logic.py 37.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define logic functions of a tensor

17
import paddle
18

19
from ..common_ops_import import Variable
20 21
from ..fluid.data_feeder import check_type, check_variable_and_dtype
from .layer_function_generator import templatedoc
22

W
wanghuancoder 已提交
23
Tensor = paddle.fluid.framework.core.eager.Tensor
24

25
from paddle import _C_ops
26
from paddle.tensor.creation import full
27

28 29
from ..framework import LayerHelper, in_dygraph_mode

30 31
__all__ = []

32

33
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
34
    if in_dygraph_mode():
35 36 37 38 39
        op = getattr(_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
40
    else:
41
        check_variable_and_dtype(
42 43
            x,
            "x",
44 45 46 47 48 49 50 51 52 53
            [
                "bool",
                "int8",
                "int16",
                "int32",
                "int64",
                "float16",
                "float32",
                "float64",
            ],
54 55
            op_name,
        )
56 57 58 59 60 61 62 63 64 65
        if y is not None:
            check_variable_and_dtype(
                y,
                "y",
                [
                    "bool",
                    "int8",
                    "int16",
                    "int32",
                    "int64",
66
                    "float16",
67 68 69 70 71 72 73
                    "float32",
                    "float64",
                ],
                op_name,
            )
        if out is not None:
            check_type(out, "out", Variable, op_name)
74

75
        helper = LayerHelper(op_name, **locals())
76

77 78 79 80 81
        if binary_op and x.dtype != y.dtype:
            raise ValueError(
                "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
                % (op_name, x.dtype, y.dtype)
            )
82

83 84
        if out is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
85

86 87 88 89 90 91 92 93
        if binary_op:
            helper.append_op(
                type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
            )
        else:
            helper.append_op(
                type=op_name, inputs={"X": x}, outputs={"Out": out}
            )
94

95
        return out
96 97 98 99 100


def logical_and(x, y, out=None, name=None):
    r"""

101
    Compute element-wise logical AND on ``x`` and ``y``, and return ``out``. ``out`` is N-dim boolean ``Tensor``.
102 103 104 105 106 107
    Each element of ``out`` is calculated by

    .. math::

        out = x \&\& y

108
    Note:
I
Infinity_lee 已提交
109 110 111
        ``paddle.logical_and`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
112 113

    Args:
114 115
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
116
        out(Tensor, optional): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True])
            y = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_and(x, y)
            print(res) # [True False True False]
    """
    if in_dygraph_mode():
133
        return _C_ops.logical_and(x, y)
134

135 136 137
    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True
    )
138 139 140 141 142 143 144 145 146 147 148 149


def logical_or(x, y, out=None, name=None):
    """

    ``logical_or`` operator computes element-wise logical OR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x || y

150
    Note:
I
Infinity_lee 已提交
151 152 153
        ``paddle.logical_or`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
154

155
    Args:
156 157
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
158 159 160 161 162 163 164 165 166 167 168
        out(Tensor): The ``Variable`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

169 170
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
171
            res = paddle.logical_or(x, y)
172 173 174 175
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[True , True ],
            #         [True , False]])
176 177
    """
    if in_dygraph_mode():
178
        return _C_ops.logical_or(x, y)
179 180 181
    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True
    )
182 183 184 185 186 187 188 189 190 191 192 193


def logical_xor(x, y, out=None, name=None):
    r"""

    ``logical_xor`` operator computes element-wise logical XOR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = (x || y) \&\& !(x \&\& y)

194
    Note:
I
Infinity_lee 已提交
195 196 197
        ``paddle.logical_xor`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
198 199

    Args:
200 201
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
202 203 204 205 206 207 208 209 210 211 212
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

213 214
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
215
            res = paddle.logical_xor(x, y)
216 217 218 219
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[False, True ],
            #         [True , False]])
220 221
    """
    if in_dygraph_mode():
222
        return _C_ops.logical_xor(x, y)
223

224 225 226
    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True
    )
227 228 229 230 231 232 233 234 235 236 237 238 239


@templatedoc()
def logical_not(x, out=None, name=None):
    """

    ``logical_not`` operator computes element-wise logical NOT on ``x``, and returns ``out``. ``out`` is N-dim boolean ``Variable``.
    Each element of ``out`` is calculated by

    .. math::

        out = !x

I
Infinity_lee 已提交
240 241 242 243 244
    Note:
        ``paddle.logical_not`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

245
    Args:
246
        x(Tensor):  Operand of logical_not operator. Must be a Tensor of type bool, int8, int16, in32, in64, float16, float32, or float64.
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_not(x)
            print(res) # [False  True False  True]
    """
    if in_dygraph_mode():
263
        return _C_ops.logical_not(x)
264 265 266
    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False
    )
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300


def is_empty(x, name=None):
    """

    Test whether a Tensor is empty.

