adamw.py 27.3 KB
Newer Older
Z
zhaoyingli 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
M
MRXLT 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import warnings
from collections import defaultdict
17
from collections.abc import Callable
18

M
MRXLT 已提交
19
import paddle
20

21
from .. import _C_ops, _legacy_C_ops
22
from ..fluid import core, framework, unique_name
23 24 25 26 27 28 29
from ..fluid.clip import GradientClipBase
from ..fluid.dygraph import base as imperative_base
from ..fluid.framework import Parameter, Variable
from ..fluid.layer_helper import LayerHelper
from .lr import LRScheduler
from .optimizer import Optimizer

30 31
__all__ = []

M
MRXLT 已提交
32

33
class AdamW(Optimizer):
34
    r"""
35
    The AdamW optimizer is implemented based on the AdamW Optimization
M
MRXLT 已提交
36 37 38 39 40 41 42
    in paper `DECOUPLED WEIGHT DECAY REGULARIZATION <https://arxiv.org/pdf/1711.05101.pdf>`_.
    it can resolves the problem of L2 regularization failure in the Adam optimizer.

    .. math::

        t & = t + 1

43
        moment\_1\_out & = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad
44

45
        moemnt\_2\_out & = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad
M
MRXLT 已提交
46

47
        learning\_rate & = learning\_rate *
48
            \frac{\sqrt{1 - {\beta}_2^t}}{1 - {beta}_1^t}
M
MRXLT 已提交
49

50
        param\_out & = param - learning\_rate * (\frac{moment\_1}{\sqrt{moment\_2} + \epsilon} + \lambda * param)
M
MRXLT 已提交
51 52 53


    Args:
54 55
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
56 57 58 59 60 61
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``.
            This parameter is required in dygraph mode. And you can specify different options for
            different parameter groups such as the learning rate, weight decay, etc,
            then the parameters are list of dict. Note that the learning_rate in paramter groups
            represents the scale of base learning_rate.
            The default value is None in static mode, at this time all parameters will be updated.
M
MRXLT 已提交
62 63 64 65 66 67 68 69
        beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
M
MRXLT 已提交
70
        weight_decay (float|Tensor, optional): The weight decay coefficient, it can be float or Tensor. The default value is 0.01.
71
        lr_ratio (function|None, optional): If it is not None,
72 73 74
            the learning rate will be updated with layerwise learning rate ratio.
            Otherwise, the learning rate is the original.
            Default: None.
M
MRXLT 已提交
75
        apply_decay_param_fun (function|None, optional): If it is not None,
76
            only tensors that makes apply_decay_param_fun(Tensor.name)==True
H
hutuxian 已提交
77
            will be updated with weight decay. It only works when we want to specify tensors.
M
MRXLT 已提交
78
            Default: None.
79 80 81
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
82 83 84 85 86 87 88 89
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
90
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
91 92 93
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
M
MRXLT 已提交
94 95 96 97 98
    **Notes**:
        **Currently, AdamW doesn't support sparse parameter optimization.**

    Examples:
        .. code-block:: python
99

M
MRXLT 已提交
100 101 102
            import paddle

            linear = paddle.nn.Linear(10, 10)
103
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
104 105 106 107 108 109
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

110
            opt = paddle.optimizer.AdamW(learning_rate=0.1,
M
MRXLT 已提交
111 112 113 114 115
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
            out.backward()
116 117
            opt.step()
            opt.clear_grad()
M
MRXLT 已提交
118

119 120 121 122 123 124 125 126

            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
127
            opt = paddle.optimizer.AdamW(
128 129 130 131 132 133 134 135 136 137
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'beta1': 0.8
                }],
                weight_decay=0.01,
138
                beta1=0.9)
139
            out.backward()
140 141
            opt.step()
            opt.clear_grad()
142

M
MRXLT 已提交
143 144
    """

145 146 147 148 149
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameters=None,
        weight_decay=0.01,
        lr_ratio=None,
        apply_decay_param_fun=None,
        grad_clip=None,
        lazy_mode=False,
        multi_precision=False,
        name=None,
    ):
M
MRXLT 已提交
165 166 167 168 169 170 171 172 173 174
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        if not 0 <= beta1 < 1:
            raise ValueError("Invaild value of beta1, expect beta1 in [0,1).")
        if not 0 <= beta2 < 1:
            raise ValueError("Invaild value of beta2, expect beta2 in [0,1).")
        if not 0 <= epsilon:
            raise ValueError("Invaild value of epsilon, expect epsilon >= 0.")
175 176 177
        if not isinstance(weight_decay, float) and not isinstance(
            weight_decay, framework.Variable
        ):
178
            raise TypeError("weight_decay should be float or Tensor.")
179 180
        if lr_ratio is not None:
            assert isinstance(lr_ratio, Callable)
Z
zhaoyingli 已提交
181
            if not core.is_compiled_with_cuda():
182
                raise NotImplementedError(
183 184
                    "'lr_ratio' is unimplemented in CPU, XPU and NPU"
                )
185

