logic.py 32.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define logic functions of a tensor

17
import paddle
18

19
from ..fluid.data_feeder import check_type, check_variable_and_dtype
20
from ..fluid.framework import _in_eager_mode_
21 22
from ..static import Variable
from .layer_function_generator import templatedoc
23

24 25
if _in_eager_mode_:
    Tensor = paddle.fluid.framework.core.eager.Tensor
W
Weilong Wu 已提交
26 27
else:
    from ..framework import VarBase as Tensor
28

29
from paddle import _C_ops
30
from paddle.tensor.creation import full
31

32 33
from ..framework import LayerHelper, in_dygraph_mode

34 35
__all__ = []

36

37
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
38
    if in_dygraph_mode():
39 40 41 42 43
        op = getattr(_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
44
    else:
45
        check_variable_and_dtype(
46 47
            x,
            "x",
48
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
49 50
            op_name,
        )
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        if y is not None:
            check_variable_and_dtype(
                y,
                "y",
                [
                    "bool",
                    "int8",
                    "int16",
                    "int32",
                    "int64",
                    "float32",
                    "float64",
                ],
                op_name,
            )
        if out is not None:
            check_type(out, "out", Variable, op_name)
68

69
        helper = LayerHelper(op_name, **locals())
70

71 72 73 74 75
        if binary_op and x.dtype != y.dtype:
            raise ValueError(
                "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
                % (op_name, x.dtype, y.dtype)
            )
76

77 78
        if out is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
79

80 81 82 83 84 85 86 87
        if binary_op:
            helper.append_op(
                type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
            )
        else:
            helper.append_op(
                type=op_name, inputs={"X": x}, outputs={"Out": out}
            )
88

89
        return out
90 91 92 93 94


def logical_and(x, y, out=None, name=None):
    r"""

95
    Compute element-wise logical AND on ``x`` and ``y``, and return ``out``. ``out`` is N-dim boolean ``Tensor``.
96 97 98 99 100 101
    Each element of ``out`` is calculated by

    .. math::

        out = x \&\& y

102
    Note:
I
Infinity_lee 已提交
103 104 105
        ``paddle.logical_and`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
106 107 108 109

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
110
        out(Tensor, optional): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True])
            y = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_and(x, y)
            print(res) # [True False True False]
    """
    if in_dygraph_mode():
127
        return _C_ops.logical_and(x, y)
128

129 130 131
    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True
    )
132 133 134 135 136 137 138 139 140 141 142 143


def logical_or(x, y, out=None, name=None):
    """

    ``logical_or`` operator computes element-wise logical OR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x || y

144
    Note:
I
Infinity_lee 已提交
145 146 147
        ``paddle.logical_or`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
148

149 150 151 152 153 154 155 156 157 158 159 160 161 162
    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Variable`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

163 164
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
165
            res = paddle.logical_or(x, y)
166 167 168 169
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[True , True ],
            #         [True , False]])
170 171
    """
    if in_dygraph_mode():
172
        return _C_ops.logical_or(x, y)
173 174 175
    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True
    )
176 177 178 179 180 181 182 183 184 185 186 187


def logical_xor(x, y, out=None, name=None):
    r"""

    ``logical_xor`` operator computes element-wise logical XOR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = (x || y) \&\& !(x \&\& y)

188
    Note:
I
Infinity_lee 已提交
189 190 191
        ``paddle.logical_xor`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

207 208
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
209
            res = paddle.logical_xor(x, y)
210 211 212 213
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[False, True ],
            #         [True , False]])
214 215
    """
    if in_dygraph_mode():
216
        return _C_ops.logical_xor(x, y)
217

218 219 220
    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True
    )
221 222 223 224 225 226 227 228 229 230 231 232 233


@templatedoc()
def logical_not(x, out=None, name=None):
    """

    ``logical_not`` operator computes element-wise logical NOT on ``x``, and returns ``out``. ``out`` is N-dim boolean ``Variable``.
    Each element of ``out`` is calculated by

    .. math::

        out = !x

I
Infinity_lee 已提交
234 235 236 237 238
    Note:
        ``paddle.logical_not`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    Args:
        x(Tensor):  Operand of logical_not operator. Must be a Tensor of type bool, int8, int16, in32, in64, float32, or float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_not(x)
            print(res) # [False  True False  True]
    """
    if in_dygraph_mode():
257
        return _C_ops.logical_not(x)
258 259 260
    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False
    )
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294


def is_empty(x, name=None):
    """

    Test whether a Tensor is empty.

