# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.op import Operator paddle.enable_static() class TestSGDOp(OpTest): def setUp(self): self.op_type = "sgd" self.conf() w = np.random.random((self.h, self.w)).astype("float32") g = np.random.random((self.h, self.w)).astype("float32") lr = np.array([0.1]).astype("float32") self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr} self.outputs = {'ParamOut': w - lr * g} def conf(self): self.h = 102 self.w = 105 def test_check_output(self): self.check_output() class TestSGDOpCase8X(TestSGDOp): def conf(self): self.h = 10 self.w = 64 class TestSparseSGDOp(unittest.TestCase): def check_with_place(self, place): scope = core.Scope() # create and initialize Grad Variable height = 10 rows = [0, 4, 7] self.conf() grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows.set_height(height) grad_selected_rows.set_rows(rows) np_array = np.ones((len(rows), self.row_numel)).astype("float32") np_array[0, 0] = 2.0 np_array[2, 8] = 4.0 grad_tensor = grad_selected_rows.get_tensor() grad_tensor.set(np_array, place) # create and initialize Param Variable param = scope.var('Param').get_tensor() param_array = np.full((height, self.row_numel), 5.0).astype("float32") param.set(param_array, place) # create and initialize LeraningRate Variable lr = scope.var('LearningRate').get_tensor() lr_array = np.full((1), 2.0).astype("float32") lr.set(lr_array, place) # create and run sgd operator sgd_op = Operator( "sgd", Param='Param', Grad='Grad', ParamOut='Param', LearningRate='LearningRate', ) sgd_op.run(scope, place) # get and compare result result_array = np.array(param) # rows[0] = 0, 5.0 - 2.0 * 2.0 self.assertAlmostEqual(1.0, result_array[rows[0], 0]) # rows[0] = 0, 5.0 - 2.0 * 1.0 self.assertAlmostEqual(3.0, result_array[rows[0], 2]) # 5.0 - 2.0 * 0.0 self.assertAlmostEqual(5.0, result_array[1, 0]) # rows[1] = 4, 5.0 - 2.0 * 1.0 self.assertAlmostEqual(3.0, result_array[rows[1], 10]) # 5.0 - 2.0 * 0.0 self.assertAlmostEqual(5.0, result_array[5, 8]) # rows[2] = 7, 5.0 - 2.0 * 1.0 self.assertAlmostEqual(3.0, result_array[rows[2], 1]) # rows[2] = 7, 5.0 - 2.0 * 4.0 self.assertAlmostEqual(-3.0, result_array[rows[2], 8]) def test_sparse_sgd(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) for place in places: self.check_with_place(place) def conf(self): self.row_numel = 12 class TestSparseSGDOpCase8X(TestSparseSGDOp): def conf(self): self.row_numel = 16 class TestSGDOpOptimizeSelectedRows(unittest.TestCase): def check_with_place(self, place): scope = core.Scope() row_width = 12 # create and initialize Grad Variable grad_height = 10 grad_rows = [0, 4, 7] grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows.set_height(grad_height) grad_selected_rows.set_rows(grad_rows) grad_array = np.ones((len(grad_rows), row_width)).astype("float32") grad_array[0, 0] = 2.0 grad_array[2, 8] = 4.0 grad_tensor = grad_selected_rows.get_tensor() grad_tensor.set(grad_array, place) # create and initialize Param Variable # create and initialize W Variable param_rows = [0, 1, 2, 3, 4, 5, 6, 7] # init Param w_selected_rows = scope.var('Param').get_selected_rows() w_selected_rows.set_height(len(param_rows)) w_selected_rows.set_rows(param_rows) w_selected_rows.sync_index() w_array = np.ones((len(param_rows), row_width)).astype("float32") for i in range(len(param_rows)): w_array[i] *= i w_tensor = w_selected_rows.get_tensor() w_tensor.set(w_array, place) w_before_optimize = np.array(w_tensor) # create and initialize LeraningRate Variable lr_value = 0.1 lr = scope.var('LearningRate').get_tensor() lr_array = np.full((1), lr_value).astype("float32") lr.set(lr_array, place) # optimize with Python w_after_optimize = np.copy(w_before_optimize) for index, id in enumerate(grad_rows): w_after_optimize[id] = ( w_before_optimize[id] - lr_value * grad_array[index] ) # create and run sgd operator sgd_op = Operator( "sgd", Param='Param', Grad='Grad', ParamOut='Param', LearningRate='LearningRate', ) sgd_op.run(scope, place) # get and compare result result_array = np.array(w_tensor) assert (result_array == w_after_optimize).all() def