186 187 188 189 190 191 192
        if parameters is not None:
            # paddle.Tensor is also iterable, so here we don't check whether
            # the input is iterable, if the input is paddle.Tensor, the
            # list(paddle.Tensor) will be a error value
            if isinstance(parameters, (paddle.Tensor, core.eager.Tensor)):
                raise TypeError(
                    "`parameters` argument given to the optimizer should be "
193 194 195 196
                    "an iterable of paddle Tensors, but got argument type is `{}`.".format(
                        type(parameters)
                    )
                )
197 198 199 200
            if isinstance(parameters, dict):
                raise TypeError(
                    "`parameters` argument should not get dict type, "
                    "if parameter groups is needed, please set `parameters`"
201 202
                    " as list of dict"
                )
203 204 205 206 207 208 209 210 211 212 213 214 215
            self._parameter_list = list(parameters)
        else:
            self._parameter_list = None

        self._name = name
        if framework._non_static_mode():
            if self._parameter_list is None:
                raise AttributeError(
                    "parameters argument given to the Optimizer should not be None in dygraph mode."
                )

        if not isinstance(learning_rate, (float, LRScheduler)):
            raise TypeError(
216 217 218
                "learning rate should be float or LRScheduler, got %s here"
                % type(learning_rate)
            )
219 220 221 222 223 224 225 226 227 228 229
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )

        self._dtype = None
        # Infer the dtype form parameter
        if self._parameter_list:
            if isinstance(self._parameter_list[0], dict):
                for param_group in self._parameter_list:
230 231 232
                    assert (
                        'params' in param_group
                    ), 'params should be set in parameters if parameter groups are optimized in different options'
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
                self._dtype = self._parameter_list[0]['params'][0].dtype
            else:
                self._dtype = self._parameter_list[0].dtype

        # each program should have a independent learning rate
        # program -> tensor(learning_rate)
        self._learning_rate_map = dict()
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra tensors associated with the parameters
        # to train. These tensors are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
        self.helper = None
        self._opti_name_list = []
        self._accumulators_holder = {}
        self._param_device_map = dict()
        self.clear_gradients = self.clear_grad
M
MRXLT 已提交
250

R
Roc 已提交
251
        self.type = "adamw"
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        self._learning_rate = learning_rate
        self._params_name = set()
        self._apply_decay_param_fun = apply_decay_param_fun
        self._weight_decay = weight_decay
        self._grad_clip = grad_clip
        self._lr_ratio = lr_ratio
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._lazy_mode = lazy_mode
        self._multi_precision = multi_precision
        self._master_weights = {}

        self._default_dict = {
            'weight_decay': weight_decay,
            'beta1': beta1,
            'beta2': beta2,
            'epsilon': epsilon,
            'lazy_mode': lazy_mode,
271
            'grad_clip': grad_clip,
272 273 274 275 276 277 278 279
        }

        self._param_groups = []
        if self._parameter_list and isinstance(self._parameter_list[0], dict):
            for param_group in self._parameter_list:
                self._add_param_group(param_group.copy())
        else:
            self._param_groups = self._parameter_list
R
Roc 已提交
280

281 282 283
        self._use_multi_tensor = None
        self.regularization = None
        self._auxiliary_vars = {}
R
Roc 已提交
284 285 286 287 288 289 290 291 292 293

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

294
    def _add_param_group(self, param_group):
295
        """
296 297
        Add a param group to parameter_list.

298
        Args:
299 300
            param_group (dict): The group of Tensors to be optimzed with
            different optimization options.
301
        """
302 303 304 305 306 307
        params = param_group['params']
        if isinstance(params, Parameter):
            param_group['params'] = [params]
        elif isinstance(params, set):
            raise TypeError(
                "optimizer parameters should be in ordered collections,"
308 309
                "but received set, please use list instead."
            )
310 311
        else:
            param_group['params'] = list(params)
312

313 314 315 316 317 318 319 320 321 322
        # Update optimization options for each groups
        for k, v in self._default_dict.items():
            param_group.setdefault(k, v)

        param_set = set()
        for group in self._param_groups:
            param_set.update(set(group['params']))

        if not param_set.isdisjoint(set(param_group['params'])):
            raise ValueError(
323 324
                "some parameters appear in more than one parameter group"
            )
325

