composite_rules.py 20.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This file contains composite rules of nonbasic operations. There are some notes:
# 1. When define composite rule of some op, you can only use primitive ops defined in primitives.py.
# 2. The name and args of target op must be corresponding with standard description of op in
#    ops.yaml or legacy_ops.yaml.

Z
zqw_1997 已提交
20 21
import functools
import operator
22

23 24
from paddle.fluid import core

25 26 27 28 29 30 31 32 33 34 35 36
from .primitives import *  # noqa: F403
from .primreg import REGISTER_COMPOSITE, lookup_composite


def _composite(op, *args):
    _lowerrule = lookup_composite(op.type)
    return _lowerrule(op, *args)


@REGISTER_COMPOSITE('softmax')
def softmax_composite(x, axis):
    """define composite rule of op softmax"""
37 38 39 40 41 42 43
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    # Softmax need fp32 compute since it has sum op in
    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
C
cyber-pioneer 已提交
44 45
    if not x.shape:
        # do not return 1, to ensure gradients
46
        res = exp(x - x)
47 48
        if is_amp:
            res = cast(res, "float16")
C
cyber-pioneer 已提交
49
        return res
50 51 52 53
    max_temp = max(x, axis, keepdim=True)
    max_temp.stop_gradient = True
    molecular = exp(x - max_temp)
    denominator = sum(molecular, axis=axis, keepdim=True)
54
    res = divide(molecular, denominator)
55 56
    if is_amp:
        res = cast(res, "float16")
57
    return res
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73


@REGISTER_COMPOSITE('batch_norm')
def composite_batchnorm(
    x,
    run_mean,
    run_var,
    scale,
    bias,
    is_test,
    momentum,
    epsilon,
    data_layout,
    use_global_stats,
    trainable_statistics,
):
74 75 76 77 78
    """
    define composite rule of op batch_norm
    As the same with op kernel, the position of savedvariance indeed return inverse std.
    """

J
Jiabin Yang 已提交
79 80 81 82 83 84
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
85 86 87 88 89 90 91 92 93 94 95

    feature_axis = (
        1 if data_layout in ('NC', 'NCL', 'NCHW', 'NCHWD') else len(x.shape) - 1
    )

    use_run_stat = (is_test and (not trainable_statistics)) or use_global_stats
    reduce_axes = tuple(i for i in range(len(x.shape)) if i != feature_axis)
    stats_shape = tuple(
        1 if i in reduce_axes else s for i, s in enumerate(x.shape)
    )

96
    half = full([1], -0.5, x.dtype)
J
Jiabin Yang 已提交
97

98 99 100
    if not use_run_stat:
        batch_mean = mean(x, reduce_axes)
        temp = mean(x * x, reduce_axes)
101
        batch_var = temp - batch_mean * batch_mean
102 103 104 105 106 107 108 109 110 111
        inv_std = pow((batch_var + epsilon), half)
        if data_layout == "NHWC":
            x_hat = (x - batch_mean) * inv_std
        else:
            x_hat = (x - reshape(batch_mean, stats_shape)) * reshape(
                inv_std, stats_shape
            )

        run_mean = momentum * run_mean + (1 - momentum) * batch_mean
        run_var = momentum * run_var + (1 - momentum) * batch_var
112
    else:
113 114 115 116 117 118 119 120 121 122 123 124 125
        batch_mean = zeros(run_mean.shape, run_mean.dtype)
        batch_var = zeros(run_var.shape, run_var.dtype)
        inv_std = pow((batch_var + epsilon), half)
        if data_layout == "NHWC":
            x_hat = (x - run_mean) * pow((run_var + epsilon), half)
        else:
            x_hat = (x - reshape(run_mean, stats_shape)) * pow(
                (reshape(run_var, stats_shape) + epsilon), half
            )
    if data_layout == "NHWC":
        y = scale * x_hat + bias
    else:
        y = reshape(scale, stats_shape) * x_hat + reshape(bias, stats_shape)
J
Jiabin Yang 已提交
126 127
    if is_amp:
        y = cast(y, "float16")
128 129

    # add op assign to detach tensor in void unsafe change outside the rule.
130 131
    batch_mean_ = assign(batch_mean)
    inv_std_ = assign(inv_std)
C
cyber-pioneer 已提交
132 133
    run_mean_ = assign(run_mean)
    run_var_ = assign(run_var)
134

