composite_rules.py 22.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This file contains composite rules of nonbasic operations. There are some notes:
# 1. When define composite rule of some op, you can only use primitive ops defined in primitives.py.
# 2. The name and args of target op must be corresponding with standard description of op in
#    ops.yaml or legacy_ops.yaml.

Z
zqw_1997 已提交
20 21
import functools
import operator
22

23 24
from paddle.fluid import core

25 26 27 28 29 30 31 32 33 34 35 36
from .primitives import *  # noqa: F403
from .primreg import REGISTER_COMPOSITE, lookup_composite


def _composite(op, *args):
    _lowerrule = lookup_composite(op.type)
    return _lowerrule(op, *args)


@REGISTER_COMPOSITE('softmax')
def softmax_composite(x, axis):
    """define composite rule of op softmax"""
37 38 39 40
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    # Softmax need fp32 compute since it has sum op in
41 42
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
43 44
        is_amp = True
        x = cast(x, "float32")
C
cyber-pioneer 已提交
45 46
    if not x.shape:
        # do not return 1, to ensure gradients
47
        res = exp(x - x)
48 49
        if is_amp:
            res = cast(res, "float16")
C
cyber-pioneer 已提交
50
        return res
51 52 53 54
    max_temp = max(x, axis, keepdim=True)
    max_temp.stop_gradient = True
    molecular = exp(x - max_temp)
    denominator = sum(molecular, axis=axis, keepdim=True)
55
    res = divide(molecular, denominator)
56
    if is_amp:
57
        res = cast(res, dtype)
58
    return res
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74


@REGISTER_COMPOSITE('batch_norm')
def composite_batchnorm(
    x,
    run_mean,
    run_var,
    scale,
    bias,
    is_test,
    momentum,
    epsilon,
    data_layout,
    use_global_stats,
    trainable_statistics,
):
75 76 77 78 79
    """
    define composite rule of op batch_norm
    As the same with op kernel, the position of savedvariance indeed return inverse std.
    """

J
Jiabin Yang 已提交
80 81 82
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

83 84
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
85 86
        is_amp = True
        x = cast(x, "float32")
87 88
        scale = cast(scale, "float32") if scale else scale
        bias = cast(bias, "float32") if bias else bias
89 90 91 92 93 94 95 96 97 98 99

    feature_axis = (
        1 if data_layout in ('NC', 'NCL', 'NCHW', 'NCHWD') else len(x.shape) - 1
    )

    use_run_stat = (is_test and (not trainable_statistics)) or use_global_stats
    reduce_axes = tuple(i for i in range(len(x.shape)) if i != feature_axis)
    stats_shape = tuple(
        1 if i in reduce_axes else s for i, s in enumerate(x.shape)
    )

100
    half = full([1], -0.5, x.dtype)
J
Jiabin Yang 已提交
101

102 103 104
    if not use_run_stat:
        batch_mean = mean(x, reduce_axes)
        temp = mean(x * x, reduce_axes)
105
        batch_var = temp - batch_mean * batch_mean
106 107 108 109 110 111 112 113 114 115
        inv_std = pow((batch_var + epsilon), half)
        if data_layout == "NHWC":
            x_hat = (x - batch_mean) * inv_std
        else:
            x_hat = (x - reshape(batch_mean, stats_shape)) * reshape(
                inv_std, stats_shape
            )

        run_mean = momentum * run_mean + (1 - momentum) * batch_mean
        run_var = momentum * run_var + (1 - momentum) * batch_var
116
    else:
117 118 119 120 121 122 123 124 125 126 127 128 129
        batch_mean = zeros(run_mean.shape, run_mean.dtype)
        batch_var = zeros(run_var.shape, run_var.dtype)
        inv_std = pow((batch_var + epsilon), half)
        if data_layout == "NHWC":
            x_hat = (x - run_mean) * pow((run_var + epsilon), half)
        else:
            x_hat = (x - reshape(run_mean, stats_shape)) * pow(
                (reshape(run_var, stats_shape) + epsilon), half
            )
    if data_layout == "NHWC":
        y = scale * x_hat + bias
    else:
        y = reshape(scale, stats_shape) * x_hat + reshape(bias, stats_shape)
J
Jiabin Yang 已提交
130
    if is_amp:
131
        y = cast(y, dtype)
132 133

