composite_rules.py 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This file contains composite rules of nonbasic operations. There are some notes:
# 1. When define composite rule of some op, you can only use primitive ops defined in primitives.py.
# 2. The name and args of target op must be corresponding with standard description of op in
#    ops.yaml or legacy_ops.yaml.

Z
zqw_1997 已提交
20 21
import functools
import operator
22

23 24
from paddle.fluid import core

25 26 27 28 29 30 31 32 33 34 35 36
from .primitives import *  # noqa: F403
from .primreg import REGISTER_COMPOSITE, lookup_composite


def _composite(op, *args):
    _lowerrule = lookup_composite(op.type)
    return _lowerrule(op, *args)


@REGISTER_COMPOSITE('softmax')
def softmax_composite(x, axis):
    """define composite rule of op softmax"""
37 38 39 40 41 42 43
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    # Softmax need fp32 compute since it has sum op in
    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
C
cyber-pioneer 已提交
44 45
    if not x.shape:
        # do not return 1, to ensure gradients
46
        res = exp(x - x)
47 48
        if is_amp:
            res = cast(res, "float16")
C
cyber-pioneer 已提交
49
        return res
50 51 52 53
    max_temp = max(x, axis, keepdim=True)
    max_temp.stop_gradient = True
    molecular = exp(x - max_temp)
    denominator = sum(molecular, axis=axis, keepdim=True)
54
    res = divide(molecular, denominator)
55 56
    if is_amp:
        res = cast(res, "float16")
57
    return res
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73


@REGISTER_COMPOSITE('batch_norm')
def composite_batchnorm(
    x,
    run_mean,
    run_var,
    scale,
    bias,
    is_test,
    momentum,
    epsilon,
    data_layout,
    use_global_stats,
    trainable_statistics,
):
74 75 76 77 78
    """
    define composite rule of op batch_norm
    As the same with op kernel, the position of savedvariance indeed return inverse std.
    """

J
Jiabin Yang 已提交
79 80 81 82 83 84
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
85 86 87 88 89 90 91 92 93 94 95

    feature_axis = (
        1 if data_layout in ('NC', 'NCL', 'NCHW', 'NCHWD') else len(x.shape) - 1
    )

    use_run_stat = (is_test and (not trainable_statistics)) or use_global_stats
    reduce_axes = tuple(i for i in range(len(x.shape)) if i != feature_axis)
    stats_shape = tuple(
        1 if i in reduce_axes else s for i, s in enumerate(x.shape)
    )

96
    half = -0.5
J
Jiabin Yang 已提交
97

98 99 100
    if not use_run_stat:
        batch_mean = mean(x, reduce_axes)
        temp = mean(x * x, reduce_axes)
101
        batch_var = temp - batch_mean * batch_mean
102 103 104 105 106 107 108 109 110 111
        inv_std = pow((batch_var + epsilon), half)
        if data_layout == "NHWC":
            x_hat = (x - batch_mean) * inv_std
        else:
            x_hat = (x - reshape(batch_mean, stats_shape)) * reshape(
                inv_std, stats_shape
            )

        run_mean = momentum * run_mean + (1 - momentum) * batch_mean
        run_var = momentum * run_var + (1 - momentum) * batch_var
112
    else:
113 114 115 116 117 118 119 120 121 122 123 124 125
        batch_mean = zeros(run_mean.shape, run_mean.dtype)
        batch_var = zeros(run_var.shape, run_var.dtype)
        inv_std = pow((batch_var + epsilon), half)
        if data_layout == "NHWC":
            x_hat = (x - run_mean) * pow((run_var + epsilon), half)
        else:
            x_hat = (x - reshape(run_mean, stats_shape)) * pow(
                (reshape(run_var, stats_shape) + epsilon), half
            )
    if data_layout == "NHWC":
        y = scale * x_hat + bias
    else:
        y = reshape(scale, stats_shape) * x_hat + reshape(bias, stats_shape)
J
Jiabin Yang 已提交
126 127
    if is_amp:
        y = cast(y, "float16")
128 129

    # add op assign to detach tensor in void unsafe change outside the rule.
130 131
    batch_mean_ = assign(batch_mean)
    inv_std_ = assign(inv_std)
C
cyber-pioneer 已提交
132 133
    run_mean_ = assign(run_mean)
    run_var_ = assign(run_var)
134

I
iLeGend 已提交
135
    # reserve_space is not needed in composite rule, but still ruturn None to keep same as phi op definition.
C
cyber-pioneer 已提交
136
    reserve_space = None
137 138 139 140
    if not use_run_stat:
        return y, run_mean_, run_var_, batch_mean_, inv_std_, reserve_space
    else:
        return y, run_mean_, run_var_, None, None, reserve_space
G
GGBond8488 已提交
141 142