I
iLeGend 已提交
135
    # reserve_space is not needed in composite rule, but still ruturn None to keep same as phi op definition.
C
cyber-pioneer 已提交
136
    reserve_space = None
137 138 139 140
    if not use_run_stat:
        return y, run_mean_, run_var_, batch_mean_, inv_std_, reserve_space
    else:
        return y, run_mean_, run_var_, None, None, reserve_space
G
GGBond8488 已提交
141 142


X
xiaoguoguo626807 已提交
143 144 145 146 147 148 149
@REGISTER_COMPOSITE('layer_norm')
def layernorm_composite(x, scale, bias, epsilon, begin_norm_axis):
    """
    define composite rule of op layer_norm
    out = (x - mean(x)) / sqrt(var + epsilon))
    var = mean((x-mean(x))^2)
    """
150 151 152 153 154 155
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
X
xiaoguoguo626807 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

    axis = tuple(range(begin_norm_axis, len(x.shape)))
    mean_ = mean(x, axis=axis, keepdim=True)
    difference = x - mean_
    var_tmp1 = difference * difference
    variance = mean(var_tmp1, axis=axis, keepdim=True)
    var_tmp3 = variance + epsilon
    sqrt_var = sqrt(var_tmp3)
    out = difference / sqrt_var

    if scale is not None:
        scale = reshape(scale, x.shape[begin_norm_axis:])
        out = out * scale
    if bias is not None:
        bias = reshape(bias, x.shape[begin_norm_axis:])
        out = out + bias

    mean_ = reshape(mean_, [-1])
    variance = reshape(variance, [-1])
175 176
    if is_amp:
        out = cast(out, "float16")
177

X
xiaoguoguo626807 已提交
178 179 180
    return out, mean_, variance


181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
@REGISTER_COMPOSITE('instance_norm')
def instancenorm_composite(x, scale, bias, epsilon):
    """
    define composite rule of op instance_norm
    out = (x - mean(x)) / sqrt(var + epsilon))
    var = mean((x-mean(x))^2)
    """
    n, c, h, w = x.shape
    axis = tuple(range(2, len(x.shape)))
    mean_ = mean(x, axis=axis, keepdim=True)
    difference = x - mean_
    var_tmp1 = difference * difference
    variance = mean(var_tmp1, axis=axis, keepdim=True)
    var_tmp3 = variance + epsilon
    sqrt_var = pow(var_tmp3, full([], 0.5, dtype=var_tmp3.dtype))
    out = difference / sqrt_var

    if scale is not None:
        scale_tile = reshape(scale, [1, c, 1, 1])
        out = out * scale_tile
    if bias is not None:
        bias_tile = reshape(bias, [1, c, 1, 1])
        out = out + bias_tile

    mean_ = reshape(mean_, [-1])
    saved_variance = 1 / sqrt_var
    saved_variance = reshape(saved_variance, [-1])
    return out, mean_, saved_variance


G
GGBond8488 已提交
211 212 213 214 215 216 217
@REGISTER_COMPOSITE('gelu')
def gelu_composite(x, approximate):
    """define composite rule of op gelu"""
    M_SQRT1_2 = (
        0.70710678118654752440  # /* 1/sqrt(2) */ copy from gelu-kernel.cc
    )
    M_2_SQRTPI = 1.12837916709551257390  # /* 2/sqrt(pi) */
218 219 220
    full_shape = x.shape if len(x.shape) == 0 else [1]
    one = ones(full_shape, x.dtype)
    half = full(full_shape, 0.5, x.dtype)
G
GGBond8488 已提交
221 222
    if approximate:
        # gelu(x) = 0.5 * x * (1 + tanh(sqrt(2 / \pi) * (x + 0.044715 * x^{3})))
223 224
        kAlpha = full(full_shape, M_2_SQRTPI * M_SQRT1_2, x.dtype)
        GELU_CONSTANT = full(full_shape, 0.044715, x.dtype)
G
GGBond8488 已提交
225 226 227 228 229 230 231 232 233
        tanh_out = tanh(kAlpha * (x + GELU_CONSTANT * x * x * x))
        out = x * half * (one + tanh_out)
        return out

    else:
        # gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
        cdf = half * (one + erf(x * full(x.shape, M_SQRT1_2, x.dtype)))
        out = x * cdf
        return out
Z
zqw_1997 已提交
234 235 236 237 238


@REGISTER_COMPOSITE('reduce_mean')
def mean_composite(x, axis, keepdim):
    """define composite rule of op mean"""
J
Jiabin Yang 已提交
239 240 241 242 243 244 245
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")

