test_sgd_op.py 17.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15
import unittest
Q
qijun 已提交
16
import numpy as np
17
import paddle.fluid as fluid
18 19
import paddle.fluid.core as core
from paddle.fluid.op import Operator
20
from op_test import OpTest
J
Jiawei Wang 已提交
21
import paddle
Z
zyfncg 已提交
22
from paddle.fluid.framework import _test_eager_guard
Q
Qiao Longfei 已提交
23

W
WangXi 已提交
24 25
paddle.enable_static()

Q
Qiao Longfei 已提交
26

27
class TestSGDOp(OpTest):
Q
Qiao Longfei 已提交
28
    def setUp(self):
Q
qijun 已提交
29
        self.op_type = "sgd"
T
tensor-tang 已提交
30 31 32
        self.conf()
        w = np.random.random((self.h, self.w)).astype("float32")
        g = np.random.random((self.h, self.w)).astype("float32")
33
        lr = np.array([0.1]).astype("float32")
D
dangqingqing 已提交
34

35 36
        self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
        self.outputs = {'ParamOut': w - lr * g}
Q
Qiao Longfei 已提交
37

T
tensor-tang 已提交
38 39 40 41
    def conf(self):
        self.h = 102
        self.w = 105

Q
qijun 已提交
42 43 44
    def test_check_output(self):
        self.check_output()

Q
Qiao Longfei 已提交
45

T
tensor-tang 已提交
46 47 48 49 50 51
class TestSGDOpCase8X(TestSGDOp):
    def conf(self):
        self.h = 10
        self.w = 64


Q
qijun 已提交
52
class TestSparseSGDOp(unittest.TestCase):
Q
qijun 已提交
53
    def check_with_place(self, place):
Q
qijun 已提交
54 55
        scope = core.Scope()

56
        # create and initialize Grad Variable
Q
qijun 已提交
57 58
        height = 10
        rows = [0, 4, 7]
T
tensor-tang 已提交
59
        self.conf()
Q
qiaolongfei 已提交
60 61 62 63

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
T
tensor-tang 已提交
64
        np_array = np.ones((len(rows), self.row_numel)).astype("float32")
Q
qiaolongfei 已提交
65 66 67 68 69 70 71 72
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
T
tensor-tang 已提交
73
        param_array = np.full((height, self.row_numel), 5.0).astype("float32")
Q
qiaolongfei 已提交
74 75 76 77 78 79 80 81
        param.set(param_array, place)

        # create and initialize LeraningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run sgd operator
82 83 84 85 86 87 88
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate',
        )
Q
qiaolongfei 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        sgd_op.run(scope, place)

        # get and compare result
        result_array = np.array(param)

        # rows[0] = 0, 5.0 - 2.0 * 2.0
        self.assertAlmostEqual(1.0, result_array[rows[0], 0])
        # rows[0] = 0, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[0], 2])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[1, 0])
        # rows[1] = 4, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[1], 10])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[5, 8])
        # rows[2] = 7, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[2], 1])
        # rows[2] = 7, 5.0 - 2.0 * 4.0
        self.assertAlmostEqual(-3.0, result_array[rows[2], 8])

    def test_sparse_sgd(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)

T
tensor-tang 已提交
116 117 118 119 120 121 122 123
    def conf(self):
        self.row_numel = 12


class TestSparseSGDOpCase8X(TestSparseSGDOp):
    def conf(self):
        self.row_numel = 16

Q
qiaolongfei 已提交
124 125 126 127 128

class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
    def check_with_place(self, place):
        scope = core.Scope()