X
xiaoguoguo626807 已提交
143 144 145 146 147 148 149
@REGISTER_COMPOSITE('layer_norm')
def layernorm_composite(x, scale, bias, epsilon, begin_norm_axis):
    """
    define composite rule of op layer_norm
    out = (x - mean(x)) / sqrt(var + epsilon))
    var = mean((x-mean(x))^2)
    """
150 151 152 153 154 155
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
X
xiaoguoguo626807 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

    axis = tuple(range(begin_norm_axis, len(x.shape)))
    mean_ = mean(x, axis=axis, keepdim=True)
    difference = x - mean_
    var_tmp1 = difference * difference
    variance = mean(var_tmp1, axis=axis, keepdim=True)
    var_tmp3 = variance + epsilon
    sqrt_var = sqrt(var_tmp3)
    out = difference / sqrt_var

    if scale is not None:
        scale = reshape(scale, x.shape[begin_norm_axis:])
        out = out * scale
    if bias is not None:
        bias = reshape(bias, x.shape[begin_norm_axis:])
        out = out + bias

    mean_ = reshape(mean_, [-1])
    variance = reshape(variance, [-1])
175 176
    if is_amp:
        out = cast(out, "float16")
177

X
xiaoguoguo626807 已提交
178 179 180
    return out, mean_, variance


G
GGBond8488 已提交
181 182 183 184 185 186 187
@REGISTER_COMPOSITE('gelu')
def gelu_composite(x, approximate):
    """define composite rule of op gelu"""
    M_SQRT1_2 = (
        0.70710678118654752440  # /* 1/sqrt(2) */ copy from gelu-kernel.cc
    )
    M_2_SQRTPI = 1.12837916709551257390  # /* 2/sqrt(pi) */
188 189 190
    full_shape = x.shape if len(x.shape) == 0 else [1]
    one = ones(full_shape, x.dtype)
    half = full(full_shape, 0.5, x.dtype)
G
GGBond8488 已提交
191 192
    if approximate:
        # gelu(x) = 0.5 * x * (1 + tanh(sqrt(2 / \pi) * (x + 0.044715 * x^{3})))
193 194
        kAlpha = full(full_shape, M_2_SQRTPI * M_SQRT1_2, x.dtype)
        GELU_CONSTANT = full(full_shape, 0.044715, x.dtype)
G
GGBond8488 已提交
195 196 197 198 199 200 201 202 203
        tanh_out = tanh(kAlpha * (x + GELU_CONSTANT * x * x * x))
        out = x * half * (one + tanh_out)
        return out

    else:
        # gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
        cdf = half * (one + erf(x * full(x.shape, M_SQRT1_2, x.dtype)))
        out = x * cdf
        return out
Z
zqw_1997 已提交
204 205 206 207 208 209 210 211 212 213 214 215


@REGISTER_COMPOSITE('reduce_mean')
def mean_composite(x, axis, keepdim):
    """define composite rule of op mean"""
    axes = axis or list(range(0, len(x.shape)))
    axes = [axes] if isinstance(axes, int) else axes
    sum_x = sum(x, axis=axes, keepdim=keepdim)
    value_to_fill = functools.reduce(
        operator.mul, [x.shape[axis] for axis in axes]
    )
    norm = fill_constant(
216
        shape=x.shape if len(x.shape) == 0 else [1],
Z
zqw_1997 已提交
217 218 219 220
        value=value_to_fill,
        dtype=sum_x.dtype,
    )
    return divide(sum_x, norm)
221 222


223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
@REGISTER_COMPOSITE('expand_v2')
def expand_v2_composite(x, shape):
    """
    define composite rule of op expnad_v2, expand_v2->expand
    repeat_times = shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    dim_out = len(shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


@REGISTER_COMPOSITE('expand_as_v2')
def expand_as_v2_composite(x, y, target_shape):
    """
    define composite rule of op expnad_as_v2, expand_as_v2->expand_as
    repeat_times = target_shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    if y is not None:
        target_shape = y.shape
    assert target_shape is not None
    dim_out = len(target_shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = target_shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
286 287 288 289 290 291 292 293
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


C
ccrrong 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307
@REGISTER_COMPOSITE('stack')
def stack_composite(x, axis):
    """
    define composite rule of op stack
    unsqueeze each dimension of the input (use reshape), and then concat
    """
    x_shape = x[0].shape
    if axis < 0:
        axis += len(x_shape) + 1
    out_shape = x_shape[:axis] + (1,) + x_shape[axis:]
    out = concat([reshape(item, out_shape) for item in x], axis)
    return out


