composite_rules.py 22.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This file contains composite rules of nonbasic operations. There are some notes:
# 1. When define composite rule of some op, you can only use primitive ops defined in primitives.py.
# 2. The name and args of target op must be corresponding with standard description of op in
#    ops.yaml or legacy_ops.yaml.

Z
zqw_1997 已提交
20 21
import functools
import operator
22

23 24
from paddle.fluid import core

25 26 27 28 29 30 31 32 33 34 35 36
from .primitives import *  # noqa: F403
from .primreg import REGISTER_COMPOSITE, lookup_composite


def _composite(op, *args):
    _lowerrule = lookup_composite(op.type)
    return _lowerrule(op, *args)


@REGISTER_COMPOSITE('softmax')
def softmax_composite(x, axis):
    """define composite rule of op softmax"""
37 38 39 40
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    # Softmax need fp32 compute since it has sum op in
41 42
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
43 44
        is_amp = True
        x = cast(x, "float32")
C
cyber-pioneer 已提交
45 46
    if not x.shape:
        # do not return 1, to ensure gradients
47
        res = exp(x - x)
48 49
        if is_amp:
            res = cast(res, "float16")
C
cyber-pioneer 已提交
50
        return res
51 52 53 54
    max_temp = max(x, axis, keepdim=True)
    max_temp.stop_gradient = True
    molecular = exp(x - max_temp)
    denominator = sum(molecular, axis=axis, keepdim=True)
55
    res = divide(molecular, denominator)
56
    if is_amp:
57
        res = cast(res, dtype)
58
    return res
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74


@REGISTER_COMPOSITE('batch_norm')
def composite_batchnorm(
    x,
    run_mean,
    run_var,
    scale,
    bias,
    is_test,
    momentum,
    epsilon,
    data_layout,
    use_global_stats,
    trainable_statistics,
):
75 76 77 78 79
    """
    define composite rule of op batch_norm
    As the same with op kernel, the position of savedvariance indeed return inverse std.
    """

J
Jiabin Yang 已提交
80 81 82
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

83 84
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
85 86
        is_amp = True
        x = cast(x, "float32")
87 88
        scale = cast(scale, "float32") if scale else scale
        bias = cast(bias, "float32") if bias else bias
89 90 91 92 93 94 95 96 97 98 99

    feature_axis = (
        1 if data_layout in ('NC', 'NCL', 'NCHW', 'NCHWD') else len(x.shape) - 1
    )

    use_run_stat = (is_test and (not trainable_statistics)) or use_global_stats
    reduce_axes = tuple(i for i in range(len(x.shape)) if i != feature_axis)
    stats_shape = tuple(
        1 if i in reduce_axes else s for i, s in enumerate(x.shape)
    )

100
    half = full([1], -0.5, x.dtype)
J
Jiabin Yang 已提交
101

102 103 104
    if not use_run_stat:
        batch_mean = mean(x, reduce_axes)
        temp = mean(x * x, reduce_axes)
105
        batch_var = temp - batch_mean * batch_mean
106 107 108 109 110 111 112 113 114 115
        inv_std = pow((batch_var + epsilon), half)
        if data_layout == "NHWC":
            x_hat = (x - batch_mean) * inv_std
        else:
            x_hat = (x - reshape(batch_mean, stats_shape)) * reshape(
                inv_std, stats_shape
            )

        run_mean = momentum * run_mean + (1 - momentum) * batch_mean
        run_var = momentum * run_var + (1 - momentum) * batch_var
116
    else:
117 118 119 120 121 122 123 124 125 126 127 128 129
        batch_mean = zeros(run_mean.shape, run_mean.dtype)
        batch_var = zeros(run_var.shape, run_var.dtype)
        inv_std = pow((batch_var + epsilon), half)
        if data_layout == "NHWC":
            x_hat = (x - run_mean) * pow((run_var + epsilon), half)
        else:
            x_hat = (x - reshape(run_mean, stats_shape)) * pow(
                (reshape(run_var, stats_shape) + epsilon), half
            )
    if data_layout == "NHWC":
        y = scale * x_hat + bias
    else:
        y = reshape(scale, stats_shape) * x_hat + reshape(bias, stats_shape)
J
Jiabin Yang 已提交
130
    if is_amp:
131
        y = cast(y, dtype)
132 133