Q
qiaolongfei 已提交
129
        row_width = 12
Q
qiaolongfei 已提交
130
        # create and initialize Grad Variable
Q
qiaolongfei 已提交
131 132
        grad_height = 10
        grad_rows = [0, 4, 7]
Q
qijun 已提交
133 134

        grad_selected_rows = scope.var('Grad').get_selected_rows()
Q
qiaolongfei 已提交
135 136 137 138 139
        grad_selected_rows.set_height(grad_height)
        grad_selected_rows.set_rows(grad_rows)
        grad_array = np.ones((len(grad_rows), row_width)).astype("float32")
        grad_array[0, 0] = 2.0
        grad_array[2, 8] = 4.0
Q
qijun 已提交
140

Q
qijun 已提交
141
        grad_tensor = grad_selected_rows.get_tensor()
Q
qiaolongfei 已提交
142
        grad_tensor.set(grad_array, place)
Q
qijun 已提交
143 144

        # create and initialize Param Variable
Q
qiaolongfei 已提交
145 146 147 148 149 150 151
        # create and initialize W Variable
        param_rows = [0, 1, 2, 3, 4, 5, 6, 7]

        # init Param
        w_selected_rows = scope.var('Param').get_selected_rows()
        w_selected_rows.set_height(len(param_rows))
        w_selected_rows.set_rows(param_rows)
152
        w_selected_rows.sync_index()
Q
qiaolongfei 已提交
153 154 155 156 157 158 159
        w_array = np.ones((len(param_rows), row_width)).astype("float32")
        for i in range(len(param_rows)):
            w_array[i] *= i
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        w_before_optimize = np.array(w_tensor)
Q
qijun 已提交
160 161

        # create and initialize LeraningRate Variable
Q
qiaolongfei 已提交
162
        lr_value = 0.1
Q
qijun 已提交
163
        lr = scope.var('LearningRate').get_tensor()
Q
qiaolongfei 已提交
164
        lr_array = np.full((1), lr_value).astype("float32")
Q
qijun 已提交
165 166
        lr.set(lr_array, place)

Q
qiaolongfei 已提交
167 168 169
        # optimize with Python
        w_after_optimize = np.copy(w_before_optimize)
        for index, id in enumerate(grad_rows):
170 171 172
            w_after_optimize[id] = (
                w_before_optimize[id] - lr_value * grad_array[index]
            )
Q
qiaolongfei 已提交
173

Q
qijun 已提交
174
        # create and run sgd operator
175 176 177 178 179 180 181
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate',
        )
D
dzhwinter 已提交
182
        sgd_op.run(scope, place)
Q
qijun 已提交
183 184

        # get and compare result
Q
qiaolongfei 已提交
185 186
        result_array = np.array(w_tensor)
        assert (result_array == w_after_optimize).all()
Q
qijun 已提交
187

188
    def test_sparse_parameter_sgd(self):
Q
qijun 已提交
189
        places = [core.CPUPlace()]
190
        # do not support GPU kernel currently
Q
qijun 已提交
191 192 193
        for place in places:
            self.check_with_place(place)

Q
qijun 已提交
194

195 196
class TestSGDOpWithLargeInput(unittest.TestCase):
    def runTest(self):
197
        paddle.enable_static()
198
        data = fluid.layers.fill_constant(shape=[1], value=128, dtype='int64')
199 200 201
        label = fluid.layers.fill_constant(
            shape=[1, 150], value=0.5, dtype='float32'
        )
202 203 204 205
        emb = fluid.embedding(input=data, size=(10000000, 150), dtype='float32')
        out = fluid.layers.l2_normalize(x=emb, axis=-1)

        cost = fluid.layers.square_error_cost(input=out, label=label)
206
        avg_cost = paddle.mean(cost)
207 208 209 210 211 212 213
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        compiled_prog = fluid.compiler.CompiledProgram(
214 215
            fluid.default_main_program()
        )
216 217 218
        result = exe.run(compiled_prog, fetch_list=[avg_cost])