308 309 310 311
@REGISTER_COMPOSITE('flatten_contiguous_range')
def flatten_contiguous_range_composite(x, start_axis, stop_axis):
    """
    define composite rule of op flatten, flatten_contiguous_range -> flatten.
312 313

    xshape is the dim with 0 added to the front of x, keep the shape information of x to calculate the grad.
314 315 316 317 318 319 320 321
    CINN doesn't need xshape for backward pass, return none instead of xshape.
    shape_out is the parameter of reshape, get from start_axis and stop_axis.
    out = reshape(x, shape=shape_out), xshape
    """
    shape_in = x.shape
    start_dim = start_axis if len(shape_in) != 0 else 0
    end_dim = stop_axis if len(shape_in) != 0 else 0
    assert start_dim <= end_dim
322 323 324
    if len(shape_in) == 0:
        return reshape(x, shape=[1]), None
    if start_dim == end_dim:
325 326 327 328 329 330 331 332 333 334 335 336 337
        return reshape(x, shape=shape_in), None
    slice_numel = 1
    for i in range(start_dim, end_dim + 1):
        slice_numel *= shape_in[i]
    shape_out = []
    for i in range(start_dim):
        shape_out.append(shape_in[i])
    shape_out.append(slice_numel)
    for i in range(end_dim + 1, len(shape_in)):
        shape_out.append(shape_in[i])
    return reshape(x, shape=shape_out), None


338 339 340 341 342 343 344 345 346 347 348 349 350
@REGISTER_COMPOSITE('dropout')
def dropout_composite(x, seed_tensor, p, is_test, mode, seed, fix_seed):
    """define composite rule of op dropout.
    upscale_in_train:
        train: out = input * mask / ( 1.0 - p )
        inference: out = input
    downscale_in_infer
        train: out = input * mask
        inference: out = input * (1.0 - p)
    """
    fix_seed = True if fix_seed is None else fix_seed
    seed = seed if fix_seed else 0
    upscale_in_train = mode == "upscale_in_train"
351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    mask = bernoulli(shape=x.shape, dtype=x.dtype, p=p, seed=seed)

    if upscale_in_train:
        if not is_test:
            # Process p=1.0 for avoid devide zero error (x*mask/(1.0-p))
            if p == 1.0:
                return 0.0 * x, zeros(x.shape, core.VarDesc.VarType.UINT8)
            else:
                return x * mask / (1.0 - p), cast(
                    mask, core.VarDesc.VarType.UINT8
                )
        else:
            return assign(x), cast(mask, core.VarDesc.VarType.UINT8)
    else:
        if not is_test:
            return x * mask, cast(mask, core.VarDesc.VarType.UINT8)
        else:
            return x * (1.0 - p), cast(mask, core.VarDesc.VarType.UINT8)


def bernoulli(shape, dtype, p, seed=0):
373 374 375 376
    from paddle.fluid.data_feeder import convert_dtype

    # TODO(jiabin) Fix uniform doesn't support float16 error in CINN
    new_dtype = "float32" if convert_dtype(dtype) == "float16" else dtype
377 378
    return cast(
        greater_equal(
379
            uniform(shape, new_dtype, min=0.0, max=1.0, seed=seed),
380
            fill_constant(shape if len(shape) == 0 else [1], new_dtype, p),
381 382 383
        ),
        dtype,
    )
Z
zxcd 已提交
384 385


R
Roc 已提交
386 387 388 389 390 391 392 393 394 395 396
@REGISTER_COMPOSITE('hard_swish')
def hard_swish_composite(x):
    """define composite rule of op hard_swish.
    offset=3, threshold=6, scale=6
    out = minimum(
        maxmum(x + offset, 0), threshold
    ) * x / scale
    """
    offset = 3.0
    threshold = 6.0
    scale = 6.0
397
    full_shape = x.shape if len(x.shape) == 0 else [1]
R
Roc 已提交
398 399 400
    res = (
        minimum(
            maximum(
401 402
                x + full(full_shape, offset, dtype=x.dtype),
                full(full_shape, 0.0, dtype=x.dtype),
R
Roc 已提交
403
            ),
404
            full(full_shape, threshold, dtype=x.dtype),
R
Roc 已提交
405 406
        )
        * x
407
        / full(full_shape, scale, dtype=x.dtype)
R
Roc 已提交
408 409 410 411
    )
    return res


R
Roc 已提交
412 413 414 415 416 417 418 419 420
@REGISTER_COMPOSITE('index_select')
def index_select_composite(x, index, axis):
    """define composite rule of op index_select."""
    if axis < 0:
        axis = len(x.shape) + axis
    res = gather(x, index, axis=axis)
    return res


Z
zxcd 已提交
421 422 423 424 425 426 427 428 429 430 431
@REGISTER_COMPOSITE('sigmoid')
def sigmoid_composite(x):
    """
    define composite rule of op sigmoid
    res = 1 / (1 + exp(-x))
    """
    sum_temp = 1 + exp(-x)
    res = 1 / sum_temp
    return res


