghuancoder 已提交
286
        self._already_create_accumulater = set()
R
Roc 已提交
287 288 289 290 291 292 293 294 295 296

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

297
    def _add_param_group(self, param_group):
298
        """
299 300
        Add a param group to parameter_list.

301
        Args:
302 303
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
304
        """
305 306 307 308 309 310
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
311 312
                "but received set, please use list instead."
            )
313 314
        else:
            param_group['params'] = list(params)
315

316 317 318 319 320 321 322 323 324 325
        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
326 327
                "some parameters appear in more than one parameter group"
            )
328

329 330
        for param in param_group['params']:
            param.optimize_attr['learning_rate'] = param_group.get(
331 332
                'learning_rate', 1.0
            )
333 334 335 336 337

        self._param_groups.append(param_group)

    def _add_moments_pows(self, p):
        acc_dtype = p.dtype
338
        if self._is_dtype_fp16_or_bf16(acc_dtype):
339 340 341 342 343 344 345
            acc_dtype = core.VarDesc.VarType.FP32
        self._add_accumulator(self._moment1_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(self._moment2_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(
            name=self._beta1_pow_acc_str,
            param=p,
            dtype=acc_dtype,
346 347 348
            fill_value=0.9
            if isinstance(self._beta1, Variable)
            else self._beta1,
349
            shape=[1],
350 351 352
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
353 354 355 356
        self._add_accumulator(
            name=self._beta2_pow_acc_str,
            param=p,
            dtype=acc_dtype,
357 358 359
            fill_value=0.999
            if isinstance(self._beta2, Variable)
            else self._beta2,
360
            shape=[1],
361 362 363
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
364 365 366 367 368 369 370 371

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
W
wanghuancoder 已提交
372 373
            if p.name in self._already_create_accumulater:
                continue
374
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
375 376
                master_p = self._create_master_weight(p)
                self._add_moments_pows(master_p)
W
wanghuancoder 已提交
377
                self._already_create_accumulater.add(p.name)
378
                continue
379
            if (
380
                self._is_dtype_fp16_or_bf16(p.dtype)
381 382
                and not self._multi_precision
            ):
383
                warnings.warn(
384
                    "Accumulating with FP16 or BF16 in optimizer can lead to poor accuracy or slow convergence."
385 386 387
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
            self._add_moments_pows(p)
W
wanghuancoder 已提交
388
            self._already_create_accumulater.add(p.name)
389

W
WangXi 已提交
390
    def _append_optimize_op(self, block, param_and_grad):
R
Roc 已提交
391 392 393 394 395 396 397
        assert isinstance(block, framework.Block)
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
        param, grad = param_and_grad

        # Whether we should do weight decay for the parameter.
        with_decay = True
398 399 400 401
        if (
            self._apply_decay_param_fun is not None
            and not self._apply_decay_param_fun(param.name)
        ):
R
Roc 已提交
402 403
            with_decay = False

404
        moment1 = self._get_accumulator_master(
405 406
            self._moment1_acc_str, param_and_grad[0]
        )
407
        moment2 = self._get_accumulator_master(
408 409
            self._moment2_acc_str, param_and_grad[0]
        )
410
        beta1_pow_acc = self._get_accumulator_master(
411 412
            self._beta1_pow_acc_str, param_and_grad[0]
        )
413
        beta2_pow_acc = self._get_accumulator_master(
414 415
            self._beta2_pow_acc_str, param_and_grad[0]
        )
416 417
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
418 419 420 421 422 423
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
R
Roc 已提交
424 425
        lr = self._create_param_lr(param_and_grad)

Z
zhaoyingli 已提交
426
        # create the adamw optimize op
427
        if framework.in_dygraph_mode():
428 429 430 431 432 433 434 435 436
            lr_ratio_ = (
                1.0
                if self._lr_ratio is None
                else self._lr_ratio(param_and_grad[0])
            )

            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
437
                else self._beta1.item(0)
438 439 440 441
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
442
                else self._beta2.item(0)
443
            )
444

445 446 447 448 449 450 451 452 453
            _, _, _, _, _, _ = _C_ops.adamw_(
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
W
wanghuancoder 已提交
454
                None,
455 456 457 458 459 460 461 462 463 464 465
                _beta1,
                _beta2,
                self._epsilon,
                lr_ratio_,
                self._weight_decay,
                with_decay,
                self._lazy_mode,
                1000,
                find_master,
                False,
            )
R
Roc 已提交
466 467
            return None
        else:
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
            inputs = {
                "Param": [param_and_grad[0]],
                "Grad": [param_and_grad[1]],
                "LearningRate": [lr],
                "Moment1": [moment1],
                "Moment2": [moment2],
                "Beta1Pow": [beta1_pow_acc],
                "Beta2Pow": [beta2_pow_acc],
            }