326 327
        for param in param_group['params']:
            param.optimize_attr['learning_rate'] = param_group.get(
328 329
                'learning_rate', 1.0
            )
330 331 332 333 334 335

        self._param_groups.append(param_group)

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
336
        else:
337 338 339 340
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
341
            var = paddle.static.create_global_var(
342 343 344 345 346 347
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
348
            block = self.helper.startup_program.global_block()
349 350 351 352 353 354 355 356 357
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
358 359 360 361 362 363 364 365 366 367 368 369 370
            self._master_weights[param.name] = var
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
371 372
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param.dtype
373 374 375 376
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
377
        target_name = target_param.name
378 379 380 381
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
382 383
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
384 385 386
                    name, target_name
                )
            )
387 388 389 390
        return self._accumulators[name][target_name]

    def _add_moments_pows(self, p):
        acc_dtype = p.dtype
391
        if self._is_dtype_fp16_or_bf16(acc_dtype):
392 393 394 395 396 397 398
            acc_dtype = core.VarDesc.VarType.FP32
        self._add_accumulator(self._moment1_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(self._moment2_acc_str, p, dtype=acc_dtype)
        self._add_accumulator(
            name=self._beta1_pow_acc_str,
            param=p,
            dtype=acc_dtype,
399 400 401
            fill_value=0.9
            if isinstance(self._beta1, Variable)
            else self._beta1,
402
            shape=[1],
403 404 405
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
406 407 408 409
        self._add_accumulator(
            name=self._beta2_pow_acc_str,
            param=p,
            dtype=acc_dtype,
410 411 412
            fill_value=0.999
            if isinstance(self._beta2, Variable)
            else self._beta2,
413
            shape=[1],
414 415 416
            type=core.VarDesc.VarType.LOD_TENSOR,
            device='cpu',
        )
417 418 419 420 421 422 423 424

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
425
            if self._multi_precision and self._is_dtype_fp16_or_bf16(p.dtype):
426 427 428
                master_p = self._create_master_weight(p)
                self._add_moments_pows(master_p)
                continue
429
            if (
430
                self._is_dtype_fp16_or_bf16(p.dtype)
431 432
                and not self._multi_precision
            ):
433
                warnings.warn(
434
                    "Accumulating with FP16 or BF16 in optimizer can lead to poor accuracy or slow convergence."
435 436 437
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
            self._add_moments_pows(p)
438

W
WangXi 已提交
439
    def _append_optimize_op(self, block, param_and_grad):
R
Roc 已提交
440 441 442 443 444 445 446
        assert isinstance(block, framework.Block)
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
        param, grad = param_and_grad

        # Whether we should do weight decay for the parameter.
        with_decay = True
447 448 449 450
        if (
            self._apply_decay_param_fun is not None
            and not self._apply_decay_param_fun(param.name)
        ):
R
Roc 已提交
451 452
            with_decay = False

453 454 455 456 457 458 459 460 461 462 463 464
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )
465 466
        find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(
            param_and_grad[0].dtype
467 468 469 470 471 472
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
R
Roc 已提交
473 474
        lr = self._create_param_lr(param_and_grad)

Z
zhaoyingli 已提交
475
        # create the adamw optimize op
J
Jiabin Yang 已提交
476
        if framework._non_static_mode():
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
            lr_ratio_ = (
                1.0
                if self._lr_ratio is None
                else self._lr_ratio(param_and_grad[0])
            )

            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
493

C
chentianyu03 已提交
494 495
            if framework.in_dygraph_mode():
                found_inf = self._get_auxiliary_var('found_inf')
496
                _, _, _, _, _, _ = _C_ops.adamw_(
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
                    param_and_grad[0],
                    param_and_grad[1],
                    lr,
                    moment1,
                    moment2,
                    beta1_pow_acc,
                    beta2_pow_acc,
                    master_weight,
                    found_inf,
                    _beta1,
                    _beta2,
                    self._epsilon,
                    lr_ratio_,
                    self._weight_decay,
                    with_decay,
                    self._lazy_mode,
                    1000,
                    find_master,
                    False,
                )
C
chentianyu03 已提交
517
            else:
518
                _, _, _, _, _, _ = _legacy_C_ops.adamw(
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
                    param_and_grad[0],
                    param_and_grad[1],
                    lr,
                    moment1,
                    moment2,
                    beta1_pow_acc,
                    beta2_pow_acc,
                    master_weight,
                    param_and_grad[0],
                    moment1,
                    moment2,
                    beta1_pow_acc,
                    beta2_pow_acc,
                    master_weight,
                    'epsilon',
                    self._epsilon,
                    'lazy_mode',
                    self._lazy_mode,
                    'min_row_size_to_use_multithread',
                    1000,
                    'beta1',
                    _beta1,
                    'beta2',
                    _beta2,
                    "with_decay",
                    with_decay,
                    'coeff',
                    self._weight_decay,
                    'multi_precision',
                    find_master,
                    'lr_ratio',
                    lr_ratio_,
                )
R
Roc 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
            return None