    # add op assign to detach tensor in void unsafe change outside the rule.
134 135
    batch_mean_ = assign(batch_mean)
    inv_std_ = assign(inv_std)
C
cyber-pioneer 已提交
136 137
    run_mean_ = assign(run_mean)
    run_var_ = assign(run_var)
138

I
iLeGend 已提交
139
    # reserve_space is not needed in composite rule, but still ruturn None to keep same as phi op definition.
C
cyber-pioneer 已提交
140
    reserve_space = None
141 142 143 144
    if not use_run_stat:
        return y, run_mean_, run_var_, batch_mean_, inv_std_, reserve_space
    else:
        return y, run_mean_, run_var_, None, None, reserve_space
G
GGBond8488 已提交
145 146


X
xiaoguoguo626807 已提交
147 148 149 150 151 152 153
@REGISTER_COMPOSITE('layer_norm')
def layernorm_composite(x, scale, bias, epsilon, begin_norm_axis):
    """
    define composite rule of op layer_norm
    out = (x - mean(x)) / sqrt(var + epsilon))
    var = mean((x-mean(x))^2)
    """
154 155 156
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

157 158
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
159 160
        is_amp = True
        x = cast(x, "float32")
161 162
        scale = cast(scale, "float32") if scale else scale
        bias = cast(bias, "float32") if bias else bias
X
xiaoguoguo626807 已提交
163 164 165 166 167 168 169

    axis = tuple(range(begin_norm_axis, len(x.shape)))
    mean_ = mean(x, axis=axis, keepdim=True)
    difference = x - mean_
    var_tmp1 = difference * difference
    variance = mean(var_tmp1, axis=axis, keepdim=True)
    var_tmp3 = variance + epsilon
170 171
    rsqrt_var = rsqrt(var_tmp3)
    out = difference * rsqrt_var
X
xiaoguoguo626807 已提交
172 173

    if scale is not None:
174 175
        if x.shape[begin_norm_axis:] is not scale.shape:
            scale = reshape(scale, x.shape[begin_norm_axis:])
X
xiaoguoguo626807 已提交
176 177
        out = out * scale
    if bias is not None:
178 179
        if x.shape[begin_norm_axis:] is not bias.shape:
            bias = reshape(bias, x.shape[begin_norm_axis:])
X
xiaoguoguo626807 已提交
180 181 182 183
        out = out + bias

    mean_ = reshape(mean_, [-1])
    variance = reshape(variance, [-1])
184
    if is_amp:
185
        out = cast(out, dtype)
X
xiaoguoguo626807 已提交
186 187 188
    return out, mean_, variance


189 190 191 192 193 194 195
@REGISTER_COMPOSITE('instance_norm')
def instancenorm_composite(x, scale, bias, epsilon):
    """
    define composite rule of op instance_norm
    out = (x - mean(x)) / sqrt(var + epsilon))
    var = mean((x-mean(x))^2)
    """
196 197 198 199 200 201 202 203 204 205
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
        is_amp = True
        x = cast(x, "float32")
        scale = cast(scale, "float32") if scale else scale
        bias = cast(bias, "float32") if bias else bias

206 207 208 209 210 211 212
    n, c, h, w = x.shape
    axis = tuple(range(2, len(x.shape)))
    mean_ = mean(x, axis=axis, keepdim=True)
    difference = x - mean_
    var_tmp1 = difference * difference
    variance = mean(var_tmp1, axis=axis, keepdim=True)
    var_tmp3 = variance + epsilon
Z
zyfncg 已提交
213
    sqrt_var = pow(var_tmp3, full([1], 0.5, dtype=var_tmp3.dtype))
214 215 216 217 218 219 220 221 222 223 224 225
    out = difference / sqrt_var

    if scale is not None:
        scale_tile = reshape(scale, [1, c, 1, 1])
        out = out * scale_tile
    if bias is not None:
        bias_tile = reshape(bias, [1, c, 1, 1])
        out = out + bias_tile

    mean_ = reshape(mean_, [-1])
    saved_variance = 1 / sqrt_var
    saved_variance = reshape(saved_variance, [-1])
226 227 228 229

    if is_amp:
        out = cast(out, dtype)