test_sparse_parameter_sgd(self): places = [core.CPUPlace()] # do not support GPU kernel currently for place in places: self.check_with_place(place) class TestSGDOpWithLargeInput(unittest.TestCase): def runTest(self): paddle.enable_static() data = fluid.layers.fill_constant(shape=[1], value=128, dtype='int64') label = fluid.layers.fill_constant( shape=[1, 150], value=0.5, dtype='float32' ) emb = paddle.static.nn.embedding( input=data, size=(10000000, 150), dtype='float32' ) out = paddle.nn.functional.normalize(x=emb, axis=-1) cost = paddle.nn.functional.square_error_cost(input=out, label=label) avg_cost = paddle.mean(cost) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer.minimize(avg_cost) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) compiled_prog = fluid.compiler.CompiledProgram( fluid.default_main_program() ) result = exe.run(compiled_prog, fetch_list=[avg_cost]) class TestSGDV2(unittest.TestCase): def test_sgd_dygraph(self): paddle.disable_static() value = np.arange(26).reshape(2, 13).astype("float32") a = paddle.to_tensor(value) linear = paddle.nn.Linear(13, 5) # This can be any optimizer supported by dygraph. adam = paddle.optimizer.SGD( learning_rate=0.01, parameters=linear.parameters(), weight_decay=0.01, ) out = linear(a) out.backward() adam.step() adam.clear_gradients() def test_sgd(self): paddle.enable_static() def check_sgd_optimizer(optimizer_attr): init_program = paddle.static.Program() program = paddle.static.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr=optimizer_attr, ) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y" ) mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out" ) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out" ) block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}, ) block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out} ) sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.01) opts, _ = sgd_optimizer.minimize(mean_out, init_program) return opts opts = check_sgd_optimizer({'learning_rate': 1.1}) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "sgd"]) opts = check_sgd_optimizer({'learning_rate': 1.0}) self.assertEqual(len(opts), 1) self.assertEqual([op.type for op in opts], ["sgd"]) def test_raise_error(self): self.assertRaises(ValueError, paddle.optimizer.SGD, learning_rate=None) def test_sgd_group_dygraph(self): paddle.disable_static() value = np.arange(26).reshape(2, 13).astype("float32") a = paddle.to_tensor(value) linear_1 = paddle.nn.Linear(13, 5) linear_2 = paddle.nn.Linear(5, 3) # This can be any optimizer supported by dygraph. adam = paddle.optimizer.SGD( learning_rate=0.01, parameters=[ {'params': linear_1.parameters()}, { 'params': linear_2.parameters(), 'weight_decay': 0.001, 'learning_rate': 0.1, }, ], weight_decay=0.01, ) out = linear_1(a) out = linear_2(out) out.backward() adam.step() adam.clear_gradients() class TestSGDMultiPrecision2_0(unittest.TestCase): def dygraph_sgd_mp(self, mp): paddle.disable_static() paddle.seed(10) paddle.set_device('gpu') input = paddle.randn((2, 2)) model = paddle.nn.Linear(2, 2) optimizer = paddle.optimizer.SGD( parameters=model.parameters(), multi_precision=mp ) if mp: model = paddle.amp.decorate(models=model, level='O2') scaler = paddle.amp.GradScaler(init_loss_scaling=1024) for idx in range(5): if mp: with paddle.amp.auto_cast(level='O2'): output = model(input) loss = paddle.mean(output) scaled = scaler.scale(loss) scaled.backward() scaler.minimize(optimizer, scaled) optimizer.clear_grad() else: output = model(input) loss = paddle.mean(output) optimizer.step() optimizer.clear_grad() return output, model.parameters() def static_sgd_mp(self, mp): paddle.enable_static() paddle.seed(10) np.random.seed(10) exe = paddle.static.Executor('gpu') train_program = paddle.static.Program() startup_program = paddle.static.Program() optimizer = paddle.optimizer.SGD(multi_precision=mp) if mp: optimizer = paddle.static.amp.decorate( optimizer, init_loss_scaling=128.0, use_dynamic_loss_scaling=True, use_pure_fp16=True, use_fp16_guard=False, ) with paddle.static.program_guard(train_program, startup_program): if