J
Jiawei Wang 已提交
219 220 221 222 223 224 225
class TestSGDV2(unittest.TestCase):
    def test_sgd_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear = paddle.nn.Linear(13, 5)
        # This can be any optimizer supported by dygraph.
226 227 228 229 230
        adam = paddle.optimizer.SGD(
            learning_rate=0.01,
            parameters=linear.parameters(),
            weight_decay=0.01,
        )
J
Jiawei Wang 已提交
231 232 233 234 235 236
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()

    def test_sgd(self):
237
        paddle.enable_static()
W
WangXi 已提交
238 239 240 241 242

        def check_sgd_optimizer(optimizer_attr):
            init_program = paddle.static.Program()
            program = paddle.static.Program()
            block = program.global_block()
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr,
            )
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
            )
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
            )
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out"
            )
            block.append_op(
                type="mul",
                inputs={"X": mul_x, "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1},
            )
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
            )
W
WangXi 已提交
268 269 270 271 272 273 274 275 276 277 278
            sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            opts, _ = sgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])

        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])
J
Jiawei Wang 已提交
279 280 281 282

    def test_raise_error(self):
        self.assertRaises(ValueError, paddle.optimizer.SGD, learning_rate=None)

W
WangXi 已提交
283
    def test_sgd_group_dygraph(self):
284 285 286 287 288 289
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
290 291 292 293 294 295 296 297 298 299 300 301
        adam = paddle.optimizer.SGD(
            learning_rate=0.01,
            parameters=[
                {'params': linear_1.parameters()},
                {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                },
            ],
            weight_decay=0.01,
        )
302 303 304 305 306 307
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()

Z
zyfncg 已提交
308 309 310 311 312
    def test_eager(self):
        with _test_eager_guard():
            self.test_sgd_dygraph()
            self.test_sgd_group_dygraph()

313

314 315 316 317 318 319 320
class TestSGDMultiPrecision2_0(unittest.TestCase):
    def dygraph_sgd_mp(self, mp):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device('gpu')
        input = paddle.randn((2, 2))
        model = paddle.nn.Linear(2, 2)
321 322 323
        optimizer = paddle.optimizer.SGD(
            parameters=model.parameters(), multi_precision=mp
        )
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        if mp == True:
            model = paddle.amp.decorate(models=model, level='O2')
            scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

        for idx in range(5):
            if mp == True:
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.minimize(optimizer, scaled)
                optimizer.clear_grad()
            else:
                output = model(input)
                loss = paddle.mean(output)
                optimizer.step()
                optimizer.clear_grad()

        return output, model.parameters()

    def static_sgd_mp(self, mp):
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        exe = paddle.static.Executor('gpu')
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        optimizer = paddle.optimizer.SGD(multi_precision=mp)

        if mp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
360 361
                use_fp16_guard=False,
            )
362 363
        with paddle.static.program_guard(train_program, startup_program):
            if mp:
364 365 366
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16'
                )
367
            else:
368 369 370
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32'
                )
371
            hidden = paddle.static.nn.fc(x=data, size=10)
372
            loss = paddle.mean(hidden)
373 374 375 376 377 378 379 380 381 382
            optimizer.minimize(loss)
        exe.run(startup_program)

        if mp:
            optimizer.amp_init(place='gpu', scope=paddle.static.global_scope())
            x = np.random.random(size=(2, 2)).astype('float16')
        else:
            x = np.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
383 384 385
            (loss_data,) = exe.run(
                train_program, feed={"X": x}, fetch_list=[loss.name]
            )
386 387 388 389 390 391 392 393 394
            out.append(loss_data)
        return out