    # add op assign to detach tensor in void unsafe change outside the rule.
134 135
    batch_mean_ = assign(batch_mean)
    inv_std_ = assign(inv_std)
C
cyber-pioneer 已提交
136 137
    run_mean_ = assign(run_mean)
    run_var_ = assign(run_var)
138

I
iLeGend 已提交
139
    # reserve_space is not needed in composite rule, but still ruturn None to keep same as phi op definition.
C
cyber-pioneer 已提交
140
    reserve_space = None
141 142 143 144
    if not use_run_stat:
        return y, run_mean_, run_var_, batch_mean_, inv_std_, reserve_space
    else:
        return y, run_mean_, run_var_, None, None, reserve_space
G
GGBond8488 已提交
145 146


X
xiaoguoguo626807 已提交
147 148 149 150 151 152 153
@REGISTER_COMPOSITE('layer_norm')
def layernorm_composite(x, scale, bias, epsilon, begin_norm_axis):
    """
    define composite rule of op layer_norm
    out = (x - mean(x)) / sqrt(var + epsilon))
    var = mean((x-mean(x))^2)
    """
154 155 156
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

157 158
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
159 160
        is_amp = True
        x = cast(x, "float32")
161 162
        scale = cast(scale, "float32") if scale else scale
        bias = cast(bias, "float32") if bias else bias
X
xiaoguoguo626807 已提交
163 164 165 166 167 168 169

    axis = tuple(range(begin_norm_axis, len(x.shape)))
    mean_ = mean(x, axis=axis, keepdim=True)
    difference = x - mean_
    var_tmp1 = difference * difference
    variance = mean(var_tmp1, axis=axis, keepdim=True)
    var_tmp3 = variance + epsilon
170 171
    rsqrt_var = rsqrt(var_tmp3)
    out = difference * rsqrt_var
X
xiaoguoguo626807 已提交
172 173

    if scale is not None:
174
        if x.shape[begin_norm_axis:] != scale.shape:
175
            scale = reshape(scale, x.shape[begin_norm_axis:])
X
xiaoguoguo626807 已提交
176 177
        out = out * scale
    if bias is not None:
178
        if x.shape[begin_norm_axis:] != bias.shape:
179
            bias = reshape(bias, x.shape[begin_norm_axis:])
X
xiaoguoguo626807 已提交
180 181 182 183
        out = out + bias

    mean_ = reshape(mean_, [-1])
    variance = reshape(variance, [-1])
184
    if is_amp:
185
        out = cast(out, dtype)
X
xiaoguoguo626807 已提交
186 187 188
    return out, mean_, variance


189 190 191 192 193 194 195
@REGISTER_COMPOSITE('instance_norm')
def instancenorm_composite(x, scale, bias, epsilon):
    """
    define composite rule of op instance_norm
    out = (x - mean(x)) / sqrt(var + epsilon))
    var = mean((x-mean(x))^2)
    """
196 197 198 199 200 201 202 203 204 205
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
        is_amp = True
        x = cast(x, "float32")
        scale = cast(scale, "float32") if scale else scale
        bias = cast(bias, "float32") if bias else bias

206 207 208 209 210 211 212
    n, c, h, w = x.shape
    axis = tuple(range(2, len(x.shape)))
    mean_ = mean(x, axis=axis, keepdim=True)
    difference = x - mean_
    var_tmp1 = difference * difference
    variance = mean(var_tmp1, axis=axis, keepdim=True)
    var_tmp3 = variance + epsilon
Z
zyfncg 已提交
213
    sqrt_var = pow(var_tmp3, full([1], 0.5, dtype=var_tmp3.dtype))
214 215 216 217 218 219 220 221 222 223 224 225
    out = difference / sqrt_var

    if scale is not None:
        scale_tile = reshape(scale, [1, c, 1, 1])
        out = out * scale_tile
    if bias is not None:
        bias_tile = reshape(bias, [1, c, 1, 1])
        out = out + bias_tile

    mean_ = reshape(mean_, [-1])
    saved_variance = 1 / sqrt_var
    saved_variance = reshape(saved_variance, [-1])
226 227 228 229

    if is_amp:
        out = cast(out, dtype)