230 231 232
    return out, mean_, saved_variance


G
GGBond8488 已提交
233 234 235 236 237 238 239
@REGISTER_COMPOSITE('gelu')
def gelu_composite(x, approximate):
    """define composite rule of op gelu"""
    M_SQRT1_2 = (
        0.70710678118654752440  # /* 1/sqrt(2) */ copy from gelu-kernel.cc
    )
    M_2_SQRTPI = 1.12837916709551257390  # /* 2/sqrt(pi) */
240 241 242
    full_shape = x.shape if len(x.shape) == 0 else [1]
    one = ones(full_shape, x.dtype)
    half = full(full_shape, 0.5, x.dtype)
G
GGBond8488 已提交
243 244
    if approximate:
        # gelu(x) = 0.5 * x * (1 + tanh(sqrt(2 / \pi) * (x + 0.044715 * x^{3})))
245 246
        kAlpha = full(full_shape, M_2_SQRTPI * M_SQRT1_2, x.dtype)
        GELU_CONSTANT = full(full_shape, 0.044715, x.dtype)
G
GGBond8488 已提交
247 248 249 250 251 252 253 254 255
        tanh_out = tanh(kAlpha * (x + GELU_CONSTANT * x * x * x))
        out = x * half * (one + tanh_out)
        return out

    else:
        # gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
        cdf = half * (one + erf(x * full(x.shape, M_SQRT1_2, x.dtype)))
        out = x * cdf
        return out
Z
zqw_1997 已提交
256 257 258 259 260


@REGISTER_COMPOSITE('reduce_mean')
def mean_composite(x, axis, keepdim):
    """define composite rule of op mean"""
J
Jiabin Yang 已提交
261 262 263
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

264
    dtype = convert_dtype(x.dtype)
265
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
266 267 268
        is_amp = True
        x = cast(x, "float32")

Z
zqw_1997 已提交
269 270 271
    axes = axis or list(range(0, len(x.shape)))
    axes = [axes] if isinstance(axes, int) else axes
    sum_x = sum(x, axis=axes, keepdim=keepdim)
272 273 274 275 276
    ele_nums_list = [x.shape[axis] for axis in axes]
    if ele_nums_list == []:
        value_to_fill = 1
    else:
        value_to_fill = functools.reduce(operator.mul, ele_nums_list)
Z
zqw_1997 已提交
277
    norm = fill_constant(
278
        shape=[],
Z
zqw_1997 已提交
279 280 281
        value=value_to_fill,
        dtype=sum_x.dtype,
    )
J
Jiabin Yang 已提交
282 283
    res = divide(sum_x, norm)
    if is_amp:
284
        res = cast(res, dtype)
J
Jiabin Yang 已提交
285
    return res
286 287


288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
@REGISTER_COMPOSITE('expand_v2')
def expand_v2_composite(x, shape):
    """
    define composite rule of op expnad_v2, expand_v2->expand
    repeat_times = shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    dim_out = len(shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


@REGISTER_COMPOSITE('expand_as_v2')
def expand_as_v2_composite(x, y, target_shape):
    """
    define composite rule of op expnad_as_v2, expand_as_v2->expand_as
    repeat_times = target_shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    if y is not None:
        target_shape = y.shape
    assert target_shape is not None
    dim_out = len(target_shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = target_shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
351 352 353 354 355 356 357 358
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


C
ccrrong 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372
@REGISTER_COMPOSITE('stack')
def stack_composite(x, axis):
    """
    define composite rule of op stack
    unsqueeze each dimension of the input (use reshape), and then concat
    """
    x_shape = x[0].shape
    if axis < 0:
        axis += len(x_shape) + 1
    out_shape = x_shape[:axis] + (1,) + x_shape[axis:]
    out = concat([reshape(item, out_shape) for item in x], axis)
    return out