    Args:
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])

    """
    if in_dygraph_mode():
        return _C_ops.is_empty(x)
301 302 303 304 305
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
        )
        check_type(name, "name", (str, type(None)), "is_empty")
306

307 308 309 310 311 312 313
        helper = LayerHelper("is_empty", **locals())
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True
        helper.append_op(
            type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}
        )
        return cond
314 315


W
wawltor 已提交
316
def equal_all(x, y, name=None):
317
    """
318
    Returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.
319

320
    Note:
321
        The output has no gradient.
322 323

    Args:
324 325
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
326 327
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
328 329

    Returns:
W
wawltor 已提交
330
        Tensor: output Tensor, data type is bool, value is [False] or [True].
331 332 333 334 335

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
336

337 338 339
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
340
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
341
          print(result1) # result1 = [True ]
W
wawltor 已提交
342
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
343
          print(result2) # result2 = [False ]
344
    """
H
hong 已提交
345
    if in_dygraph_mode():
346
        return _C_ops.equal_all(x, y)
347 348 349 350 351 352 353 354 355
    else:
        helper = LayerHelper("equal_all", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(
            type='equal_all',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
Z
Zhen Wang 已提交
356 357 358


@templatedoc()
359
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
360 361 362 363 364 365
    r"""
    Check if all :math:`x` and :math:`y` satisfy the condition:

    .. math::
        \left| x - y \right| \leq atol + rtol \times \left| y \right|

H
hg-1099255210 已提交
366
    elementwise, for all elements of :math:`x` and :math:`y`. This is analogous to :math:`numpy.allclose`, namely that it returns :math:`True` if
367
    two tensors are elementwise equal within a tolerance.
Z
Zhen Wang 已提交
368 369

    Args:
370 371
        x(Tensor): The input tensor, it's data type should be float16, float32, float64..
        y(Tensor): The input tensor, it's data type should be float16, float32, float64..
H
huangxu96 已提交
372 373
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
374 375 376
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
377 378

    Returns:
379
        Tensor: The output tensor, it's data type is bool.
380

Z
Zhen Wang 已提交
381 382 383 384 385
    Examples:
        .. code-block:: python

          import paddle

386 387
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
388
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
389
                                  equal_nan=False, name="ignore_nan")
390
          # [False]
391

392
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
393
                                      equal_nan=True, name="equal_nan")
394 395
          # [False]

396 397
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
398 399 400
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [False]
401

402 403 404
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True]
Z
Zhen Wang 已提交
405 406
    """

407
    if in_dygraph_mode():
408
        return _C_ops.allclose(x, y, rtol, atol, equal_nan)
409
    else:
410 411 412 413 414 415
        check_variable_and_dtype(
            x, "input", ['float16', 'float32', 'float64'], 'allclose'
        )
        check_variable_and_dtype(
            y, "input", ['float16', 'float32', 'float64'], 'allclose'
        )
416 417 418 419 420 421 422 423 424 425 426 427
        check_type(rtol, 'rtol', float, 'allclose')
        check_type(atol, 'atol', float, 'allclose')
        check_type(equal_nan, 'equal_nan', bool, 'allclose')

        helper = LayerHelper("allclose", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')

        inputs = {'Input': x, 'Other': y}
        outputs = {'Out': out}
        attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
        helper.append_op(
            type='allclose', inputs=inputs, outputs=outputs, attrs=attrs
428
        )
Z
Zhen Wang 已提交
429

430
        return out
431 432


W
wawltor 已提交
433 434
@templatedoc()
def equal(x, y, name=None):
435
    """
S
swtkiwi 已提交
436

437
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
438

439
    Note:
440
        The output has no gradient.
441 442

    Args:
陈沧夜 已提交
443 444
        x(Tensor): Tensor, data type is bool, float16, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float16, float32, float64, int32, int64.
445 446 447 448
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
449
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
450
        and the data type is bool. The result of this op is stop_gradient.
451 452 453 454