Z
zqw_1997 已提交
246 247 248 249 250 251 252
    axes = axis or list(range(0, len(x.shape)))
    axes = [axes] if isinstance(axes, int) else axes
    sum_x = sum(x, axis=axes, keepdim=keepdim)
    value_to_fill = functools.reduce(
        operator.mul, [x.shape[axis] for axis in axes]
    )
    norm = fill_constant(
253
        shape=x.shape if len(x.shape) == 0 else [1],
Z
zqw_1997 已提交
254 255 256
        value=value_to_fill,
        dtype=sum_x.dtype,
    )
J
Jiabin Yang 已提交
257 258 259 260
    res = divide(sum_x, norm)
    if is_amp:
        res = cast(res, "float16")
    return res
261 262


263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
@REGISTER_COMPOSITE('expand_v2')
def expand_v2_composite(x, shape):
    """
    define composite rule of op expnad_v2, expand_v2->expand
    repeat_times = shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    dim_out = len(shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


@REGISTER_COMPOSITE('expand_as_v2')
def expand_as_v2_composite(x, y, target_shape):
    """
    define composite rule of op expnad_as_v2, expand_as_v2->expand_as
    repeat_times = target_shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    if y is not None:
        target_shape = y.shape
    assert target_shape is not None
    dim_out = len(target_shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = target_shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
326 327 328 329 330 331 332 333
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


C
ccrrong 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347
@REGISTER_COMPOSITE('stack')
def stack_composite(x, axis):
    """
    define composite rule of op stack
    unsqueeze each dimension of the input (use reshape), and then concat
    """
    x_shape = x[0].shape
    if axis < 0:
        axis += len(x_shape) + 1
    out_shape = x_shape[:axis] + (1,) + x_shape[axis:]
    out = concat([reshape(item, out_shape) for item in x], axis)
    return out


348 349 350 351
@REGISTER_COMPOSITE('flatten_contiguous_range')
def flatten_contiguous_range_composite(x, start_axis, stop_axis):
    """
    define composite rule of op flatten, flatten_contiguous_range -> flatten.
352 353

    xshape is the dim with 0 added to the front of x, keep the shape information of x to calculate the grad.
354 355 356 357 358 359 360 361
    CINN doesn't need xshape for backward pass, return none instead of xshape.
    shape_out is the parameter of reshape, get from start_axis and stop_axis.
    out = reshape(x, shape=shape_out), xshape
    """
    shape_in = x.shape
    start_dim = start_axis if len(shape_in) != 0 else 0
    end_dim = stop_axis if len(shape_in) != 0 else 0
    assert start_dim <= end_dim
362 363 364
    if len(shape_in) == 0:
        return reshape(x, shape=[1]), None
    if start_dim == end_dim:
365 366 367 368 369 370 371 372 373 374 375 376 377
        return reshape(x, shape=shape_in), None
    slice_numel = 1
    for i in range(start_dim, end_dim + 1):
        slice_numel *= shape_in[i]
    shape_out = []
    for i in range(start_dim):
        shape_out.append(shape_in[i])
    shape_out.append(slice_numel)
    for i in range(end_dim + 1, len(shape_in)):
        shape_out.append(shape_in[i])
    return reshape(x, shape=shape_out), None


378 379 380 381 382 383 384 385 386 387 388 389 390
@REGISTER_COMPOSITE('dropout')
def dropout_composite(x, seed_tensor, p, is_test, mode, seed, fix_seed):
    """define composite rule of op dropout.
    upscale_in_train:
        train: out = input * mask / ( 1.0 - p )
        inference: out = input
    downscale_in_infer
        train: out = input * mask
        inference: out = input * (1.0 - p)
    """
    fix_seed = True if fix_seed is None else fix_seed
    seed = seed if fix_seed else 0
    upscale_in_train = mode == "upscale_in_train"
391

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    mask = bernoulli(shape=x.shape, dtype=x.dtype, p=p, seed=seed)

    if upscale_in_train:
        if not is_test:
            # Process p=1.0 for avoid devide zero error (x*mask/(1.0-p))
            if p == 1.0:
                return 0.0 * x, zeros(x.shape, core.VarDesc.VarType.UINT8)
            else:
                return x * mask / (1.0 - p), cast(
                    mask, core.VarDesc.VarType.UINT8
                )
        else:
            return assign(x), cast(mask, core.VarDesc.VarType.UINT8)
    else:
        if not is_test:
            return x * mask, cast(mask, core.VarDesc.VarType.UINT8)
        else:
            return x * (1.0 - p), cast(mask, core.VarDesc.VarType.UINT8)


def bernoulli(shape, dtype, p, seed=0):
413 414 415 416
    from paddle.fluid.data_feeder import convert_dtype

