test_sgd_op.py 17.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15
import unittest
16

Q
qijun 已提交
17
import numpy as np
18
from op_test import OpTest
19

J
Jiawei Wang 已提交
20
import paddle
21 22 23
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.op import Operator
Q
Qiao Longfei 已提交
24

W
WangXi 已提交
25 26
paddle.enable_static()

Q
Qiao Longfei 已提交
27

28
class TestSGDOp(OpTest):
Q
Qiao Longfei 已提交
29
    def setUp(self):
Q
qijun 已提交
30
        self.op_type = "sgd"
T
tensor-tang 已提交
31 32 33
        self.conf()
        w = np.random.random((self.h, self.w)).astype("float32")
        g = np.random.random((self.h, self.w)).astype("float32")
34
        lr = np.array([0.1]).astype("float32")
D
dangqingqing 已提交
35

36 37
        self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
        self.outputs = {'ParamOut': w - lr * g}
Q
Qiao Longfei 已提交
38

T
tensor-tang 已提交
39 40 41 42
    def conf(self):
        self.h = 102
        self.w = 105

Q
qijun 已提交
43 44 45
    def test_check_output(self):
        self.check_output()

Q
Qiao Longfei 已提交
46

T
tensor-tang 已提交
47 48 49 50 51 52
class TestSGDOpCase8X(TestSGDOp):
    def conf(self):
        self.h = 10
        self.w = 64


Q
qijun 已提交
53
class TestSparseSGDOp(unittest.TestCase):
Q
qijun 已提交
54
    def check_with_place(self, place):
Q
qijun 已提交
55 56
        scope = core.Scope()

57
        # create and initialize Grad Variable
Q
qijun 已提交
58 59
        height = 10
        rows = [0, 4, 7]
T
tensor-tang 已提交
60
        self.conf()
Q
qiaolongfei 已提交
61 62 63 64

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
T
tensor-tang 已提交
65
        np_array = np.ones((len(rows), self.row_numel)).astype("float32")
Q
qiaolongfei 已提交
66 67 68 69 70 71 72 73
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
T
tensor-tang 已提交
74
        param_array = np.full((height, self.row_numel), 5.0).astype("float32")
Q
qiaolongfei 已提交
75 76 77 78 79 80 81 82
        param.set(param_array, place)

        # create and initialize LeraningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run sgd operator
83 84 85 86 87 88 89
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate',
        )
Q
qiaolongfei 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        sgd_op.run(scope, place)

        # get and compare result
        result_array = np.array(param)

        # rows[0] = 0, 5.0 - 2.0 * 2.0
        self.assertAlmostEqual(1.0, result_array[rows[0], 0])
        # rows[0] = 0, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[0], 2])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[1, 0])
        # rows[1] = 4, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[1], 10])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[5, 8])
        # rows[2] = 7, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[2], 1])
        # rows[2] = 7, 5.0 - 2.0 * 4.0
        self.assertAlmostEqual(-3.0, result_array[rows[2], 8])

    def test_sparse_sgd(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)

T
tensor-tang 已提交
117 118 119 120 121 122 123 124
    def conf(self):
        self.row_numel = 12


class TestSparseSGDOpCase8X(TestSparseSGDOp):
    def conf(self):
        self.row_numel = 16

Q
qiaolongfei 已提交
125 126 127 128 129

class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
    def check_with_place(self, place):
        scope = core.Scope()

Q
qiaolongfei 已提交
130
        row_width = 12
Q
qiaolongfei 已提交
131
        # create and initialize Grad Variable
Q
qiaolongfei 已提交
132 133
        grad_height = 10
        grad_rows = [0, 4, 7]
Q
qijun 已提交
134 135

        grad_selected_rows = scope.var('Grad').get_selected_rows()
Q
qiaolongfei 已提交
136 137 138 139 140
        grad_selected_rows.set_height(grad_height)
        grad_selected_rows.set_rows(grad_rows)
        grad_array = np.ones((len(grad_rows), row_width)).astype("float32")
        grad_array[0, 0] = 2.0
        grad_array[2, 8] = 4.0
Q
qijun 已提交
141

Q
qijun 已提交
142
        grad_tensor = grad_selected_rows.get_tensor()
Q
qiaolongfei 已提交
143
        grad_tensor.set(grad_array, place)
Q
qijun 已提交
144 145

        # create and initialize Param Variable
Q
qiaolongfei 已提交
146 147 148 149 150 151 152
        # create and initialize W Variable
        param_rows = [0, 1, 2, 3, 4, 5, 6, 7]

        # init Param
        w_selected_rows = scope.var('Param').get_selected_rows()
        w_selected_rows.set_height(len(param_rows))
        w_selected_rows.set_rows(param_rows)
153
        w_selected_rows.sync_index()
Q
qiaolongfei 已提交
154 155 156 157 158 159 160
        w_array = np.ones((len(param_rows), row_width)).astype("float32")
        for i in range(len(param_rows)):
            w_array[i] *= i
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        w_before_optimize = np.array(w_tensor)
Q
qijun 已提交
161 162