    Examples:
        .. code-block:: python

W
wawltor 已提交
455 456
          import paddle

457 458
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
459
          result1 = paddle.equal(x, y)
N
Noel 已提交
460
          print(result1)  # result1 = [True False False]
461
    """
462 463
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
464 465 466 467
            "Type of input args must be float, bool, int or Tensor, but received type {}".format(
                type(y)
            )
        )
468
    if not isinstance(y, Variable):
469
        y = full(shape=[], dtype=x.dtype, fill_value=y)
470

J
Jiabin Yang 已提交
471
    if in_dygraph_mode():
472
        return _C_ops.equal(x, y)
J
Jiabin Yang 已提交
473
    else:
474 475 476
        check_variable_and_dtype(
            x,
            "x",
477 478 479 480 481 482 483 484 485
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
486 487 488 489 490
            "equal",
        )
        check_variable_and_dtype(
            y,
            "y",
491 492 493 494 495 496 497 498 499
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
500 501 502 503 504
            "equal",
        )
        helper = LayerHelper("equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
505

506 507 508 509 510 511
        helper.append_op(
            type='equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
512

W
wawltor 已提交
513 514 515 516

@templatedoc()
def greater_equal(x, y, name=None):
    """
517
    Returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
518

519
    Note:
520
        The output has no gradient.
W
wawltor 已提交
521 522

    Args:
523 524
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
525 526 527
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
528
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
529 530 531

    Examples:
        .. code-block:: python
N
Noel 已提交
532

W
wawltor 已提交
533 534
            import paddle

535 536
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
537
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
538
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
539
    """
J
Jiabin Yang 已提交
540
    if in_dygraph_mode():
541
        return _C_ops.greater_equal(x, y)
J
Jiabin Yang 已提交
542
    else:
543 544 545
        check_variable_and_dtype(
            x,
            "x",
546 547 548 549 550 551 552 553 554
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
555 556 557 558 559
            "greater_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
560 561 562 563 564 565 566 567 568
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
569 570 571 572 573
            "greater_equal",
        )
        helper = LayerHelper("greater_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
574

575 576 577 578 579 580
        helper.append_op(
            type='greater_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
581 582 583 584 585


@templatedoc()
def greater_than(x, y, name=None):
    """
586
    Returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
587

588
    Note:
589
        The output has no gradient.
W
wawltor 已提交
590 591

    Args:
J
Jx-qi 已提交
592 593
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
594 595 596
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
597
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
598 599 600

    Examples:
        .. code-block:: python
N
Noel 已提交
601

W
wawltor 已提交
602 603
            import paddle

604 605
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
606
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
607
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
608
    """
J
Jiabin Yang 已提交
609
    if in_dygraph_mode():
610
        return _C_ops.greater_than(x, y)
J
Jiabin Yang 已提交
611
    else:
612 613 614
        check_variable_and_dtype(
            x,
            "x",
615 616 617 618 619 620 621 622 623
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
624 625 626 627 628
            "greater_than",
        )
        check_variable_and_dtype(
            y,
            "y",
629 630 631 632 633 634 635 636 637
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
638 639 640 641 642
            "greater_than",
        )
        helper = LayerHelper("greater_than", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
643

644 645 646 647 648 649
        helper.append_op(
            type='greater_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
650 651 652 653 654


@templatedoc()
def less_equal(x, y, name=None):
    """
655
    Returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
656

657
    Note:
658
        The output has no gradient.
W
wawltor 已提交
659 660

    Args:
B
BellaZYL 已提交
661 662
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
663 664 665 666
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
667
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
668 669 670

    Examples:
        .. code-block:: python
N
Noel 已提交
671

W
wawltor 已提交
672 673
            import paddle

674 675
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
676
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
677
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
678
    """
J
Jiabin Yang 已提交
679
    if in_dygraph_mode():
680
        return _C_ops.less_equal(x, y)
J
Jiabin Yang 已提交
681
    else:
682 683 684
        check_variable_and_dtype(
            x,
            "x",
685 686 687 688 689 690 691 692 693
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
694 695 696 697 698
            "less_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
699 700 701 702 703 704 705 706 707
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
708 709 710 711 712
            "less_equal",
        )
        helper = LayerHelper("less_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
713

714 715 716 717 718 719
        helper.append_op(
            type='less_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
720 721 722 723 724


@templatedoc()
def less_than(x, y, name=None):
    """
725
    Returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
726

727
    Note:
728
        The output has no gradient.
W
wawltor 已提交
729 730

    Args:
H
hh-qiao 已提交
731 732
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
733 734 735 736
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
737
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
738 739 740

