composite_rules.py 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This file contains composite rules of nonbasic operations. There are some notes:
# 1. When define composite rule of some op, you can only use primitive ops defined in primitives.py.
# 2. The name and args of target op must be corresponding with standard description of op in
#    ops.yaml or legacy_ops.yaml.

Z
zqw_1997 已提交
20 21
import functools
import operator
22

23 24
from paddle.fluid import core

25 26 27 28 29 30 31 32 33 34 35 36
from .primitives import *  # noqa: F403
from .primreg import REGISTER_COMPOSITE, lookup_composite


def _composite(op, *args):
    _lowerrule = lookup_composite(op.type)
    return _lowerrule(op, *args)


@REGISTER_COMPOSITE('softmax')
def softmax_composite(x, axis):
    """define composite rule of op softmax"""
37 38 39 40 41 42 43
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    # Softmax need fp32 compute since it has sum op in
    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
C
cyber-pioneer 已提交
44 45
    if not x.shape:
        # do not return 1, to ensure gradients
46
        res = exp(x - x)
47 48
        if is_amp:
            res = cast(res, "float16")
C
cyber-pioneer 已提交
49
        return res
50 51 52 53
    max_temp = max(x, axis, keepdim=True)
    max_temp.stop_gradient = True
    molecular = exp(x - max_temp)
    denominator = sum(molecular, axis=axis, keepdim=True)
54
    res = divide(molecular, denominator)
55 56
    if is_amp:
        res = cast(res, "float16")
57
    return res
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74


@REGISTER_COMPOSITE('batch_norm')
def composite_batchnorm(
    x,
    run_mean,
    run_var,
    scale,
    bias,
    is_test,
    momentum,
    epsilon,
    data_layout,
    use_global_stats,
    trainable_statistics,
):
    """define composite rule of op batch_norm"""
J
Jiabin Yang 已提交
75 76 77 78 79 80
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

    feature_axis = (
        1 if data_layout in ('NC', 'NCL', 'NCHW', 'NCHWD') else len(x.shape) - 1
    )
    if use_global_stats is None:
        use_global_stats = is_test
        trainable_statistics = False
    else:
        trainable_statistics = not use_global_stats

    use_run_stat = (is_test and (not trainable_statistics)) or use_global_stats
    reduce_axes = tuple(i for i in range(len(x.shape)) if i != feature_axis)
    stats_shape = tuple(
        1 if i in reduce_axes else s for i, s in enumerate(x.shape)
    )

    batch_mean = zeros(run_mean.shape, run_mean.dtype)
    batch_var = zeros(run_var.shape, run_var.dtype)
    if not use_run_stat:
        batch_mean = mean(x, reduce_axes, keepdim=True)
        temp = mean(x * x, reduce_axes, keepdim=True)
        batch_var = temp - batch_mean * batch_mean

        x_hat = (x - reshape(batch_mean, stats_shape)) / sqrt(
            reshape(batch_var, stats_shape) + epsilon
        )

108 109 110 111 112 113
        run_mean = momentum * run_mean + (1 - momentum) * reshape(
            batch_mean, run_mean.shape
        )
        run_var = momentum * run_var + (1 - momentum) * reshape(
            batch_var, run_var.shape
        )
114 115 116 117 118
    else:
        x_hat = (x - reshape(run_mean, stats_shape)) / sqrt(
            reshape(run_var, stats_shape) + epsilon
        )
    y = reshape(scale, stats_shape) * x_hat + reshape(bias, stats_shape)
J
Jiabin Yang 已提交
119 120
    if is_amp:
        y = cast(y, "float16")
121 122

    # add op assign to detach tensor in void unsafe change outside the rule.
C
cyber-pioneer 已提交
123 124 125 126
    batch_mean_ = assign(reshape(batch_mean, run_mean.shape))
    batch_var_ = assign(reshape(batch_var, run_var.shape))
    run_mean_ = assign(run_mean)
    run_var_ = assign(run_var)
127

I
iLeGend 已提交
128
    # reserve_space is not needed in composite rule, but still ruturn None to keep same as phi op definition.
C
cyber-pioneer 已提交
129
    reserve_space = None
130

C
cyber-pioneer 已提交
131
    return y, run_mean_, run_var_, batch_mean_, batch_var_, reserve_space
G
GGBond8488 已提交
132 133