        # create and initialize LeraningRate Variable
Q
qiaolongfei 已提交
163
        lr_value = 0.1
Q
qijun 已提交
164
        lr = scope.var('LearningRate').get_tensor()
Q
qiaolongfei 已提交
165
        lr_array = np.full((1), lr_value).astype("float32")
Q
qijun 已提交
166 167
        lr.set(lr_array, place)

Q
qiaolongfei 已提交
168 169 170
        # optimize with Python
        w_after_optimize = np.copy(w_before_optimize)
        for index, id in enumerate(grad_rows):
171 172 173
            w_after_optimize[id] = (
                w_before_optimize[id] - lr_value * grad_array[index]
            )
Q
qiaolongfei 已提交
174

Q
qijun 已提交
175
        # create and run sgd operator
176 177 178 179 180 181 182
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate',
        )
D
dzhwinter 已提交
183
        sgd_op.run(scope, place)
Q
qijun 已提交
184 185

        # get and compare result
Q
qiaolongfei 已提交
186 187
        result_array = np.array(w_tensor)
        assert (result_array == w_after_optimize).all()
Q
qijun 已提交
188

189
    def test_sparse_parameter_sgd(self):
Q
qijun 已提交
190
        places = [core.CPUPlace()]
191
        # do not support GPU kernel currently
Q
qijun 已提交
192 193 194
        for place in places:
            self.check_with_place(place)

Q
qijun 已提交
195

196 197
class TestSGDOpWithLargeInput(unittest.TestCase):
    def runTest(self):
198
        paddle.enable_static()
199
        data = fluid.layers.fill_constant(shape=[1], value=128, dtype='int64')
200 201 202
        label = fluid.layers.fill_constant(
            shape=[1, 150], value=0.5, dtype='float32'
        )
203 204 205
        emb = paddle.static.nn.embedding(
            input=data, size=(10000000, 150), dtype='float32'
        )
206
        out = paddle.nn.functional.normalize(x=emb, axis=-1)
207

208
        cost = paddle.nn.functional.square_error_cost(input=out, label=label)
209
        avg_cost = paddle.mean(cost)
210 211 212 213 214 215 216
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        compiled_prog = fluid.compiler.CompiledProgram(
217 218
            fluid.default_main_program()
        )
219 220 221
        result = exe.run(compiled_prog, fetch_list=[avg_cost])


J
Jiawei Wang 已提交
222 223 224 225 226 227 228
class TestSGDV2(unittest.TestCase):
    def test_sgd_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear = paddle.nn.Linear(13, 5)
        # This can be any optimizer supported by dygraph.
229 230 231 232 233
        adam = paddle.optimizer.SGD(
            learning_rate=0.01,
            parameters=linear.parameters(),
            weight_decay=0.01,
        )
J
Jiawei Wang 已提交
234 235 236 237 238 239
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()

    def test_sgd(self):
240
        paddle.enable_static()
W
WangXi 已提交
241 242 243 244 245

        def check_sgd_optimizer(optimizer_attr):
            init_program = paddle.static.Program()
            program = paddle.static.Program()
            block = program.global_block()
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr,
            )
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
            )
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
            )
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out"
            )
            block.append_op(
                type="mul",
                inputs={"X": mul_x, "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1},
            )
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
            )
W
WangXi 已提交
271 272 273 274 275 276 277 278 279 280 281
            sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            opts, _ = sgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])

        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])
J
Jiawei Wang 已提交
282 283 284 285

    def test_raise_error(self):
        self.assertRaises(ValueError, paddle.optimizer.SGD, learning_rate=None)

W
WangXi 已提交
286
    def test_sgd_group_dygraph(self):
287 288 289 290 291 292
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
293 294 295 296 297 298 299 300 301 302 303 304
        adam = paddle.optimizer.SGD(
            learning_rate=0.01,
            parameters=[
                {'params': linear_1.parameters()},
                {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                },
            ],
            weight_decay=0.01,
        )
305 306 307 308 309 310 311
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


312 313 314 315 316 317 318
class TestSGDMultiPrecision2_0(unittest.TestCase):
    def dygraph_sgd_mp(self, mp):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device('gpu')
        input = paddle.randn((2, 2))
        model = paddle.nn.Linear(2, 2)
319 320 321
        optimizer = paddle.optimizer.SGD(
            parameters=model.parameters(), multi_precision=mp
        )
322
        if mp:
323 324 325 326
            model = paddle.amp.decorate(models=model, level='O2')
            scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

        for idx in range(5):
327
            if mp:
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.minimize(optimizer, scaled)
                optimizer.clear_grad()
            else:
                output = model(input)
                loss = paddle.mean(output)
                optimizer.step()
                optimizer.clear_grad()

        return output, model.parameters()

    def static_sgd_mp(self, mp):
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        exe = paddle.static.Executor('gpu')
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        optimizer = paddle.optimizer.SGD(multi_precision=mp)