mp: data = paddle.static.data( shape=[2, 2], name='X', dtype='float16' ) else: data = paddle.static.data( shape=[2, 2], name='X', dtype='float32' ) hidden = paddle.static.nn.fc(x=data, size=10) loss = paddle.mean(hidden) optimizer.minimize(loss) exe.run(startup_program) if mp: optimizer.amp_init(place='gpu', scope=paddle.static.global_scope()) x = np.random.random(size=(2, 2)).astype('float16') else: x = np.random.random(size=(2, 2)).astype('float32') out = [] for idx in range(5): (loss_data,) = exe.run( train_program, feed={"X": x}, fetch_list=[loss.name] ) out.append(loss_data) return out def test_main(self): if not paddle.is_compiled_with_cuda(): return "Test dygraph mode" output1_dy, params1_dy = self.dygraph_sgd_mp(mp=True) output2_dy, params2_dy = self.dygraph_sgd_mp(mp=False) np.testing.assert_allclose( output1_dy.astype('float32').numpy(), output2_dy.astype('float32').numpy(), rtol=1e-05, atol=0.1, ) for idx in range(len(params1_dy)): np.testing.assert_allclose( params1_dy[idx].astype('float32').numpy(), params2_dy[idx].astype('float32').numpy(), rtol=1e-05, atol=0.1, ) "Test static graph mode" output1_st = self.static_sgd_mp(mp=True) output2_st = self.static_sgd_mp(mp=False) for idx in range(len(output1_st)): np.testing.assert_allclose( output1_st[idx].astype('float32'), output2_st[idx].astype('float32'), rtol=1e-05, atol=0.1, ) class TestSGDMultiPrecision1_0(unittest.TestCase): def dygraph_sgd_mp(self, mp): paddle.disable_static() paddle.seed(10) paddle.set_device('gpu') input = paddle.randn((2, 2)) model = paddle.nn.Linear(2, 2) optimizer = paddle.fluid.optimizer.SGD( learning_rate=0.001, parameter_list=model.parameters(), multi_precision=mp, ) if mp: model = paddle.amp.decorate(models=model, level='O2') scaler = paddle.amp.GradScaler(init_loss_scaling=1024) for idx in range(5): if mp: with paddle.amp.auto_cast(level='O2'): output = model(input) loss = paddle.mean(output) scaled = scaler.scale(loss) scaled.backward() scaler.minimize(optimizer, scaled) optimizer.clear_gradients() else: output = model(input) loss = paddle.mean(output) optimizer.minimize(loss) optimizer.clear_gradients() return output, model.parameters() def static_sgd_mp(self, mp): paddle.enable_static() paddle.seed(10) np.random.seed(10) exe = paddle.static.Executor('gpu') train_program = paddle.static.Program() startup_program = paddle.static.Program() optimizer = paddle.fluid.optimizer.SGD( learning_rate=0.001, multi_precision=mp ) if mp: optimizer = paddle.static.amp.decorate( optimizer, init_loss_scaling=128.0, use_dynamic_loss_scaling=True, use_pure_fp16=True, use_fp16_guard=False, ) with paddle.static.program_guard(train_program, startup_program): if mp: data = paddle.static.data( shape=[2, 2], name='X', dtype='float16' ) else: data = paddle.static.data( shape=[2, 2], name='X', dtype='float32' ) hidden = paddle.static.nn.fc(x=data, size=10) loss = paddle.mean(hidden) optimizer.minimize(loss) exe.run(startup_program) if mp: optimizer.amp_init(place='gpu', scope=paddle.static.global_scope()) x = np.random.random(size=(2, 2)).astype('float16') else: x = np.random.random(size=(2, 2)).astype('float32') out = [] for idx in range(5): (loss_data,) = exe.run( train_program, feed={"X": x}, fetch_list=[loss.name] ) out.append(loss_data) return out def test_main(self): if not paddle.is_compiled_with_cuda(): return "Test dygraph mode" output1_dy, params1_dy = self.dygraph_sgd_mp(mp=True) output2_dy, params2_dy = self.dygraph_sgd_mp(mp=False) np.testing.assert_allclose( output1_dy.astype('float32').numpy(), output2_dy.astype('float32').numpy(), rtol=1e-05, atol=0.1, ) for idx in range(len(params1_dy)): np.testing.assert_allclose( params1_dy[idx].astype('float32').numpy(), params2_dy[idx].astype('float32').numpy(), rtol=1e-05, atol=0.1, ) "Test static graph mode" output1_st = self.static_sgd_mp(mp=True) output2_st = self.static_sgd_mp(mp=False) for idx in range(len(output1_st)): np.testing.assert_allclose( output1_st[idx].astype('float32'), output2_st[idx].astype('float32'), rtol=1e-05, atol=0.1, ) if __name__ == "__main__": unittest.main()