373 374 375 376
@REGISTER_COMPOSITE('flatten_contiguous_range')
def flatten_contiguous_range_composite(x, start_axis, stop_axis):
    """
    define composite rule of op flatten, flatten_contiguous_range -> flatten.
377 378

    xshape is the dim with 0 added to the front of x, keep the shape information of x to calculate the grad.
379 380 381 382 383 384 385 386
    CINN doesn't need xshape for backward pass, return none instead of xshape.
    shape_out is the parameter of reshape, get from start_axis and stop_axis.
    out = reshape(x, shape=shape_out), xshape
    """
    shape_in = x.shape
    start_dim = start_axis if len(shape_in) != 0 else 0
    end_dim = stop_axis if len(shape_in) != 0 else 0
    assert start_dim <= end_dim
387 388 389
    if len(shape_in) == 0:
        return reshape(x, shape=[1]), None
    if start_dim == end_dim:
390 391 392 393 394 395 396 397 398 399 400 401 402
        return reshape(x, shape=shape_in), None
    slice_numel = 1
    for i in range(start_dim, end_dim + 1):
        slice_numel *= shape_in[i]
    shape_out = []
    for i in range(start_dim):
        shape_out.append(shape_in[i])
    shape_out.append(slice_numel)
    for i in range(end_dim + 1, len(shape_in)):
        shape_out.append(shape_in[i])
    return reshape(x, shape=shape_out), None


403 404 405 406 407 408 409 410 411 412 413 414 415
@REGISTER_COMPOSITE('dropout')
def dropout_composite(x, seed_tensor, p, is_test, mode, seed, fix_seed):
    """define composite rule of op dropout.
    upscale_in_train:
        train: out = input * mask / ( 1.0 - p )
        inference: out = input
    downscale_in_infer
        train: out = input * mask
        inference: out = input * (1.0 - p)
    """
    fix_seed = True if fix_seed is None else fix_seed
    seed = seed if fix_seed else 0
    upscale_in_train = mode == "upscale_in_train"
416

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    mask = bernoulli(shape=x.shape, dtype=x.dtype, p=p, seed=seed)

    if upscale_in_train:
        if not is_test:
            # Process p=1.0 for avoid devide zero error (x*mask/(1.0-p))
            if p == 1.0:
                return 0.0 * x, zeros(x.shape, core.VarDesc.VarType.UINT8)
            else:
                return x * mask / (1.0 - p), cast(
                    mask, core.VarDesc.VarType.UINT8
                )
        else:
            return assign(x), cast(mask, core.VarDesc.VarType.UINT8)
    else:
        if not is_test:
            return x * mask, cast(mask, core.VarDesc.VarType.UINT8)
        else:
            return x * (1.0 - p), cast(mask, core.VarDesc.VarType.UINT8)


def bernoulli(shape, dtype, p, seed=0):
438 439 440
    from paddle.fluid.data_feeder import convert_dtype

    # TODO(jiabin) Fix uniform doesn't support float16 error in CINN
441 442 443
    new_dtype = (
        "float32" if convert_dtype(dtype) in ["float16", "uint16"] else dtype
    )
444 445
    return cast(
        greater_equal(
446
            uniform(shape, new_dtype, min=0.0, max=1.0, seed=seed),
447
            fill_constant(shape if len(shape) == 0 else [1], new_dtype, p),
448 449 450
        ),
        dtype,
    )
Z
zxcd 已提交
451 452


R
Roc 已提交
453 454 455 456 457 458 459 460 461 462
@REGISTER_COMPOSITE('hard_swish')
def hard_swish_composite(x):
    """define composite rule of op hard_swish.
    offset=3, threshold=6, scale=6
    out = minimum(
        maxmum(x + offset, 0), threshold
    ) * x / scale
    """
    threshold = 6.0
    scale = 6.0
463
    offset = 3.0
464
    full_shape = x.shape if len(x.shape) == 0 else [1]
R
Roc 已提交
465 466 467
    res = (
        minimum(
            maximum(
468 469
                x + full(full_shape, offset, dtype=x.dtype),
                full(full_shape, 0.0, dtype=x.dtype),
R
Roc 已提交
470
            ),
471
            full(full_shape, threshold, dtype=x.dtype),
R
Roc 已提交
472 473
        )
        * x
474
        / full(full_shape, scale, dtype=x.dtype)
R
Roc 已提交
475 476 477 478
    )
    return res


R
Roc 已提交
479 480 481 482 483 484 485 486 487
@REGISTER_COMPOSITE('index_select')
def index_select_composite(x, index, axis):
    """define composite rule of op index_select."""
    if axis < 0:
        axis = len(x.shape) + axis
    res = gather(x, index, axis=axis)
    return res