        if mp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
358 359
                use_fp16_guard=False,
            )
360 361
        with paddle.static.program_guard(train_program, startup_program):
            if mp:
362 363 364
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16'
                )
365
            else:
366 367 368
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32'
                )
369
            hidden = paddle.static.nn.fc(x=data, size=10)
370
            loss = paddle.mean(hidden)
371 372 373 374 375 376 377 378 379 380
            optimizer.minimize(loss)
        exe.run(startup_program)

        if mp:
            optimizer.amp_init(place='gpu', scope=paddle.static.global_scope())
            x = np.random.random(size=(2, 2)).astype('float16')
        else:
            x = np.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
381 382 383
            (loss_data,) = exe.run(
                train_program, feed={"X": x}, fetch_list=[loss.name]
            )
384 385 386 387 388 389 390 391 392
            out.append(loss_data)
        return out

    def test_main(self):
        if not paddle.is_compiled_with_cuda():
            return
        "Test dygraph mode"
        output1_dy, params1_dy = self.dygraph_sgd_mp(mp=True)
        output2_dy, params2_dy = self.dygraph_sgd_mp(mp=False)
393 394 395 396 397 398
        np.testing.assert_allclose(
            output1_dy.astype('float32').numpy(),
            output2_dy.astype('float32').numpy(),
            rtol=1e-05,
            atol=0.1,
        )
399
        for idx in range(len(params1_dy)):
400 401 402 403
            np.testing.assert_allclose(
                params1_dy[idx].astype('float32').numpy(),
                params2_dy[idx].astype('float32').numpy(),
                rtol=1e-05,
404 405
                atol=0.1,
            )
406
        "Test static graph mode"
407 408 409
        output1_st = self.static_sgd_mp(mp=True)
        output2_st = self.static_sgd_mp(mp=False)
        for idx in range(len(output1_st)):
410 411 412 413 414 415
            np.testing.assert_allclose(
                output1_st[idx].astype('float32'),
                output2_st[idx].astype('float32'),
                rtol=1e-05,
                atol=0.1,
            )
416 417 418 419 420 421 422 423 424 425 426 427


class TestSGDMultiPrecision1_0(unittest.TestCase):
    def dygraph_sgd_mp(self, mp):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device('gpu')
        input = paddle.randn((2, 2))
        model = paddle.nn.Linear(2, 2)
        optimizer = paddle.fluid.optimizer.SGD(
            learning_rate=0.001,
            parameter_list=model.parameters(),
428 429
            multi_precision=mp,
        )
430
        if mp:
431 432 433 434
            model = paddle.amp.decorate(models=model, level='O2')
            scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

        for idx in range(5):
435
            if mp:
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.minimize(optimizer, scaled)
                optimizer.clear_gradients()
            else:
                output = model(input)
                loss = paddle.mean(output)
                optimizer.minimize(loss)
                optimizer.clear_gradients()

        return output, model.parameters()

    def static_sgd_mp(self, mp):
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        exe = paddle.static.Executor('gpu')
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
458 459 460
        optimizer = paddle.fluid.optimizer.SGD(
            learning_rate=0.001, multi_precision=mp
        )
461 462 463 464 465 466 467

        if mp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
468 469
                use_fp16_guard=False,
            )
470 471
        with paddle.static.program_guard(train_program, startup_program):
            if mp:
472 473 474
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16'
                )
475
            else:
476 477 478
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32'
                )
479
            hidden = paddle.static.nn.fc(x=data, size=10)
480
            loss = paddle.mean(hidden)
481 482 483 484 485 486 487 488 489 490
            optimizer.minimize(loss)
        exe.run(startup_program)

        if mp:
            optimizer.amp_init(place='gpu', scope=paddle.static.global_scope())
            x = np.random.random(size=(2, 2)).astype('float16')
        else:
            x = np.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
491 492 493
            (loss_data,) = exe.run(
                train_program, feed={"X": x}, fetch_list=[loss.name]
            )
494 495 496 497 498 499 500 501 502
            out.append(loss_data)
        return out

    def test_main(self):
        if not paddle.is_compiled_with_cuda():
            return
        "Test dygraph mode"
        output1_dy, params1_dy = self.dygraph_sgd_mp(mp=True)
        output2_dy, params2_dy = self.dygraph_sgd_mp(mp=False)
503 504 505 506 507 508
        np.testing.assert_allclose(
            output1_dy.astype('float32').numpy(),
            output2_dy.astype('float32').numpy(),
            rtol=1e-05,
            atol=0.1,
        )
509
        for idx in range(len(params1_dy)):
510 511 512 513
            np.testing.assert_allclose(
                params1_dy[idx].astype('float32').numpy(),
                params2_dy[idx].astype('float32').numpy(),
                rtol=1e-05,
514 515
                atol=0.1,
            )
516
        "Test static graph mode"
517 518 519
        output1_st = self.static_sgd_mp(mp=True)
        output2_st = self.static_sgd_mp(mp=False)
        for idx in range(len(output1_st)):
520 521 522 523 524 525
            np.testing.assert_allclose(
                output1_st[idx].astype('float32'),
                output2_st[idx].astype('float32'),
                rtol=1e-05,
                atol=0.1,
            )
526 527


Q
Qiao Longfei 已提交
528 529
if __name__ == "__main__":
    unittest.main()