    Examples:
        .. code-block:: python
N
Noel 已提交
741

W
wawltor 已提交
742 743
            import paddle

744 745
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
746
            result1 = paddle.less_than(x, y)
N
Noel 已提交
747
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
748
    """
J
Jiabin Yang 已提交
749
    if in_dygraph_mode():
750
        return _C_ops.less_than(x, y)
J
Jiabin Yang 已提交
751
    else:
752 753 754
        check_variable_and_dtype(
            x,
            "x",
755 756 757 758 759 760 761 762 763
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
764 765 766 767 768
            "less_than",
        )
        check_variable_and_dtype(
            y,
            "y",
769 770 771 772 773 774 775 776 777
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
778 779 780 781 782
            "less_than",
        )
        helper = LayerHelper("less_than", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
783

784 785 786 787 788 789
        helper.append_op(
            type='less_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
790 791 792 793 794


@templatedoc()
def not_equal(x, y, name=None):
    """
795
    Returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
796 797

    Note:
798
        The output has no gradient.
W
wawltor 已提交
799 800

    Args:
801 802
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
803 804 805 806
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
807
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
808 809 810

    Examples:
        .. code-block:: python
811

W
wawltor 已提交
812 813
            import paddle

814 815
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
816
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
817
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
818
    """
J
Jiabin Yang 已提交
819
    if in_dygraph_mode():
820
        return _C_ops.not_equal(x, y)
J
Jiabin Yang 已提交
821
    else:
822 823 824
        check_variable_and_dtype(
            x,
            "x",
825 826 827 828 829 830 831 832 833
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
834 835 836 837 838
            "not_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
839 840 841 842 843 844 845 846 847
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
848 849 850 851 852
            "not_equal",
        )
        helper = LayerHelper("not_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
853

854 855 856 857 858 859
        helper.append_op(
            type='not_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
Z
zhulei 已提交
860 861 862 863 864


def is_tensor(x):
    """

C
Chen Long 已提交
865
    Tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
866 867 868 869 870

    Args:
        x (object): Object to test.

    Returns:
C
Chen Long 已提交
871
        A boolean value. True if ``x`` is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
885

Z
zhulei 已提交
886
    """
887 888 889 890
    if in_dygraph_mode():
        return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
    else:
        return isinstance(x, Variable)
891 892 893


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
894
    if in_dygraph_mode():
W
wanghuancoder 已提交
895
        op = getattr(_C_ops, op_name)
896 897 898 899
        if binary_op:
            return op(x, y)
        else:
            return op(x)
900
    else:
901
        check_variable_and_dtype(
902 903
            x,
            "x",
904 905 906
            ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name,
        )
907 908 909 910 911 912 913 914 915
        if y is not None:
            check_variable_and_dtype(
                y,
                "y",
                ["bool", "uint8", "int8", "int16", "int32", "int64"],
                op_name,
            )
        if out is not None:
            check_type(out, "out", Variable, op_name)
916

917 918 919
        helper = LayerHelper(op_name, **locals())
        if binary_op:
            assert x.dtype == y.dtype
920

921 922
        if out is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
923

924 925 926 927 928 929 930 931
        if binary_op:
            helper.append_op(
                type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
            )
        else:
            helper.append_op(
                type=op_name, inputs={"X": x}, outputs={"Out": out}
            )
932

933
        return out
934 935 936


def bitwise_and(x, y, out=None, name=None):
937 938 939 940 941 942 943 944 945 946 947
    r"""

    Apply ``bitwise_and`` on Tensor ``X`` and ``Y`` .

    .. math::
        Out = X \& Y

    .. note::
        ``paddle.bitwise_and`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
948

949
    Args:
950 951 952
        x (Tensor): Input Tensor of ``bitwise_and`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        y (Tensor): Input Tensor of ``bitwise_and`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_and`` . It is a N-D Tensor with the same data type of input Tensor.
953 954

    Returns:
955
        Tensor: Result of ``bitwise_and`` . It is a N-D Tensor with the same data type of input Tensor.
956

957 958 959 960 961 962 963 964 965
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
0
0x45f 已提交
966
    if in_dygraph_mode() and out is None:
967
        return _C_ops.bitwise_and(x, y)
968 969 970
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True
    )
971 972 973


def bitwise_or(x, y, out=None, name=None):
974 975 976 977 978 979 980 981 982 983 984
    r"""

    Apply ``bitwise_or`` on Tensor ``X`` and ``Y`` .