Z
zxcd 已提交
432 433 434 435 436 437 438 439 440
@REGISTER_COMPOSITE('silu')
def silu_composite(x):
    """
    define composite rule of op silu
    res = x / (1 + exp(-x))
    """
    sum_temp = 1 + exp(-x)
    res = x / sum_temp
    return res
441 442


443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
@REGISTER_COMPOSITE('meshgrid')
def meshgrid_composite(inputs):
    """
    define composite rule of op meshgrid
    If the input has N tensors of size S_0, ... S_n-1, then the output will also have N tensors, where
    each tensor is of shape (S_0, ..., S_n-1).
    E.g. a1 is Tensor [1,2,3]
         b1 is Tensor [4,5]
         r1, r2 = paddle.meshgrid([a1, b1])
         r1 is Tensor [[1,1], [2,2], [3,3]]
         r2 is Tensor [[4,5], [4,5], [4,5]]
    """
    size = len(inputs)
    shape = [1] * size
    for i in range(size):
        dim = inputs[i].dim()
        assert dim == 0 or dim == 1
        if dim == 1:
            shape[i] = inputs[i].shape[0]
    outputs = []
    for i in range(size):
        view_shape = [1] * size
        view_shape[i] = shape[i]
        outputs.append(inputs[i].reshape(view_shape).broadcast_to(shape))
    return outputs


470 471 472 473 474 475 476
@REGISTER_COMPOSITE('fill_any_like')
def fill_any_like(x, fill_value, dtype, place=None):
    """define composite rule of op full_like."""
    """op name: full_like  op type name: fill_any_like."""
    """arg place is not used, add it here to keep same as python api."""
    val = full(x.shape, fill_value, dtype)
    return val
K
Kang Zhao 已提交
477 478


479 480 481 482 483 484 485 486 487 488 489 490 491 492
@REGISTER_COMPOSITE('squeeze2')
def squeeze2_composite(x, axis):
    """define composite rule of squeeze"""
    """
    canonicalize dim within range 0 to rank and
    determine new shape after squeeze op
    if axis not specified, remove all dims equal to 1
    otherwise, remove dims equal to 1 in axis
    axis can only be list, not int
    """
    rank = len(x.shape)
    if len(axis) == 0:
        dims = set(range(rank))
    else:
493
        dims = {ax % rank for ax in axis}
494 495 496 497 498 499 500 501
    new_shape = []
    for d, s in enumerate(x.shape):
        if not (s == 1 and (d in dims)):
            new_shape.append(s)
    out = reshape(x, new_shape)
    return [out, None]


M
mhy-666 已提交
502 503 504 505 506 507
@REGISTER_COMPOSITE('sqrt')
def sqrt_composite(x):
    """
    define composite rule of op sqrt
    res = pow(x, 0.5)
    """
508
    y = full(x.shape if len(x.shape) == 0 else [1], 0.5, x.dtype)
M
mhy-666 已提交
509 510 511 512
    res = pow(x, y)
    return res


513 514 515 516 517 518 519
@REGISTER_COMPOSITE('pow')
def pow_composite(x, y):
    """
    define composite rule of op pow
    res = x^y
    """
    if isinstance(y, (int, float)):
520
        y = full(x.shape if len(x.shape) == 0 else [1], y, x.dtype)
521 522 523 524
    res = pow(x, y)
    return res


K
Kang Zhao 已提交
525 526 527 528
@REGISTER_COMPOSITE('relu')
def relu_composite(x):
    """define composite rule of op relu."""
    # relu(x) = max(x, 0)
529 530 531 532
    if len(x.shape) == 0:
        return maximum(x, full(x.shape, 0.0, x.dtype))
    else:
        return maximum(x, full([1], 0.0, x.dtype))
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552


@REGISTER_COMPOSITE('unsqueeze2')
def unsqueeze_composite(x, axis):
    """define composite rule of op unsqueeze"""
    """using reshape to implement unsqueeze op"""
    x_shape = list(x.shape)
    axis_list = list(axis)
    for i in axis_list:
        if i < 0:
            i += len(x_shape) + 1
        x_shape = (
            x_shape[:i]
            + [
                1,
            ]
            + x_shape[i:]
        )
    out = reshape(x, x_shape)
    return [out, None]
553 554 555 556 557 558


@REGISTER_COMPOSITE('rsqrt')
def rsqrt_composite(x):
    """define composite rule of op rsqrt."""
    # rsqrt(x) = x^(-0.5)
559
    y = full(x.shape if len(x.shape) == 0 else [1], -0.5, x.dtype)
560
    return pow(x, y)