230 231 232
    return out, mean_, saved_variance


G
GGBond8488 已提交
233 234 235 236 237 238 239
@REGISTER_COMPOSITE('gelu')
def gelu_composite(x, approximate):
    """define composite rule of op gelu"""
    M_SQRT1_2 = (
        0.70710678118654752440  # /* 1/sqrt(2) */ copy from gelu-kernel.cc
    )
    M_2_SQRTPI = 1.12837916709551257390  # /* 2/sqrt(pi) */
240 241 242
    full_shape = x.shape if len(x.shape) == 0 else [1]
    one = ones(full_shape, x.dtype)
    half = full(full_shape, 0.5, x.dtype)
G
GGBond8488 已提交
243 244
    if approximate:
        # gelu(x) = 0.5 * x * (1 + tanh(sqrt(2 / \pi) * (x + 0.044715 * x^{3})))
245 246
        kAlpha = full(full_shape, M_2_SQRTPI * M_SQRT1_2, x.dtype)
        GELU_CONSTANT = full(full_shape, 0.044715, x.dtype)
G
GGBond8488 已提交
247 248 249 250 251 252 253 254 255
        tanh_out = tanh(kAlpha * (x + GELU_CONSTANT * x * x * x))
        out = x * half * (one + tanh_out)
        return out

    else:
        # gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
        cdf = half * (one + erf(x * full(x.shape, M_SQRT1_2, x.dtype)))
        out = x * cdf
        return out
Z
zqw_1997 已提交
256 257 258 259 260


@REGISTER_COMPOSITE('reduce_mean')
def mean_composite(x, axis, keepdim):
    """define composite rule of op mean"""
J
Jiabin Yang 已提交
261 262 263
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

264
    dtype = convert_dtype(x.dtype)
265
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
266 267 268
        is_amp = True
        x = cast(x, "float32")

269 270 271
    if axis in (None, []):
        axis = tuple(range(0, len(x.shape)))
    axes = (axis,) if isinstance(axis, int) else axis
Z
zqw_1997 已提交
272
    sum_x = sum(x, axis=axes, keepdim=keepdim)
273 274 275 276 277
    ele_nums_list = [x.shape[axis] for axis in axes]
    if ele_nums_list == []:
        value_to_fill = 1
    else:
        value_to_fill = functools.reduce(operator.mul, ele_nums_list)
Z
zqw_1997 已提交
278
    norm = fill_constant(
279
        shape=[],
Z
zqw_1997 已提交
280 281 282
        value=value_to_fill,
        dtype=sum_x.dtype,
    )
J
Jiabin Yang 已提交
283 284
    res = divide(sum_x, norm)
    if is_amp:
285
        res = cast(res, dtype)
J
Jiabin Yang 已提交
286
    return res
287 288


289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
@REGISTER_COMPOSITE('expand_v2')
def expand_v2_composite(x, shape):
    """
    define composite rule of op expnad_v2, expand_v2->expand
    repeat_times = shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    dim_out = len(shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


@REGISTER_COMPOSITE('expand_as_v2')
def expand_as_v2_composite(x, y, target_shape):
    """
    define composite rule of op expnad_as_v2, expand_as_v2->expand_as
    repeat_times = target_shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    if y is not None:
        target_shape = y.shape
    assert target_shape is not None
    dim_out = len(target_shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = target_shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
352 353 354 355 356 357 358 359
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


C
ccrrong 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373
@REGISTER_COMPOSITE('stack')
def stack_composite(x, axis):
    """
    define composite rule of op stack
    unsqueeze each dimension of the input (use reshape), and then concat
    """
    x_shape = x[0].shape
    if axis < 0:
        axis += len(x_shape) + 1
    out_shape = x_shape[:axis] + (1,) + x_shape[axis:]
    out = concat([reshape(item, out_shape) for item in x], axis)
    return out


