test_sgd_op.py 6.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
Qiao Longfei 已提交
17
import unittest
Q
qijun 已提交
18
import numpy as np
19 20
import paddle.fluid.core as core
from paddle.fluid.op import Operator
21
from op_test import OpTest
Q
Qiao Longfei 已提交
22 23


24
class TestSGDOp(OpTest):
Q
Qiao Longfei 已提交
25
    def setUp(self):
Q
qijun 已提交
26
        self.op_type = "sgd"
T
tensor-tang 已提交
27 28 29
        self.conf()
        w = np.random.random((self.h, self.w)).astype("float32")
        g = np.random.random((self.h, self.w)).astype("float32")
30
        lr = np.array([0.1]).astype("float32")
D
dangqingqing 已提交
31

32 33
        self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
        self.outputs = {'ParamOut': w - lr * g}
Q
Qiao Longfei 已提交
34

T
tensor-tang 已提交
35 36 37 38
    def conf(self):
        self.h = 102
        self.w = 105

Q
qijun 已提交
39 40 41
    def test_check_output(self):
        self.check_output()

Q
Qiao Longfei 已提交
42

T
tensor-tang 已提交
43 44 45 46 47 48
class TestSGDOpCase8X(TestSGDOp):
    def conf(self):
        self.h = 10
        self.w = 64


Q
qijun 已提交
49
class TestSparseSGDOp(unittest.TestCase):
Q
qijun 已提交
50
    def check_with_place(self, place):
Q
qijun 已提交
51 52 53 54 55
        scope = core.Scope()

        # create and initialize Grad Variable   
        height = 10
        rows = [0, 4, 7]
T
tensor-tang 已提交
56
        self.conf()
Q
qiaolongfei 已提交
57 58 59 60

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
T
tensor-tang 已提交
61
        np_array = np.ones((len(rows), self.row_numel)).astype("float32")
Q
qiaolongfei 已提交
62 63 64 65 66 67 68 69
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
T
tensor-tang 已提交
70
        param_array = np.full((height, self.row_numel), 5.0).astype("float32")
Q
qiaolongfei 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        param.set(param_array, place)

        # create and initialize LeraningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run sgd operator
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate')
        sgd_op.run(scope, place)

        # get and compare result
        result_array = np.array(param)

        # rows[0] = 0, 5.0 - 2.0 * 2.0
        self.assertAlmostEqual(1.0, result_array[rows[0], 0])
        # rows[0] = 0, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[0], 2])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[1, 0])
        # rows[1] = 4, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[1], 10])
        # 5.0 - 2.0 * 0.0
        self.assertAlmostEqual(5.0, result_array[5, 8])
        # rows[2] = 7, 5.0 - 2.0 * 1.0
        self.assertAlmostEqual(3.0, result_array[rows[2], 1])
        # rows[2] = 7, 5.0 - 2.0 * 4.0
        self.assertAlmostEqual(-3.0, result_array[rows[2], 8])

    def test_sparse_sgd(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)

T
tensor-tang 已提交
112 113 114 115 116 117 118 119
    def conf(self):
        self.row_numel = 12


class TestSparseSGDOpCase8X(TestSparseSGDOp):
    def conf(self):
        self.row_numel = 16

Q
qiaolongfei 已提交
120 121 122 123 124

class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
    def check_with_place(self, place):
        scope = core.Scope()

Q
qiaolongfei 已提交
125
        row_width = 12
Q
qiaolongfei 已提交
126
        # create and initialize Grad Variable
Q
qiaolongfei 已提交
127 128
        grad_height = 10
        grad_rows = [0, 4, 7]
Q
qijun 已提交
129 130

        grad_selected_rows = scope.var('Grad').get_selected_rows()
Q
qiaolongfei 已提交
131 132 133 134 135
        grad_selected_rows.set_height(grad_height)
        grad_selected_rows.set_rows(grad_rows)
        grad_array = np.ones((len(grad_rows), row_width)).astype("float32")
        grad_array[0, 0] = 2.0
        grad_array[2, 8] = 4.0
Q
qijun 已提交
136

Q
qijun 已提交
137
        grad_tensor = grad_selected_rows.get_tensor()
Q
qiaolongfei 已提交
138
        grad_tensor.set(grad_array, place)
Q
qijun 已提交
139 140

        # create and initialize Param Variable
Q
qiaolongfei 已提交
141 142 143 144 145 146 147
        # create and initialize W Variable
        param_rows = [0, 1, 2, 3, 4, 5, 6, 7]

        # init Param
        w_selected_rows = scope.var('Param').get_selected_rows()
        w_selected_rows.set_height(len(param_rows))
        w_selected_rows.set_rows(param_rows)
148
        w_selected_rows.sync_index()
Q
qiaolongfei 已提交
149 150 151 152 153 154 155
        w_array = np.ones((len(param_rows), row_width)).astype("float32")
        for i in range(len(param_rows)):
            w_array[i] *= i
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        w_before_optimize = np.array(w_tensor)
Q
qijun 已提交
156 157

        # create and initialize LeraningRate Variable
Q
qiaolongfei 已提交
158
        lr_value = 0.1
Q
qijun 已提交
159
        lr = scope.var('LearningRate').get_tensor()
Q
qiaolongfei 已提交
160
        lr_array = np.full((1), lr_value).astype("float32")
Q
qijun 已提交
161 162
        lr.set(lr_array, place)

Q
qiaolongfei 已提交
163 164 165 166 167 168
        # optimize with Python
        w_after_optimize = np.copy(w_before_optimize)
        for index, id in enumerate(grad_rows):
            w_after_optimize[id] = w_before_optimize[
                id] - lr_value * grad_array[index]

Q
qijun 已提交
169 170 171 172 173 174 175
        # create and run sgd operator
        sgd_op = Operator(
            "sgd",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            LearningRate='LearningRate')
D
dzhwinter 已提交
176
        sgd_op.run(scope, place)
Q
qijun 已提交
177 178

        # get and compare result
Q
qiaolongfei 已提交
179 180
        result_array = np.array(w_tensor)
        assert (result_array == w_after_optimize).all()
Q
qijun 已提交
181

182
    def test_sparse_parameter_sgd(self):
Q
qijun 已提交
183
        places = [core.CPUPlace()]
184
        # do not support GPU kernel currently
Q
qijun 已提交
185 186 187
        for place in places:
            self.check_with_place(place)

Q
qijun 已提交
188

Q
Qiao Longfei 已提交
189 190
if __name__ == "__main__":
    unittest.main()