X
xiaoguoguo626807 已提交
134 135 136 137 138 139 140
@REGISTER_COMPOSITE('layer_norm')
def layernorm_composite(x, scale, bias, epsilon, begin_norm_axis):
    """
    define composite rule of op layer_norm
    out = (x - mean(x)) / sqrt(var + epsilon))
    var = mean((x-mean(x))^2)
    """
141 142 143 144 145 146
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
X
xiaoguoguo626807 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

    axis = tuple(range(begin_norm_axis, len(x.shape)))
    mean_ = mean(x, axis=axis, keepdim=True)
    difference = x - mean_
    var_tmp1 = difference * difference
    variance = mean(var_tmp1, axis=axis, keepdim=True)
    var_tmp3 = variance + epsilon
    sqrt_var = sqrt(var_tmp3)
    out = difference / sqrt_var

    if scale is not None:
        scale = reshape(scale, x.shape[begin_norm_axis:])
        out = out * scale
    if bias is not None:
        bias = reshape(bias, x.shape[begin_norm_axis:])
        out = out + bias

    mean_ = reshape(mean_, [-1])
    variance = reshape(variance, [-1])
166 167
    if is_amp:
        out = cast(out, "float16")
X
xiaoguoguo626807 已提交
168 169 170
    return out, mean_, variance


G
GGBond8488 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
@REGISTER_COMPOSITE('gelu')
def gelu_composite(x, approximate):
    """define composite rule of op gelu"""
    M_SQRT1_2 = (
        0.70710678118654752440  # /* 1/sqrt(2) */ copy from gelu-kernel.cc
    )
    M_2_SQRTPI = 1.12837916709551257390  # /* 2/sqrt(pi) */
    one = ones(x.shape, x.dtype)
    half = full(x.shape, 0.5, x.dtype)
    if approximate:
        # gelu(x) = 0.5 * x * (1 + tanh(sqrt(2 / \pi) * (x + 0.044715 * x^{3})))
        kAlpha = full(x.shape, M_2_SQRTPI * M_SQRT1_2, x.dtype)
        GELU_CONSTANT = full(x.shape, 0.044715, x.dtype)
        tanh_out = tanh(kAlpha * (x + GELU_CONSTANT * x * x * x))
        out = x * half * (one + tanh_out)
        return out

    else:
        # gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
        cdf = half * (one + erf(x * full(x.shape, M_SQRT1_2, x.dtype)))
        out = x * cdf
        return out
Z
zqw_1997 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209


@REGISTER_COMPOSITE('reduce_mean')
def mean_composite(x, axis, keepdim):
    """define composite rule of op mean"""
    axes = axis or list(range(0, len(x.shape)))
    axes = [axes] if isinstance(axes, int) else axes
    sum_x = sum(x, axis=axes, keepdim=keepdim)
    value_to_fill = functools.reduce(
        operator.mul, [x.shape[axis] for axis in axes]
    )
    norm = fill_constant(
        shape=sum_x.shape,
        value=value_to_fill,
        dtype=sum_x.dtype,
    )
    return divide(sum_x, norm)
210 211


212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
@REGISTER_COMPOSITE('expand_v2')
def expand_v2_composite(x, shape):
    """
    define composite rule of op expnad_v2, expand_v2->expand
    repeat_times = shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    dim_out = len(shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


@REGISTER_COMPOSITE('expand_as_v2')
def expand_as_v2_composite(x, y, target_shape):
    """
    define composite rule of op expnad_as_v2, expand_as_v2->expand_as
    repeat_times = target_shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    if y is not None:
        target_shape = y.shape
    assert target_shape is not None
    dim_out = len(target_shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = target_shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
275 276 277 278 279 280 281 282
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


C
ccrrong 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296
@REGISTER_COMPOSITE('stack')
def stack_composite(x, axis):
    """
    define composite rule of op stack
    unsqueeze each dimension of the input (use reshape), and then concat
    """
    x_shape = x[0].shape
    if axis < 0:
        axis += len(x_shape) + 1
    out_shape = x_shape[:axis] + (1,) + x_shape[axis:]
    out = concat([reshape(item, out_shape) for item in x], axis)
    return out


297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
@REGISTER_COMPOSITE('flatten_contiguous_range')
def flatten_contiguous_range_composite(x, start_axis, stop_axis):
    """
    define composite rule of op flatten, flatten_contiguous_range -> flatten.
    CINN doesn't need xshape for backward pass, return none instead of xshape.
    shape_out is the parameter of reshape, get from start_axis and stop_axis.
    out = reshape(x, shape=shape_out), xshape
    """
    shape_in = x.shape
    start_dim = start_axis if len(shape_in) != 0 else 0
    end_dim = stop_axis if len(shape_in) != 0 else 0
    assert start_dim <= end_dim
    if len(shape_in) == 0 or start_dim == end_dim:
        return reshape(x, shape=shape_in), None
    slice_numel = 1
    for i in range(start_dim, end_dim + 1):
        slice_numel *= shape_in[i]
    shape_out = []
    for i in range(start_dim):
        shape_out.append(shape_in[i])
    shape_out.append(slice_numel)
    for i in range(end_dim + 1, len(shape_in)):
        shape_out.append(shape_in[i])
    return reshape(x, shape=shape_out), None