374 375 376 377
@REGISTER_COMPOSITE('flatten_contiguous_range')
def flatten_contiguous_range_composite(x, start_axis, stop_axis):
    """
    define composite rule of op flatten, flatten_contiguous_range -> flatten.
378 379

    xshape is the dim with 0 added to the front of x, keep the shape information of x to calculate the grad.
380 381 382 383 384 385 386 387
    CINN doesn't need xshape for backward pass, return none instead of xshape.
    shape_out is the parameter of reshape, get from start_axis and stop_axis.
    out = reshape(x, shape=shape_out), xshape
    """
    shape_in = x.shape
    start_dim = start_axis if len(shape_in) != 0 else 0
    end_dim = stop_axis if len(shape_in) != 0 else 0
    assert start_dim <= end_dim
388 389 390
    if len(shape_in) == 0:
        return reshape(x, shape=[1]), None
    if start_dim == end_dim:
391 392 393 394 395 396 397 398 399 400 401 402 403
        return reshape(x, shape=shape_in), None
    slice_numel = 1
    for i in range(start_dim, end_dim + 1):
        slice_numel *= shape_in[i]
    shape_out = []
    for i in range(start_dim):
        shape_out.append(shape_in[i])
    shape_out.append(slice_numel)
    for i in range(end_dim + 1, len(shape_in)):
        shape_out.append(shape_in[i])
    return reshape(x, shape=shape_out), None


404 405 406 407 408 409 410 411 412 413 414 415 416
@REGISTER_COMPOSITE('dropout')
def dropout_composite(x, seed_tensor, p, is_test, mode, seed, fix_seed):
    """define composite rule of op dropout.
    upscale_in_train:
        train: out = input * mask / ( 1.0 - p )
        inference: out = input
    downscale_in_infer
        train: out = input * mask
        inference: out = input * (1.0 - p)
    """
    fix_seed = True if fix_seed is None else fix_seed
    seed = seed if fix_seed else 0
    upscale_in_train = mode == "upscale_in_train"
417

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
    mask = bernoulli(shape=x.shape, dtype=x.dtype, p=p, seed=seed)

    if upscale_in_train:
        if not is_test:
            # Process p=1.0 for avoid devide zero error (x*mask/(1.0-p))
            if p == 1.0:
                return 0.0 * x, zeros(x.shape, core.VarDesc.VarType.UINT8)
            else:
                return x * mask / (1.0 - p), cast(
                    mask, core.VarDesc.VarType.UINT8
                )
        else:
            return assign(x), cast(mask, core.VarDesc.VarType.UINT8)
    else:
        if not is_test:
            return x * mask, cast(mask, core.VarDesc.VarType.UINT8)
        else:
            return x * (1.0 - p), cast(mask, core.VarDesc.VarType.UINT8)


def bernoulli(shape, dtype, p, seed=0):
439 440 441
    from paddle.fluid.data_feeder import convert_dtype

    # TODO(jiabin) Fix uniform doesn't support float16 error in CINN
442 443 444
    new_dtype = (
        "float32" if convert_dtype(dtype) in ["float16", "uint16"] else dtype
    )
445 446
    return cast(
        greater_equal(
447
            uniform(shape, new_dtype, min=0.0, max=1.0, seed=seed),
448
            fill_constant(shape if len(shape) == 0 else [1], new_dtype, p),
449 450 451
        ),
        dtype,
    )
Z
zxcd 已提交
452 453


R
Roc 已提交
454 455 456 457 458 459 460 461 462 463
@REGISTER_COMPOSITE('hard_swish')
def hard_swish_composite(x):
    """define composite rule of op hard_swish.
    offset=3, threshold=6, scale=6
    out = minimum(
        maxmum(x + offset, 0), threshold
    ) * x / scale
    """
    threshold = 6.0
    scale = 6.0
464
    offset = 3.0
465
    full_shape = x.shape if len(x.shape) == 0 else [1]
R
Roc 已提交
466 467 468
    res = (
        minimum(
            maximum(
469 470
                x + full(full_shape, offset, dtype=x.dtype),
                full(full_shape, 0.0, dtype=x.dtype),
R
Roc 已提交
471
            ),
472
            full(full_shape, threshold, dtype=x.dtype),
R
Roc 已提交
473 474
        )
        * x
475
        / full(full_shape, scale, dtype=x.dtype)
R
Roc 已提交
476 477 478 479
    )
    return res


R
Roc 已提交
480 481 482 483 484 485 486 487 488
@REGISTER_COMPOSITE('index_select')
def index_select_composite(x, index, axis):
    """define composite rule of op index_select."""
    if axis < 0:
        axis = len(x.shape) + axis
    res = gather(x, index, axis=axis)
    return res