            # Pass found_inf to adamw, to skip update for not only param, but also momentum and beta_pow
            found_inf = self._get_auxiliary_var('found_inf')

            if found_inf:
                inputs['SkipUpdate'] = found_inf

            outputs = {
                "ParamOut": [param_and_grad[0]],
                "Moment1Out": [moment1],
                "Moment2Out": [moment2],
                "Beta1PowOut": [beta1_pow_acc],
                "Beta2PowOut": [beta2_pow_acc],
            }
            attrs = {
                "lazy_mode": self._lazy_mode,
                "min_row_size_to_use_multithread": 1000,
                "multi_precision": find_master,
                "with_decay": with_decay,
                "coeff": self._weight_decay,
                "lr_ratio": 1.0
                if self._lr_ratio is None
                else self._lr_ratio(param_and_grad[0]),
            }

            if isinstance(self._beta1, Variable):
                inputs['Beta1Tensor'] = self._beta1
            else:
                attrs['beta1'] = self._beta1
            if isinstance(self._beta2, Variable):
                inputs['Beta2Tensor'] = self._beta2
            else:
                attrs['beta2'] = self._beta2
            if isinstance(self._epsilon, Variable):
                inputs['EpsilonTensor'] = self._epsilon
            else:
                attrs['epsilon'] = self._epsilon

            if find_master:
                inputs["MasterParam"] = master_weight
                outputs["MasterParamOut"] = master_weight

            adamw_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
R
Roc 已提交
526

527
            return adamw_op
M
MRXLT 已提交
528 529 530

    def __str__(self):
        return " ".join(["Weight Decay, params:", ",".join(self._params_name)])
531

532
    @imperative_base.no_grad
533
    @framework.non_static_only
534 535 536 537 538 539 540 541 542 543 544
    def step(self):
        """
        Execute the optimizer and update parameters once.

        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
545

546 547 548 549 550 551 552 553 554 555
                a = paddle.rand([2,13], dtype="float32")
                linear = paddle.nn.Linear(13, 5)
                # This can be any optimizer supported by dygraph.
                opt = paddle.optimizer.AdamW(learning_rate = 0.01,
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                opt.step()
                opt.clear_grad()
        """
556 557 558 559
        if paddle.fluid.dygraph.base.in_declarative_mode():
            self._declarative_step()
            return

560 561 562 563 564 565 566 567
        if not isinstance(self._parameter_list[0], dict):
            params_grads = []
            for param in self._parameter_list:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    if framework.in_dygraph_mode():
568 569 570 571 572
                        if (
                            hasattr(grad_var, "is_selected_rows")
                            and grad_var.is_selected_rows()
                            and self.regularization is not None
                        ):
573 574 575 576
                            raise RuntimeError(
                                "AdamW don't support weight_decay with sparse parameters, please set it to None."
                            )
                    else:
577 578 579 580 581
                        if (
                            hasattr(grad_var, "_is_sparse")
                            and grad_var._is_sparse()
                            and self.regularization is not None
                        ):
582 583 584 585 586
                            raise RuntimeError(
                                "AdamW don't support weight_decay with sparse parameters, please set it to None."
                            )
                    params_grads.append((param, grad_var))

587 588 589
            optimize_ops = self._apply_optimize(
                loss=None, startup_program=None, params_grads=params_grads
            )
590 591 592
        else:
            # optimize parameters in groups
            for param_group in self._param_groups:
593
                params_grads = defaultdict(lambda: [])
594 595 596 597 598 599
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        if framework.in_dygraph_mode():
600 601 602 603 604
                            if (
                                hasattr(grad_var, "is_selected_rows")
                                and grad_var.is_selected_rows()
                                and self.regularization is not None
                            ):
605 606 607 608
                                raise RuntimeError(
                                    "AdamW don't support weight_decay with sparse parameters, please set it to None."
                                )
                        else:
609 610 611 612 613
                            if (
                                hasattr(grad_var, "_is_sparse")
                                and grad_var._is_sparse()
                                and self.regularization is not None
                            ):
614 615 616 617 618
                                raise RuntimeError(
                                    "AdamW don't support weight_decay with sparse parameters, please set it to None."
                                )
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
619 620 621 622 623
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
                    loss=None, startup_program=None, params_grads=params_grads
                )
624

625
    def _update_param_group(self, parameters):
626 627 628
        self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
        self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
629 630 631 632 633 634
        self._lazy_mode = parameters.get(
            'lazy_mode', self._default_dict['lazy_mode']
        )
        self._weight_decay = parameters.get(
            'weight_decay', self._default_dict['weight_decay']
        )
635
        parameters = parameters.get('params')
636

637
        return parameters