    .. math::
        Out = X | Y

    .. note::
        ``paddle.bitwise_or`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
985

986
    Args:
987 988 989
        x (Tensor): Input Tensor of ``bitwise_or`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        y (Tensor): Input Tensor of ``bitwise_or`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_or`` . It is a N-D Tensor with the same data type of input Tensor.
990 991

    Returns:
992
        Tensor: Result of ``bitwise_or`` . It is a N-D Tensor with the same data type of input Tensor.
993 994 995 996 997 998 999 1000 1001 1002

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
0
0x45f 已提交
1003
    if in_dygraph_mode() and out is None:
1004
        return _C_ops.bitwise_or(x, y)
H
hong 已提交
1005

1006 1007 1008
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True
    )
1009 1010 1011


def bitwise_xor(x, y, out=None, name=None):
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    r"""

    Apply ``bitwise_xor`` on Tensor ``X`` and ``Y`` .

    .. math::
        Out = X ^\wedge Y

    .. note::
        ``paddle.bitwise_xor`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
1023 1024

    Args:
1025 1026 1027
        x (Tensor): Input Tensor of ``bitwise_xor`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        y (Tensor): Input Tensor of ``bitwise_xor`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_xor`` . It is a N-D Tensor with the same data type of input Tensor.
1028 1029

    Returns:
1030
        Tensor: Result of ``bitwise_xor`` . It is a N-D Tensor with the same data type of input Tensor.
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
0
0x45f 已提交
1041
    if in_dygraph_mode() and out is None:
1042
        return _C_ops.bitwise_xor(x, y)
1043 1044 1045
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True
    )
1046 1047 1048


def bitwise_not(x, out=None, name=None):
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
    r"""

    Apply ``bitwise_not`` on Tensor ``X``.

    .. math::
        Out = \sim X

    .. note::
        ``paddle.bitwise_not`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
1060 1061

    Args:
1062 1063
        x (Tensor): Input Tensor of ``bitwise_not`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_not`` . It is a N-D Tensor with the same data type of input Tensor.
1064

1065
    Returns:
1066
        Tensor: Result of ``bitwise_not`` . It is a N-D Tensor with the same data type of input Tensor.
1067 1068 1069 1070 1071 1072 1073 1074 1075

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """
0
0x45f 已提交
1076
    if in_dygraph_mode() and out is None:
1077
        return _C_ops.bitwise_not(x)
1078

1079 1080 1081
    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False
    )
A
andyjpaddle 已提交
1082 1083 1084 1085


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
1086
    r"""
1087
    Check if all :math:`x` and :math:`y` satisfy the condition:
1088 1089 1090 1091 1092 1093 1094 1095

    .. math::

        \left| x - y \right| \leq atol + rtol \times \left| y \right|

    elementwise, for all elements of :math:`x` and :math:`y`. The behaviour of this
    operator is analogous to :math:`numpy.isclose`, namely that it returns :math:`True` if
    two tensors are elementwise equal within a tolerance.
A
andyjpaddle 已提交
1096 1097

    Args:
1098 1099
        x(Tensor): The input tensor, it's data type should be float16, float32, float64.
        y(Tensor): The input tensor, it's data type should be float16, float32, float64.
A
andyjpaddle 已提交
1100 1101
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
1102
        equal_nan(equalnantype, optional): If :math:`True` , then two :math:`NaNs` will be compared as equal. Default: :math:`False` .
A
andyjpaddle 已提交
1103 1104 1105 1106
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1107
        Tensor: The output tensor, it's data type is bool.
A
andyjpaddle 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, True]
    """

1133
    if in_dygraph_mode():
1134
        return _C_ops.isclose(x, y, rtol, atol, equal_nan)
1135
    else:
1136 1137 1138 1139 1140 1141
        check_variable_and_dtype(
            x, "input", ['float16', 'float32', 'float64'], 'isclose'
        )
        check_variable_and_dtype(
            y, "input", ['float16', 'float32', 'float64'], 'isclose'
        )
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
        check_type(rtol, 'rtol', float, 'isclose')
        check_type(atol, 'atol', float, 'isclose')
        check_type(equal_nan, 'equal_nan', bool, 'isclose')

        helper = LayerHelper("isclose", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')

        inputs = {'Input': x, 'Other': y}
        outputs = {'Out': out}
        attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
        helper.append_op(
            type='isclose', inputs=inputs, outputs=outputs, attrs=attrs
1154
        )
1155
        return out