Z
zxcd 已提交
489 490 491 492 493 494
@REGISTER_COMPOSITE('sigmoid')
def sigmoid_composite(x):
    """
    define composite rule of op sigmoid
    res = 1 / (1 + exp(-x))
    """
J
Jiabin Yang 已提交
495 496 497
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

498 499
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
500 501 502
        is_amp = True
        x = cast(x, "float32")

Z
zxcd 已提交
503 504
    sum_temp = 1 + exp(-x)
    res = 1 / sum_temp
505
    return res if not is_amp else cast(res, dtype)
Z
zxcd 已提交
506 507


Z
zxcd 已提交
508 509 510 511 512 513
@REGISTER_COMPOSITE('silu')
def silu_composite(x):
    """
    define composite rule of op silu
    res = x / (1 + exp(-x))
    """
J
Jiabin Yang 已提交
514 515 516
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

517 518
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
519 520 521
        is_amp = True
        x = cast(x, "float32")

Z
zxcd 已提交
522 523
    sum_temp = 1 + exp(-x)
    res = x / sum_temp
524
    return res if not is_amp else cast(res, dtype)
525 526


527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
@REGISTER_COMPOSITE('meshgrid')
def meshgrid_composite(inputs):
    """
    define composite rule of op meshgrid
    If the input has N tensors of size S_0, ... S_n-1, then the output will also have N tensors, where
    each tensor is of shape (S_0, ..., S_n-1).
    E.g. a1 is Tensor [1,2,3]
         b1 is Tensor [4,5]
         r1, r2 = paddle.meshgrid([a1, b1])
         r1 is Tensor [[1,1], [2,2], [3,3]]
         r2 is Tensor [[4,5], [4,5], [4,5]]
    """
    size = len(inputs)
    shape = [1] * size
    for i in range(size):
        dim = inputs[i].dim()
        assert dim == 0 or dim == 1
        if dim == 1:
            shape[i] = inputs[i].shape[0]
    outputs = []
    for i in range(size):
        view_shape = [1] * size
        view_shape[i] = shape[i]
        outputs.append(inputs[i].reshape(view_shape).broadcast_to(shape))
    return outputs


554 555 556 557 558 559 560
@REGISTER_COMPOSITE('fill_any_like')
def fill_any_like(x, fill_value, dtype, place=None):
    """define composite rule of op full_like."""
    """op name: full_like  op type name: fill_any_like."""
    """arg place is not used, add it here to keep same as python api."""
    val = full(x.shape, fill_value, dtype)
    return val
K
Kang Zhao 已提交
561 562


563 564 565 566 567 568 569 570 571 572 573
@REGISTER_COMPOSITE('squeeze2')
def squeeze2_composite(x, axis):
    """define composite rule of squeeze"""
    """
    canonicalize dim within range 0 to rank and
    determine new shape after squeeze op
    if axis not specified, remove all dims equal to 1
    otherwise, remove dims equal to 1 in axis
    axis can only be list, not int
    """
    rank = len(x.shape)
574 575
    if rank == 0:
        return [assign(x), None]
576 577 578
    if len(axis) == 0:
        dims = set(range(rank))
    else:
579
        dims = {ax % rank for ax in axis}
580 581 582 583 584 585 586 587
    new_shape = []
    for d, s in enumerate(x.shape):
        if not (s == 1 and (d in dims)):
            new_shape.append(s)
    out = reshape(x, new_shape)
    return [out, None]


M
mhy-666 已提交
588 589 590 591 592 593
@REGISTER_COMPOSITE('sqrt')
def sqrt_composite(x):
    """
    define composite rule of op sqrt
    res = pow(x, 0.5)
    """
J
Jiabin Yang 已提交
594 595 596
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

597 598
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
599 600 601
        is_amp = True
        x = cast(x, "float32")

602
    y = full(x.shape if len(x.shape) == 0 else [1], 0.5, x.dtype)
M
mhy-666 已提交
603
    res = pow(x, y)
604
    return res if not is_amp else cast(res, dtype)
M
mhy-666 已提交
605 606