        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "LearningRate": [lr],
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc],
        }

        # Pass found_inf to adamw, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
        }
        attrs = {
578 579 580 581 582 583 584 585
            "lazy_mode": self._lazy_mode,
            "min_row_size_to_use_multithread": 1000,
            "multi_precision": find_master,
            "with_decay": with_decay,
            "coeff": self._weight_decay,
            "lr_ratio": 1.0
            if self._lr_ratio is None
            else self._lr_ratio(param_and_grad[0]),
R
Roc 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

605 606 607 608 609 610 611
        adamw_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
R
Roc 已提交
612 613

        return adamw_op
M
MRXLT 已提交
614 615 616

    def __str__(self):
        return " ".join(["Weight Decay, params:", ",".join(self._params_name)])
617

618 619 620 621 622 623 624 625 626 627 628 629 630
    @imperative_base.no_grad
    @framework.dygraph_only
    def step(self):
        """
        Execute the optimizer and update parameters once.

        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
631

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
                a = paddle.rand([2,13], dtype="float32")
                linear = paddle.nn.Linear(13, 5)
                # This can be any optimizer supported by dygraph.
                opt = paddle.optimizer.AdamW(learning_rate = 0.01,
                                            parameters = linear.parameters())
                out = linear(a)
                out.backward()
                opt.step()
                opt.clear_grad()
        """
        if not isinstance(self._parameter_list[0], dict):
            params_grads = []
            for param in self._parameter_list:
                if param.stop_gradient:
                    continue
                if param._grad_ivar() is not None:
                    grad_var = param._grad_ivar()
                    if framework.in_dygraph_mode():
650 651 652 653 654
                        if (
                            hasattr(grad_var, "is_selected_rows")
                            and grad_var.is_selected_rows()
                            and self.regularization is not None
                        ):
655 656 657 658
                            raise RuntimeError(
                                "AdamW don't support weight_decay with sparse parameters, please set it to None."
                            )
                    else:
659 660 661 662 663
                        if (
                            hasattr(grad_var, "_is_sparse")
                            and grad_var._is_sparse()
                            and self.regularization is not None
                        ):
664 665 666 667 668
                            raise RuntimeError(
                                "AdamW don't support weight_decay with sparse parameters, please set it to None."
                            )
                    params_grads.append((param, grad_var))

669 670 671
            optimize_ops = self._apply_optimize(
                loss=None, startup_program=None, params_grads=params_grads
            )
672 673 674 675 676 677 678 679 680 681
        else:
            # optimize parameters in groups
            for param_group in self._param_groups:
                params_grads = defaultdict(lambda: list())
                for param in param_group['params']:
                    if param.stop_gradient:
                        continue
                    if param._grad_ivar() is not None:
                        grad_var = param._grad_ivar()
                        if framework.in_dygraph_mode():
682 683 684 685 686
                            if (
                                hasattr(grad_var, "is_selected_rows")
                                and grad_var.is_selected_rows()
                                and self.regularization is not None
                            ):
687 688 689 690
                                raise RuntimeError(
                                    "AdamW don't support weight_decay with sparse parameters, please set it to None."
                                )
                        else:
691 692 693 694 695
                            if (
                                hasattr(grad_var, "_is_sparse")
                                and grad_var._is_sparse()
                                and self.regularization is not None
                            ):
696 697 698 699 700
                                raise RuntimeError(
                                    "AdamW don't support weight_decay with sparse parameters, please set it to None."
                                )
                        params_grads['params'].append((param, grad_var))
                params_grads.update(
701 702 703 704 705
                    {k: v for k, v in param_group.items() if k != 'params'}
                )
                self._apply_optimize(
                    loss=None, startup_program=None, params_grads=params_grads
                )
706

707
    def _update_param_group(self, parameters):
708 709 710
        self._beta1 = parameters.get('beta1', self._default_dict['beta1'])
        self._beta2 = parameters.get('beta2', self._default_dict['beta2'])
        self._epsilon = parameters.get('epsilon', self._default_dict['epsilon'])
711 712 713 714 715 716
        self._lazy_mode = parameters.get(
            'lazy_mode', self._default_dict['lazy_mode']
        )
        self._weight_decay = parameters.get(
            'weight_decay', self._default_dict['weight_decay']
        )
717
        parameters = parameters.get('params')
718

719
        return parameters