test_sgd_op.py 5.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15
import unittest
Q
qijun 已提交
16
import numpy as np
17 18
import paddle.fluid.core as core
from paddle.fluid.op import Operator
Q
qijun 已提交
19
from op_test import OpTest
Q
Qiao Longfei 已提交
20 21


22
class TestSGDOp(OpTest):
Q
Qiao Longfei 已提交
23
    def setUp(self):
Q
qijun 已提交
24 25 26
        self.op_type = "sgd"
        w = np.random.random((102, 105)).astype("float32")
        g = np.random.random((102, 105)).astype("float32")
27
        lr = np.array([0.1]).astype("float32")
D
dangqingqing 已提交
28

29 30
        self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
        self.outputs = {'ParamOut': w - lr * g}
Q
Qiao Longfei 已提交
31

Q
qijun 已提交
32 33 34
    def test_check_output(self):
        self.check_output()

Q
Qiao Longfei 已提交
35

Q
qijun 已提交
36
class TestSparseSGDOp(unittest.TestCase):
Q
qijun 已提交
37
    def check_with_place(self, place):
Q
qijun 已提交
38 39 40 41 42 43
        scope = core.Scope()

        # create and initialize Grad Variable   
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
Q
qiaolongfei 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param.set(param_array, place)

        # create and initialize LeraningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run sgd operator
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate')
        sgd_op.run(scope, place)

        # get and compare result
        result_array = np.array(param)

        # rows[0] = 0, 5.0 - 2.0 * 2.0
        self.assertAlmostEqual(1.0, result_array[rows[0], 0])
        # rows[0] = 0, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[0], 2])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[1, 0])
        # rows[1] = 4, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[1], 10])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[5, 8])
        # rows[2] = 7, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[2], 1])
        # rows[2] = 7, 5.0 - 2.0 * 4.0
        self.assertAlmostEqual(-3.0, result_array[rows[2], 8])

    def test_sparse_sgd(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
    def check_with_place(self, place):
        scope = core.Scope()

Q
qiaolongfei 已提交
104
        row_width = 12
Q
qiaolongfei 已提交
105
        # create and initialize Grad Variable
Q
qiaolongfei 已提交
106 107
        grad_height = 10
        grad_rows = [0, 4, 7]
Q
qijun 已提交
108 109

        grad_selected_rows = scope.var('Grad').get_selected_rows()
Q
qiaolongfei 已提交
110 111 112 113 114
        grad_selected_rows.set_height(grad_height)
        grad_selected_rows.set_rows(grad_rows)
        grad_array = np.ones((len(grad_rows), row_width)).astype("float32")
        grad_array[0, 0] = 2.0
        grad_array[2, 8] = 4.0
Q
qijun 已提交
115

Q
qijun 已提交
116
        grad_tensor = grad_selected_rows.get_tensor()
Q
qiaolongfei 已提交
117
        grad_tensor.set(grad_array, place)
Q
qijun 已提交
118 119

        # create and initialize Param Variable
Q
qiaolongfei 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133
        # create and initialize W Variable
        param_rows = [0, 1, 2, 3, 4, 5, 6, 7]

        # init Param
        w_selected_rows = scope.var('Param').get_selected_rows()
        w_selected_rows.set_height(len(param_rows))
        w_selected_rows.set_rows(param_rows)
        w_array = np.ones((len(param_rows), row_width)).astype("float32")
        for i in range(len(param_rows)):
            w_array[i] *= i
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        w_before_optimize = np.array(w_tensor)
Q
qijun 已提交
134 135

        # create and initialize LeraningRate Variable
Q
qiaolongfei 已提交
136
        lr_value = 0.1
Q
qijun 已提交
137
        lr = scope.var('LearningRate').get_tensor()
Q
qiaolongfei 已提交
138
        lr_array = np.full((1), lr_value).astype("float32")
Q
qijun 已提交
139 140
        lr.set(lr_array, place)

Q
qiaolongfei 已提交
141 142 143 144 145 146
        # optimize with Python
        w_after_optimize = np.copy(w_before_optimize)
        for index, id in enumerate(grad_rows):
            w_after_optimize[id] = w_before_optimize[
                id] - lr_value * grad_array[index]

Q
qijun 已提交
147 148 149 150 151 152 153
        # create and run sgd operator
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate')
D
dzhwinter 已提交
154
        sgd_op.run(scope, place)
Q
qijun 已提交
155 156

        # get and compare result
Q
qiaolongfei 已提交
157 158
        result_array = np.array(w_tensor)
        assert (result_array == w_after_optimize).all()
Q
qijun 已提交
159

Q
qijun 已提交
160 161
    def test_sparse_sgd(self):
        places = [core.CPUPlace()]
162
        if core.is_compiled_with_cuda():
D
dzhwinter 已提交
163
            places.append(core.CUDAPlace(0))
Q
qijun 已提交
164 165 166
        for place in places:
            self.check_with_place(place)

Q
qijun 已提交
167

Q
Qiao Longfei 已提交
168 169
if __name__ == "__main__":
    unittest.main()