    # TODO(jiabin) Fix uniform doesn't support float16 error in CINN
    new_dtype = "float32" if convert_dtype(dtype) == "float16" else dtype
417 418
    return cast(
        greater_equal(
419
            uniform(shape, new_dtype, min=0.0, max=1.0, seed=seed),
420
            fill_constant(shape if len(shape) == 0 else [1], new_dtype, p),
421 422 423
        ),
        dtype,
    )
Z
zxcd 已提交
424 425


R
Roc 已提交
426 427 428 429 430 431 432 433 434 435 436
@REGISTER_COMPOSITE('hard_swish')
def hard_swish_composite(x):
    """define composite rule of op hard_swish.
    offset=3, threshold=6, scale=6
    out = minimum(
        maxmum(x + offset, 0), threshold
    ) * x / scale
    """
    offset = 3.0
    threshold = 6.0
    scale = 6.0
437
    full_shape = x.shape if len(x.shape) == 0 else [1]
R
Roc 已提交
438 439 440
    res = (
        minimum(
            maximum(
441 442
                x + full(full_shape, offset, dtype=x.dtype),
                full(full_shape, 0.0, dtype=x.dtype),
R
Roc 已提交
443
            ),
444
            full(full_shape, threshold, dtype=x.dtype),
R
Roc 已提交
445 446
        )
        * x
447
        / full(full_shape, scale, dtype=x.dtype)
R
Roc 已提交
448 449 450 451
    )
    return res


R
Roc 已提交
452 453 454 455 456 457 458 459 460
@REGISTER_COMPOSITE('index_select')
def index_select_composite(x, index, axis):
    """define composite rule of op index_select."""
    if axis < 0:
        axis = len(x.shape) + axis
    res = gather(x, index, axis=axis)
    return res


Z
zxcd 已提交
461 462 463 464 465 466
@REGISTER_COMPOSITE('sigmoid')
def sigmoid_composite(x):
    """
    define composite rule of op sigmoid
    res = 1 / (1 + exp(-x))
    """
J
Jiabin Yang 已提交
467 468 469 470 471 472 473
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")

Z
zxcd 已提交
474 475
    sum_temp = 1 + exp(-x)
    res = 1 / sum_temp
J
Jiabin Yang 已提交
476
    return res if not is_amp else cast(res, "float16")
Z
zxcd 已提交
477 478


Z
zxcd 已提交
479 480 481 482 483 484
@REGISTER_COMPOSITE('silu')
def silu_composite(x):
    """
    define composite rule of op silu
    res = x / (1 + exp(-x))
    """
J
Jiabin Yang 已提交
485 486 487 488 489 490 491
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")

Z
zxcd 已提交
492 493
    sum_temp = 1 + exp(-x)
    res = x / sum_temp
J
Jiabin Yang 已提交
494
    return res if not is_amp else cast(res, "float16")
495 496


497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
@REGISTER_COMPOSITE('meshgrid')
def meshgrid_composite(inputs):
    """
    define composite rule of op meshgrid
    If the input has N tensors of size S_0, ... S_n-1, then the output will also have N tensors, where
    each tensor is of shape (S_0, ..., S_n-1).
    E.g. a1 is Tensor [1,2,3]
         b1 is Tensor [4,5]
         r1, r2 = paddle.meshgrid([a1, b1])
         r1 is Tensor [[1,1], [2,2], [3,3]]
         r2 is Tensor [[4,5], [4,5], [4,5]]
    """
    size = len(inputs)
    shape = [1] * size
    for i in range(size):
        dim = inputs[i].dim()
        assert dim == 0 or dim == 1
        if dim == 1:
            shape[i] = inputs[i].shape[0]
    outputs = []
    for i in range(size):
        view_shape = [1] * size
        view_shape[i] = shape[i]
        outputs.append(inputs[i].reshape(view_shape).broadcast_to(shape))
    return outputs


524 525 526 527 528 529 530
@REGISTER_COMPOSITE('fill_any_like')
def fill_any_like(x, fill_value, dtype, place=None):
    """define composite rule of op full_like."""
    """op name: full_like  op type name: fill_any_like."""
    """arg place is not used, add it here to keep same as python api."""
    val = full(x.shape, fill_value, dtype)
    return val
K
Kang Zhao 已提交
531 532