607 608 609 610 611 612
@REGISTER_COMPOSITE('pow')
def pow_composite(x, y):
    """
    define composite rule of op pow
    res = x^y
    """
J
Jiabin Yang 已提交
613 614 615
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

616 617
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
618 619 620
        is_amp = True
        x = cast(x, "float32")

621
    if isinstance(y, (int, float)):
622
        y = full(x.shape if len(x.shape) == 0 else [1], y, x.dtype)
623
    res = pow(x, y)
J
Jiabin Yang 已提交
624
    if is_amp:
625
        res = cast(res, dtype)
626 627 628
    return res


K
Kang Zhao 已提交
629 630 631 632
@REGISTER_COMPOSITE('relu')
def relu_composite(x):
    """define composite rule of op relu."""
    # relu(x) = max(x, 0)
633 634 635 636
    if len(x.shape) == 0:
        return maximum(x, full(x.shape, 0.0, x.dtype))
    else:
        return maximum(x, full([1], 0.0, x.dtype))
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656


@REGISTER_COMPOSITE('unsqueeze2')
def unsqueeze_composite(x, axis):
    """define composite rule of op unsqueeze"""
    """using reshape to implement unsqueeze op"""
    x_shape = list(x.shape)
    axis_list = list(axis)
    for i in axis_list:
        if i < 0:
            i += len(x_shape) + 1
        x_shape = (
            x_shape[:i]
            + [
                1,
            ]
            + x_shape[i:]
        )
    out = reshape(x, x_shape)
    return [out, None]
657 658 659 660 661 662


@REGISTER_COMPOSITE('rsqrt')
def rsqrt_composite(x):
    """define composite rule of op rsqrt."""
    # rsqrt(x) = x^(-0.5)
J
Jiabin Yang 已提交
663 664 665
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

666
    dtype = convert_dtype(x.dtype)
667
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
668 669
        is_amp = True
        x = cast(x, "float32")
670
    y = full(x.shape if len(x.shape) == 0 else [1], -0.5, x.dtype)
J
Jiabin Yang 已提交
671
    res = pow(x, y)
672
    return res if not is_amp else cast(res, dtype)
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688


@REGISTER_COMPOSITE('group_norm')
def group_norm_composite(x, scale, bias, epsilon, groups, data_layout):
    """
    define composite rule of op group_norm.
    x = ((x - mean) / sqrt(var + epsilon)) * scale + bias
    mean and var are computed from groups
    """
    # original GroupNorm op cannot support NHWC format
    assert data_layout == 'NCHW'
    N, C, H, W = x.shape

    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

689 690 691
    dtype = convert_dtype(x.dtype)
    # when inputs are float16 or bfloat16, convert to float32 in computing
    if dtype in ["float16", "uint16"]:
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
        is_amp = True
        x = cast(x, "float32")
        scale = cast(scale, "float32")
        bias = cast(bias, "float32")

    x = reshape(x, (N * groups, -1))
    mean_ = mean(x, axis=1, keepdim=True)
    var_ = mean(x * x, axis=1, keepdim=True) - mean_ * mean_
    var_ = maximum(var_, zeros_like(var_))
    var_inv = 1 / sqrt(var_ + epsilon)
    out = (x - mean_) * var_inv
    out = reshape(out, (N, C, H, W))
    if scale is not None:
        out = out * reshape(scale, (-1, 1, 1))
    if bias is not None:
        out = out + reshape(bias, (-1, 1, 1))
    ret_mean_ = reshape(mean_, (N, groups))
    ret_var_ = reshape(var_, (N, groups))
710
    # return output in float16 or bfloat16, mean and var in float32
711
    if is_amp:
712
        out = cast(out, dtype)
713
    return out, ret_mean_, ret_var_
714 715


X
xiaoguoguo626807 已提交
716 717 718 719 720 721 722 723
@REGISTER_COMPOSITE('sum')
def sum_composite(x):
    ans = 0
    for xi in x:
        ans += xi
    return ans


724 725 726 727 728 729 730
@REGISTER_COMPOSITE('leaky_relu')
def leaky_relu_composite(x, negative_slope):
    """define composite rule of op leaky_relu."""
    if negative_slope < 1.0:
        return maximum(x, negative_slope * x)
    else:
        return minimum(x, negative_slope * x)