323 324 325 326 327 328 329 330 331 332 333 334 335
@REGISTER_COMPOSITE('dropout')
def dropout_composite(x, seed_tensor, p, is_test, mode, seed, fix_seed):
    """define composite rule of op dropout.
    upscale_in_train:
        train: out = input * mask / ( 1.0 - p )
        inference: out = input
    downscale_in_infer
        train: out = input * mask
        inference: out = input * (1.0 - p)
    """
    fix_seed = True if fix_seed is None else fix_seed
    seed = seed if fix_seed else 0
    upscale_in_train = mode == "upscale_in_train"
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    mask = bernoulli(shape=x.shape, dtype=x.dtype, p=p, seed=seed)

    if upscale_in_train:
        if not is_test:
            # Process p=1.0 for avoid devide zero error (x*mask/(1.0-p))
            if p == 1.0:
                return 0.0 * x, zeros(x.shape, core.VarDesc.VarType.UINT8)
            else:
                return x * mask / (1.0 - p), cast(
                    mask, core.VarDesc.VarType.UINT8
                )
        else:
            return assign(x), cast(mask, core.VarDesc.VarType.UINT8)
    else:
        if not is_test:
            return x * mask, cast(mask, core.VarDesc.VarType.UINT8)
        else:
            return x * (1.0 - p), cast(mask, core.VarDesc.VarType.UINT8)


def bernoulli(shape, dtype, p, seed=0):
358 359 360 361
    from paddle.fluid.data_feeder import convert_dtype

    # TODO(jiabin) Fix uniform doesn't support float16 error in CINN
    new_dtype = "float32" if convert_dtype(dtype) == "float16" else dtype
362 363
    return cast(
        greater_equal(
364 365
            uniform(shape, new_dtype, min=0.0, max=1.0, seed=seed),
            fill_constant(shape, new_dtype, p),
366 367 368
        ),
        dtype,
    )
Z
zxcd 已提交
369 370


R
Roc 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
@REGISTER_COMPOSITE('hard_swish')
def hard_swish_composite(x):
    """define composite rule of op hard_swish.
    offset=3, threshold=6, scale=6
    out = minimum(
        maxmum(x + offset, 0), threshold
    ) * x / scale
    """
    offset = 3.0
    threshold = 6.0
    scale = 6.0
    res = (
        minimum(
            maximum(
                x + full(x.shape, offset, dtype=x.dtype),
                full(x.shape, 0.0, dtype=x.dtype),
            ),
            full(x.shape, threshold, dtype=x.dtype),
        )
        * x
        / full(x.shape, scale, dtype=x.dtype)
    )
    return res


Z
zxcd 已提交
396 397 398 399 400 401 402 403 404 405 406
@REGISTER_COMPOSITE('sigmoid')
def sigmoid_composite(x):
    """
    define composite rule of op sigmoid
    res = 1 / (1 + exp(-x))
    """
    sum_temp = 1 + exp(-x)
    res = 1 / sum_temp
    return res


Z
zxcd 已提交
407 408 409 410 411 412 413 414 415
@REGISTER_COMPOSITE('silu')
def silu_composite(x):
    """
    define composite rule of op silu
    res = x / (1 + exp(-x))
    """
    sum_temp = 1 + exp(-x)
    res = x / sum_temp
    return res
416 417 418 419 420 421 422 423 424


@REGISTER_COMPOSITE('fill_any_like')
def fill_any_like(x, fill_value, dtype, place=None):
    """define composite rule of op full_like."""
    """op name: full_like  op type name: fill_any_like."""
    """arg place is not used, add it here to keep same as python api."""
    val = full(x.shape, fill_value, dtype)
    return val
K
Kang Zhao 已提交
425 426


427 428 429 430 431 432 433 434 435 436 437 438
@REGISTER_COMPOSITE('pow')
def pow_composite(x, y):
    """
    define composite rule of op pow
    res = x^y
    """
    if isinstance(y, (int, float)):
        y = full([1], y, x.dtype)
    res = pow(x, y)
    return res


K
Kang Zhao 已提交
439 440 441 442 443
@REGISTER_COMPOSITE('relu')
def relu_composite(x):
    """define composite rule of op relu."""
    # relu(x) = max(x, 0)
    return maximum(x, zeros_like(x))
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463


@REGISTER_COMPOSITE('unsqueeze2')
def unsqueeze_composite(x, axis):
    """define composite rule of op unsqueeze"""
    """using reshape to implement unsqueeze op"""
    x_shape = list(x.shape)
    axis_list = list(axis)
    for i in axis_list:
        if i < 0:
            i += len(x_shape) + 1
        x_shape = (
            x_shape[:i]
            + [
                1,
            ]
            + x_shape[i:]
        )
    out = reshape(x, x_shape)
    return [out, None]
464 465 466 467 468 469 470 471


@REGISTER_COMPOSITE('rsqrt')
def rsqrt_composite(x):
    """define composite rule of op rsqrt."""
    # rsqrt(x) = x^(-0.5)
    y = full(x.shape, -0.5, x.dtype)
    return pow(x, y)