533 534 535 536 537 538 539 540 541 542 543 544 545 546
@REGISTER_COMPOSITE('squeeze2')
def squeeze2_composite(x, axis):
    """define composite rule of squeeze"""
    """
    canonicalize dim within range 0 to rank and
    determine new shape after squeeze op
    if axis not specified, remove all dims equal to 1
    otherwise, remove dims equal to 1 in axis
    axis can only be list, not int
    """
    rank = len(x.shape)
    if len(axis) == 0:
        dims = set(range(rank))
    else:
547
        dims = {ax % rank for ax in axis}
548 549 550 551 552 553 554 555
    new_shape = []
    for d, s in enumerate(x.shape):
        if not (s == 1 and (d in dims)):
            new_shape.append(s)
    out = reshape(x, new_shape)
    return [out, None]


M
mhy-666 已提交
556 557 558 559 560 561
@REGISTER_COMPOSITE('sqrt')
def sqrt_composite(x):
    """
    define composite rule of op sqrt
    res = pow(x, 0.5)
    """
J
Jiabin Yang 已提交
562 563 564 565 566 567 568
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")

569
    y = full(x.shape if len(x.shape) == 0 else [1], 0.5, x.dtype)
M
mhy-666 已提交
570
    res = pow(x, y)
J
Jiabin Yang 已提交
571
    return res if not is_amp else cast(res, "float16")
M
mhy-666 已提交
572 573


574 575 576 577 578 579
@REGISTER_COMPOSITE('pow')
def pow_composite(x, y):
    """
    define composite rule of op pow
    res = x^y
    """
J
Jiabin Yang 已提交
580 581 582 583 584 585 586
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")

587
    if isinstance(y, (int, float)):
588
        y = full(x.shape if len(x.shape) == 0 else [1], y, x.dtype)
589
    res = pow(x, y)
J
Jiabin Yang 已提交
590 591
    if is_amp:
        res = cast(res, "float16")
592 593 594
    return res


K
Kang Zhao 已提交
595 596 597 598
@REGISTER_COMPOSITE('relu')
def relu_composite(x):
    """define composite rule of op relu."""
    # relu(x) = max(x, 0)
599 600 601 602
    if len(x.shape) == 0:
        return maximum(x, full(x.shape, 0.0, x.dtype))
    else:
        return maximum(x, full([1], 0.0, x.dtype))
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622


@REGISTER_COMPOSITE('unsqueeze2')
def unsqueeze_composite(x, axis):
    """define composite rule of op unsqueeze"""
    """using reshape to implement unsqueeze op"""
    x_shape = list(x.shape)
    axis_list = list(axis)
    for i in axis_list:
        if i < 0:
            i += len(x_shape) + 1
        x_shape = (
            x_shape[:i]
            + [
                1,
            ]
            + x_shape[i:]
        )
    out = reshape(x, x_shape)
    return [out, None]
623 624 625 626 627 628


@REGISTER_COMPOSITE('rsqrt')
def rsqrt_composite(x):
    """define composite rule of op rsqrt."""
    # rsqrt(x) = x^(-0.5)
J
Jiabin Yang 已提交
629 630 631 632 633 634
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
635
    y = full(x.shape if len(x.shape) == 0 else [1], -0.5, x.dtype)
J
Jiabin Yang 已提交
636 637
    res = pow(x, y)
    return res if not is_amp else cast(res, "float16")
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677


@REGISTER_COMPOSITE('group_norm')
def group_norm_composite(x, scale, bias, epsilon, groups, data_layout):
    """
    define composite rule of op group_norm.
    x = ((x - mean) / sqrt(var + epsilon)) * scale + bias
    mean and var are computed from groups
    """
    # original GroupNorm op cannot support NHWC format
    assert data_layout == 'NCHW'
    N, C, H, W = x.shape

    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    # when inputs are float16, convert to float32 in computing
    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
        scale = cast(scale, "float32")
        bias = cast(bias, "float32")

    x = reshape(x, (N * groups, -1))
    mean_ = mean(x, axis=1, keepdim=True)
    var_ = mean(x * x, axis=1, keepdim=True) - mean_ * mean_
    var_ = maximum(var_, zeros_like(var_))
    var_inv = 1 / sqrt(var_ + epsilon)
    out = (x - mean_) * var_inv
    out = reshape(out, (N, C, H, W))
    if scale is not None:
        out = out * reshape(scale, (-1, 1, 1))
    if bias is not None:
        out = out + reshape(bias, (-1, 1, 1))
    ret_mean_ = reshape(mean_, (N, groups))
    ret_var_ = reshape(var_, (N, groups))
    # return output in float16, mean and var in float32
    if is_amp:
        out = cast(out, "float16")
    return out, ret_mean_, ret_var_