    Args:
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])

    """
    if in_dygraph_mode():
        return _C_ops.is_empty(x)
295 296 297 298 299
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
        )
        check_type(name, "name", (str, type(None)), "is_empty")
300

301 302 303 304 305 306 307
        helper = LayerHelper("is_empty", **locals())
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True
        helper.append_op(
            type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}
        )
        return cond
308 309


W
wawltor 已提交
310
def equal_all(x, y, name=None):
311
    """
312
    Returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.
313

314
    Note:
315
        The output has no gradient.
316 317

    Args:
318 319
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
320 321
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
322 323

    Returns:
W
wawltor 已提交
324
        Tensor: output Tensor, data type is bool, value is [False] or [True].
325 326 327 328 329

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
330

331 332 333
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
334
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
335
          print(result1) # result1 = [True ]
W
wawltor 已提交
336
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
337
          print(result2) # result2 = [False ]
338
    """
H
hong 已提交
339
    if in_dygraph_mode():
340
        return _C_ops.equal_all(x, y)
341 342 343 344 345 346 347 348 349
    else:
        helper = LayerHelper("equal_all", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(
            type='equal_all',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
Z
Zhen Wang 已提交
350 351 352


@templatedoc()
353
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
354 355 356 357
    """
    ${comment}

    Args:
358 359
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
360 361
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
362 363 364
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
365 366

    Returns:
367 368
        Tensor: ${out_comment}.

Z
Zhen Wang 已提交
369 370 371 372 373
    Examples:
        .. code-block:: python

          import paddle

374 375
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
376
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
377
                                  equal_nan=False, name="ignore_nan")
378
          # [False]
379

380
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
381
                                      equal_nan=True, name="equal_nan")
382 383
          # [False]

384 385
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
386 387 388
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [False]
389

390 391 392
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True]
Z
Zhen Wang 已提交
393 394
    """

395
    if in_dygraph_mode():
396
        return _C_ops.allclose(x, y, rtol, atol, equal_nan)
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    else:
        check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
        check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
        check_type(rtol, 'rtol', float, 'allclose')
        check_type(atol, 'atol', float, 'allclose')
        check_type(equal_nan, 'equal_nan', bool, 'allclose')

        helper = LayerHelper("allclose", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')

        inputs = {'Input': x, 'Other': y}
        outputs = {'Out': out}
        attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
        helper.append_op(
            type='allclose', inputs=inputs, outputs=outputs, attrs=attrs
412
        )
Z
Zhen Wang 已提交
413

414
        return out
415 416


W
wawltor 已提交
417 418
@templatedoc()
def equal(x, y, name=None):
419
    """
S
swtkiwi 已提交
420

421
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
422

423
    Note:
424
        The output has no gradient.
425 426

    Args:
427 428
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
429 430 431 432
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
433
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
434
        and the data type is bool. The result of this op is stop_gradient.
435 436 437 438

    Examples:
        .. code-block:: python

W
wawltor 已提交
439 440
          import paddle

441 442
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
443
          result1 = paddle.equal(x, y)
N
Noel 已提交
444
          print(result1)  # result1 = [True False False]
445
    """
446 447
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
448 449 450 451
            "Type of input args must be float, bool, int or Tensor, but received type {}".format(
                type(y)
            )
        )
452 453 454
    if not isinstance(y, Variable):
        y = full(shape=[1], dtype=x.dtype, fill_value=y)

J
Jiabin Yang 已提交
455
    if in_dygraph_mode():
456
        return _C_ops.equal(x, y)
J
Jiabin Yang 已提交
457
    else:
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
        check_variable_and_dtype(
            x,
            "x",
            ["bool", "float32", "float64", "int32", "int64"],
            "equal",
        )
        check_variable_and_dtype(
            y,
            "y",
            ["bool", "float32", "float64", "int32", "int64"],
            "equal",
        )
        helper = LayerHelper("equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
473

474 475 476 477 478 479
        helper.append_op(
            type='equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
480

W
wawltor 已提交
481 482 483 484

@templatedoc()
def greater_equal(x, y, name=None):
    """
485
    Returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
486

487
    Note:
488
        The output has no gradient.
W
wawltor 已提交
489 490

    Args:
491 492
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
493 494 495
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
496
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
497 498 499

    Examples:
        .. code-block:: python
N
Noel 已提交
500

W
wawltor 已提交
501 502
            import paddle

503 504
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
505
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
506
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
507
    """
J
Jiabin Yang 已提交
508
    if in_dygraph_mode():
509
        return _C_ops.greater_equal(x, y)
J
Jiabin Yang 已提交
510
    else:
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
        check_variable_and_dtype(
            x,
            "x",
            ["bool", "float32", "float64", "int32", "int64"],
            "greater_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
            ["bool", "float32", "float64", "int32", "int64"],
            "greater_equal",
        )
        helper = LayerHelper("greater_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
526

527 528 529 530 531 532
        helper.append_op(
            type='greater_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
533 534 535 536 537


@templatedoc()
def greater_than(x, y, name=None):
    """
538
    Returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
539

