未验证 提交 e457c298 编写于 作者: C cyber-pioneer 提交者: GitHub

[Prim][NewIR] Support prim all in new IR (#56614)

* support prim all in new ir

* process makefile

* fix rule bug

* polish case

* fix flag

* fix rules bug
上级 5d164968
......@@ -27,7 +27,7 @@ def _build_tensor_tuple(xs):
return (xs,)
elif isinstance(xs, typing.Sequence):
return tuple(xs)
return TypeError(f"Type {type(xs)} is not supported")
return TypeError(f"Type {type(xs)} is not supported.")
def _prepare_python_api_arguments(op):
......@@ -125,6 +125,8 @@ def decompose(
Returns:
dst_vars (list): A list contains all vars which replace origin ones in src_vars.
"""
if not core._is_fwd_prim_enabled():
return src_vars
if not isinstance(program, Program):
raise TypeError(f"Expect type Program, but got type {type(program)}.")
block = program.block()
......
......@@ -20,8 +20,9 @@ from .register import register_decomp
def mean(x, axis, keepdim):
"""define composite rule of op mean"""
x_shape = x.shape
axes = axis or tuple(range(0, len(x_shape)))
axes = (axes,) if isinstance(axes, int) else axes
if axis in (None, []):
axis = tuple(range(0, len(x_shape)))
axes = (axis,) if isinstance(axis, int) else axis
sum_x = sum(x, axis=axes, keepdim=keepdim)
value_to_fill = 1
for axis in axes:
......
......@@ -171,11 +171,11 @@ def layernorm_composite(x, scale, bias, epsilon, begin_norm_axis):
out = difference * rsqrt_var
if scale is not None:
if x.shape[begin_norm_axis:] is not scale.shape:
if x.shape[begin_norm_axis:] != scale.shape:
scale = reshape(scale, x.shape[begin_norm_axis:])
out = out * scale
if bias is not None:
if x.shape[begin_norm_axis:] is not bias.shape:
if x.shape[begin_norm_axis:] != bias.shape:
bias = reshape(bias, x.shape[begin_norm_axis:])
out = out + bias
......@@ -266,8 +266,9 @@ def mean_composite(x, axis, keepdim):
is_amp = True
x = cast(x, "float32")
axes = axis or list(range(0, len(x.shape)))
axes = [axes] if isinstance(axes, int) else axes
if axis in (None, []):
axis = tuple(range(0, len(x.shape)))
axes = (axis,) if isinstance(axis, int) else axis
sum_x = sum(x, axis=axes, keepdim=keepdim)
ele_nums_list = [x.shape[axis] for axis in axes]
if ele_nums_list == []:
......
set(TEST_PRIM_PURE_NEW_IR_CASES test_prim_program)
foreach(target ${TEST_PRIM_PURE_NEW_IR_CASES})
py_test_modules(${target} MODULES ${target} ENVS GLOG_v=1
FLAGS_enable_new_ir_api=true)
endforeach()
file(
GLOB TEST_INTERP_CASES
GLOB TEST_PRIM_TRANS_NEW_IR_CASES
RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}"
"test_*.py")
string(REPLACE ".py" "" TEST_INTERP_CASES "${TEST_INTERP_CASES}")
string(REPLACE ".py" "" TEST_PRIM_TRANS_NEW_IR_CASES
"${TEST_PRIM_TRANS_NEW_IR_CASES}")
list(REMOVE_ITEM TEST_PRIM_TRANS_NEW_IR_CASES ${TEST_PRIM_PURE_NEW_IR_CASES})
foreach(target ${TEST_INTERP_CASES})
foreach(target ${TEST_PRIM_TRANS_NEW_IR_CASES})
py_test_modules(${target} MODULES ${target} ENVS GLOG_v=1
FLAGS_enable_new_ir_in_executor=true)
endforeach()
......@@ -17,6 +17,7 @@ import unittest
import paddle
from paddle import ir
from paddle.decomposition import decompose
from paddle.framework import core
paddle.enable_static()
......@@ -44,7 +45,9 @@ class TestBuildOp(unittest.TestCase):
y = newir_program.block().ops[-2].results()
orig_shape = y[0].shape
paddle.framework.set_flags({"FLAGS_enable_new_ir_api": True})
core._set_prim_forward_enabled(True)
y_new = decompose(newir_program, y)
core._set_prim_forward_enabled(False)
new_shape = y_new[0].shape
assert (
orig_shape == new_shape
......
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from paddle.autograd.backward import grad
from paddle.decomposition import decompose
from paddle.framework import core
paddle.enable_static()
class TestPrimMode(unittest.TestCase):
def setUp(self):
np.random.seed(2023)
self.shape_x = [8, 16, 32, 64]
self.shape_y = [8, 16, 32, 64]
self.x = np.random.random(self.shape_x).astype("float32")
self.y = np.random.random(self.shape_y).astype("float32")
def base_net(self, flag=None):
if flag == "forward":
core._set_prim_forward_enabled(True)
elif flag == "backward":
core._set_prim_backward_enabled(True)
elif flag == "all":
core._set_prim_all_enabled(True)
main_program = paddle.static.Program()
with paddle.static.program_guard(main_program):
x = paddle.static.data('x', self.shape_x, dtype='float32')
y = paddle.static.data('y', self.shape_y, dtype='float32')
x.stop_gradient = False
y.stop_gradient = False
divide_out = paddle.divide(x, y)
sum_out = paddle.mean(divide_out, axis=0)
[new_out] = decompose(main_program, [sum_out])
gradients = grad(new_out, (x, y))
exe = paddle.static.Executor()
[fwd, dx, dy] = exe.run(
feed={'x': self.x, 'y': self.y}, fetch_list=[new_out, gradients]
)
whole_ops = [op.name() for op in main_program.block().ops]
if flag == "forward":
core._set_prim_forward_enabled(False)
assert 'pd.mean' not in whole_ops and 'pd.divide_grad' in whole_ops
elif flag == "backward":
core._set_prim_backward_enabled(False)
assert 'pd.mean' in whole_ops and 'pd.divide_grad' not in whole_ops
elif flag == "all":
core._set_prim_all_enabled(False)
assert (
'pd.mean' not in whole_ops and 'pd.divide_grad' not in whole_ops
)
else:
assert 'pd.mean' in whole_ops and 'pd.divide_grad' in whole_ops
return fwd, dx, dy
def test_prim_forward(self):
res_ref = self.base_net()
res = self.base_net("forward")
for ref, actual in zip(res_ref, res):
np.testing.assert_equal(ref, actual)
def test_prim_backward(self):
res_ref = self.base_net()
res = self.base_net("backward")
for ref, actual in zip(res_ref, res):
np.testing.assert_allclose(ref, actual, rtol=1e-6)
def test_prim_all(self):
res_ref = self.base_net()
res = self.base_net("all")
for ref, actual in zip(res_ref, res):
np.testing.assert_allclose(ref, actual, rtol=1e-6)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册