Z
zxcd 已提交
488 489 490 491 492 493
@REGISTER_COMPOSITE('sigmoid')
def sigmoid_composite(x):
    """
    define composite rule of op sigmoid
    res = 1 / (1 + exp(-x))
    """
J
Jiabin Yang 已提交
494 495 496
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

497 498
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
499 500 501
        is_amp = True
        x = cast(x, "float32")

Z
zxcd 已提交
502 503
    sum_temp = 1 + exp(-x)
    res = 1 / sum_temp
504
    return res if not is_amp else cast(res, dtype)
Z
zxcd 已提交
505 506


Z
zxcd 已提交
507 508 509 510 511 512
@REGISTER_COMPOSITE('silu')
def silu_composite(x):
    """
    define composite rule of op silu
    res = x / (1 + exp(-x))
    """
J
Jiabin Yang 已提交
513 514 515
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

516 517
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
518 519 520
        is_amp = True
        x = cast(x, "float32")

Z
zxcd 已提交
521 522
    sum_temp = 1 + exp(-x)
    res = x / sum_temp
523
    return res if not is_amp else cast(res, dtype)
524 525


526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
@REGISTER_COMPOSITE('meshgrid')
def meshgrid_composite(inputs):
    """
    define composite rule of op meshgrid
    If the input has N tensors of size S_0, ... S_n-1, then the output will also have N tensors, where
    each tensor is of shape (S_0, ..., S_n-1).
    E.g. a1 is Tensor [1,2,3]
         b1 is Tensor [4,5]
         r1, r2 = paddle.meshgrid([a1, b1])
         r1 is Tensor [[1,1], [2,2], [3,3]]
         r2 is Tensor [[4,5], [4,5], [4,5]]
    """
    size = len(inputs)
    shape = [1] * size
    for i in range(size):
        dim = inputs[i].dim()
        assert dim == 0 or dim == 1
        if dim == 1:
            shape[i] = inputs[i].shape[0]
    outputs = []
    for i in range(size):
        view_shape = [1] * size
        view_shape[i] = shape[i]
        outputs.append(inputs[i].reshape(view_shape).broadcast_to(shape))
    return outputs


553 554 555 556 557 558 559
@REGISTER_COMPOSITE('fill_any_like')
def fill_any_like(x, fill_value, dtype, place=None):
    """define composite rule of op full_like."""
    """op name: full_like  op type name: fill_any_like."""
    """arg place is not used, add it here to keep same as python api."""
    val = full(x.shape, fill_value, dtype)
    return val
K
Kang Zhao 已提交
560 561


562 563 564 565 566 567 568 569 570 571 572
@REGISTER_COMPOSITE('squeeze2')
def squeeze2_composite(x, axis):
    """define composite rule of squeeze"""
    """
    canonicalize dim within range 0 to rank and
    determine new shape after squeeze op
    if axis not specified, remove all dims equal to 1
    otherwise, remove dims equal to 1 in axis
    axis can only be list, not int
    """
    rank = len(x.shape)
573 574
    if rank == 0:
        return [assign(x), None]
575 576 577
    if len(axis) == 0:
        dims = set(range(rank))
    else:
578
        dims = {ax % rank for ax in axis}
579 580 581 582 583 584 585 586
    new_shape = []
    for d, s in enumerate(x.shape):
        if not (s == 1 and (d in dims)):
            new_shape.append(s)
    out = reshape(x, new_shape)
    return [out, None]


M
mhy-666 已提交
587 588 589 590 591 592
@REGISTER_COMPOSITE('sqrt')
def sqrt_composite(x):
    """
    define composite rule of op sqrt
    res = pow(x, 0.5)
    """
J
Jiabin Yang 已提交
593 594 595
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

596 597
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
598 599 600
        is_amp = True
        x = cast(x, "float32")

601
    y = full(x.shape if len(x.shape) == 0 else [1], 0.5, x.dtype)
M
mhy-666 已提交
602
    res = pow(x, y)
603
    return res if not is_amp else cast(res, dtype)
M
mhy-666 已提交
604 605