    def test_main(self):
        if not paddle.is_compiled_with_cuda():
            return
        "Test dygraph mode"
        output1_dy, params1_dy = self.dygraph_sgd_mp(mp=True)
        output2_dy, params2_dy = self.dygraph_sgd_mp(mp=False)
395 396 397 398 399 400
        np.testing.assert_allclose(
            output1_dy.astype('float32').numpy(),
            output2_dy.astype('float32').numpy(),
            rtol=1e-05,
            atol=0.1,
        )
401
        for idx in range(len(params1_dy)):
402 403 404 405
            np.testing.assert_allclose(
                params1_dy[idx].astype('float32').numpy(),
                params2_dy[idx].astype('float32').numpy(),
                rtol=1e-05,
406 407
                atol=0.1,
            )
408 409 410 411
        "Test static mode"
        output1_st = self.static_sgd_mp(mp=True)
        output2_st = self.static_sgd_mp(mp=False)
        for idx in range(len(output1_st)):
412 413 414 415 416 417
            np.testing.assert_allclose(
                output1_st[idx].astype('float32'),
                output2_st[idx].astype('float32'),
                rtol=1e-05,
                atol=0.1,
            )
418 419 420 421 422 423 424 425 426 427 428 429


class TestSGDMultiPrecision1_0(unittest.TestCase):
    def dygraph_sgd_mp(self, mp):
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device('gpu')
        input = paddle.randn((2, 2))
        model = paddle.nn.Linear(2, 2)
        optimizer = paddle.fluid.optimizer.SGD(
            learning_rate=0.001,
            parameter_list=model.parameters(),
430 431
            multi_precision=mp,
        )
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        if mp == True:
            model = paddle.amp.decorate(models=model, level='O2')
            scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

        for idx in range(5):
            if mp == True:
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.minimize(optimizer, scaled)
                optimizer.clear_gradients()
            else:
                output = model(input)
                loss = paddle.mean(output)
                optimizer.minimize(loss)
                optimizer.clear_gradients()

        return output, model.parameters()

    def static_sgd_mp(self, mp):
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        exe = paddle.static.Executor('gpu')
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
460 461 462
        optimizer = paddle.fluid.optimizer.SGD(
            learning_rate=0.001, multi_precision=mp
        )
463 464 465 466 467 468 469

        if mp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
470 471
                use_fp16_guard=False,
            )
472 473
        with paddle.static.program_guard(train_program, startup_program):
            if mp:
474 475 476
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16'
                )
477
            else:
478 479 480
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32'
                )
481
            hidden = paddle.static.nn.fc(x=data, size=10)
482
            loss = paddle.mean(hidden)
483 484 485 486 487 488 489 490 491 492
            optimizer.minimize(loss)
        exe.run(startup_program)

        if mp:
            optimizer.amp_init(place='gpu', scope=paddle.static.global_scope())
            x = np.random.random(size=(2, 2)).astype('float16')
        else:
            x = np.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
493 494 495
            (loss_data,) = exe.run(
                train_program, feed={"X": x}, fetch_list=[loss.name]
            )
496 497 498 499 500 501 502 503 504
            out.append(loss_data)
        return out

    def test_main(self):
        if not paddle.is_compiled_with_cuda():
            return
        "Test dygraph mode"
        output1_dy, params1_dy = self.dygraph_sgd_mp(mp=True)
        output2_dy, params2_dy = self.dygraph_sgd_mp(mp=False)
505 506 507 508 509 510
        np.testing.assert_allclose(
            output1_dy.astype('float32').numpy(),
            output2_dy.astype('float32').numpy(),
            rtol=1e-05,
            atol=0.1,
        )
511
        for idx in range(len(params1_dy)):
512 513 514 515
            np.testing.assert_allclose(
                params1_dy[idx].astype('float32').numpy(),
                params2_dy[idx].astype('float32').numpy(),
                rtol=1e-05,
516 517
                atol=0.1,
            )
518 519 520 521
        "Test static mode"
        output1_st = self.static_sgd_mp(mp=True)
        output2_st = self.static_sgd_mp(mp=False)
        for idx in range(len(output1_st)):
522 523 524 525 526 527
            np.testing.assert_allclose(
                output1_st[idx].astype('float32'),
                output2_st[idx].astype('float32'),
                rtol=1e-05,
                atol=0.1,
            )
528 529


Q
Qiao Longfei 已提交
530 531
if __name__ == "__main__":
    unittest.main()