606 607 608 609 610 611
@REGISTER_COMPOSITE('pow')
def pow_composite(x, y):
    """
    define composite rule of op pow
    res = x^y
    """
J
Jiabin Yang 已提交
612 613 614
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

615 616
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
617 618 619
        is_amp = True
        x = cast(x, "float32")

620
    if isinstance(y, (int, float)):
621
        y = full(x.shape if len(x.shape) == 0 else [1], y, x.dtype)
622
    res = pow(x, y)
J
Jiabin Yang 已提交
623
    if is_amp:
624
        res = cast(res, dtype)
625 626 627
    return res


K
Kang Zhao 已提交
628 629 630 631
@REGISTER_COMPOSITE('relu')
def relu_composite(x):
    """define composite rule of op relu."""
    # relu(x) = max(x, 0)
632 633 634 635
    if len(x.shape) == 0:
        return maximum(x, full(x.shape, 0.0, x.dtype))
    else:
        return maximum(x, full([1], 0.0, x.dtype))
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655


@REGISTER_COMPOSITE('unsqueeze2')
def unsqueeze_composite(x, axis):
    """define composite rule of op unsqueeze"""
    """using reshape to implement unsqueeze op"""
    x_shape = list(x.shape)
    axis_list = list(axis)
    for i in axis_list:
        if i < 0:
            i += len(x_shape) + 1
        x_shape = (
            x_shape[:i]
            + [
                1,
            ]
            + x_shape[i:]
        )
    out = reshape(x, x_shape)
    return [out, None]
656 657 658 659 660 661


@REGISTER_COMPOSITE('rsqrt')
def rsqrt_composite(x):
    """define composite rule of op rsqrt."""
    # rsqrt(x) = x^(-0.5)
J
Jiabin Yang 已提交
662 663 664
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

665
    dtype = convert_dtype(x.dtype)
666
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
667 668
        is_amp = True
        x = cast(x, "float32")
669
    y = full(x.shape if len(x.shape) == 0 else [1], -0.5, x.dtype)
J
Jiabin Yang 已提交
670
    res = pow(x, y)
671
    return res if not is_amp else cast(res, dtype)
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687


@REGISTER_COMPOSITE('group_norm')
def group_norm_composite(x, scale, bias, epsilon, groups, data_layout):
    """
    define composite rule of op group_norm.
    x = ((x - mean) / sqrt(var + epsilon)) * scale + bias
    mean and var are computed from groups
    """
    # original GroupNorm op cannot support NHWC format
    assert data_layout == 'NCHW'
    N, C, H, W = x.shape

    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

688 689 690
    dtype = convert_dtype(x.dtype)
    # when inputs are float16 or bfloat16, convert to float32 in computing
    if dtype in ["float16", "uint16"]:
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
        is_amp = True
        x = cast(x, "float32")
        scale = cast(scale, "float32")
        bias = cast(bias, "float32")

    x = reshape(x, (N * groups, -1))
    mean_ = mean(x, axis=1, keepdim=True)
    var_ = mean(x * x, axis=1, keepdim=True) - mean_ * mean_
    var_ = maximum(var_, zeros_like(var_))
    var_inv = 1 / sqrt(var_ + epsilon)
    out = (x - mean_) * var_inv
    out = reshape(out, (N, C, H, W))
    if scale is not None:
        out = out * reshape(scale, (-1, 1, 1))
    if bias is not None:
        out = out + reshape(bias, (-1, 1, 1))
    ret_mean_ = reshape(mean_, (N, groups))
    ret_var_ = reshape(var_, (N, groups))
709
    # return output in float16 or bfloat16, mean and var in float32
710
    if is_amp:
711
        out = cast(out, dtype)
712
    return out, ret_mean_, ret_var_
713 714


X
xiaoguoguo626807 已提交
715 716 717 718 719 720 721 722
@REGISTER_COMPOSITE('sum')
def sum_composite(x):
    ans = 0
    for xi in x:
        ans += xi
    return ans


723 724 725 726 727 728 729
@REGISTER_COMPOSITE('leaky_relu')
def leaky_relu_composite(x, negative_slope):
    """define composite rule of op leaky_relu."""
    if negative_slope < 1.0:
        return maximum(x, negative_slope * x)
    else:
        return minimum(x, negative_slope * x)