540
    Note:
541
        The output has no gradient.
W
wawltor 已提交
542 543

    Args:
544 545
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
546 547 548
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
549
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
550 551 552

    Examples:
        .. code-block:: python
N
Noel 已提交
553

W
wawltor 已提交
554 555
            import paddle

556 557
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
558
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
559
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
560
    """
J
Jiabin Yang 已提交
561
    if in_dygraph_mode():
562
        return _C_ops.greater_than(x, y)
J
Jiabin Yang 已提交
563
    else:
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        check_variable_and_dtype(
            x,
            "x",
            ["bool", "float32", "float64", "int32", "int64"],
            "greater_than",
        )
        check_variable_and_dtype(
            y,
            "y",
            ["bool", "float32", "float64", "int32", "int64"],
            "greater_than",
        )
        helper = LayerHelper("greater_than", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
579

580 581 582 583 584 585
        helper.append_op(
            type='greater_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
586 587 588 589 590


@templatedoc()
def less_equal(x, y, name=None):
    """
591
    Returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
592

593
    Note:
594
        The output has no gradient.
W
wawltor 已提交
595 596

    Args:
597 598
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
599 600 601 602
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
603
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
604 605 606

    Examples:
        .. code-block:: python
N
Noel 已提交
607

W
wawltor 已提交
608 609
            import paddle

610 611
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
612
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
613
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
614
    """
J
Jiabin Yang 已提交
615
    if in_dygraph_mode():
616
        return _C_ops.less_equal(x, y)
J
Jiabin Yang 已提交
617
    else:
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
        check_variable_and_dtype(
            x,
            "x",
            ["bool", "float32", "float64", "int32", "int64"],
            "less_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
            ["bool", "float32", "float64", "int32", "int64"],
            "less_equal",
        )
        helper = LayerHelper("less_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
633

634 635 636 637 638 639
        helper.append_op(
            type='less_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
640 641 642 643 644


@templatedoc()
def less_than(x, y, name=None):
    """
645
    Returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
646

647
    Note:
648
        The output has no gradient.
W
wawltor 已提交
649 650

    Args:
651 652
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
653 654 655 656
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
657
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
658 659 660

    Examples:
        .. code-block:: python
N
Noel 已提交
661

W
wawltor 已提交
662 663
            import paddle

664 665
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
666
            result1 = paddle.less_than(x, y)
N
Noel 已提交
667
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
668
    """
J
Jiabin Yang 已提交
669
    if in_dygraph_mode():
670
        return _C_ops.less_than(x, y)
J
Jiabin Yang 已提交
671
    else:
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
        check_variable_and_dtype(
            x,
            "x",
            ["bool", "float32", "float64", "int32", "int64"],
            "less_than",
        )
        check_variable_and_dtype(
            y,
            "y",
            ["bool", "float32", "float64", "int32", "int64"],
            "less_than",
        )
        helper = LayerHelper("less_than", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
687

688 689 690 691 692 693
        helper.append_op(
            type='less_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
694 695 696 697 698


@templatedoc()
def not_equal(x, y, name=None):
    """
699
    Returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
700 701

    Note:
702
        The output has no gradient.
W
wawltor 已提交
703 704

    Args:
705 706
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
707 708 709 710
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
711
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
712 713 714

    Examples:
        .. code-block:: python
715

W
wawltor 已提交
716 717
            import paddle

718 719
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
720
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
721
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
722
    """
J
Jiabin Yang 已提交
723
    if in_dygraph_mode():
724
        return _C_ops.not_equal(x, y)
J
Jiabin Yang 已提交
725
    else:
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
        check_variable_and_dtype(
            x,
            "x",
            ["bool", "float32", "float64", "int32", "int64"],
            "not_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
            ["bool", "float32", "float64", "int32", "int64"],
            "not_equal",
        )
        helper = LayerHelper("not_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
741

742 743 744 745 746 747
        helper.append_op(
            type='not_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
Z
zhulei 已提交
748 749 750 751 752


def is_tensor(x):
    """

C
Chen Long 已提交
753
    Tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
754 755 756 757 758

    Args:
        x (object): Object to test.

    Returns:
C
Chen Long 已提交
759
        A boolean value. True if ``x`` is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
773

Z
zhulei 已提交
774
    """
H
hong 已提交
775
    return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
776 777 778


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
779
    if in_dygraph_mode():
W
wanghuancoder 已提交
780
        op = getattr(_C_ops, op_name)
781 782 783 784
        if binary_op:
            return op(x, y)
        else:
            return op(x)
785
    else:
786
        check_variable_and_dtype(
787 788
            x,
            "x",
789 790 791
            ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name,
        )
792 793 794 795 796 797 798 799 800
        if y is not None:
            check_variable_and_dtype(
                y,
                "y",
                ["bool", "uint8", "int8", "int16", "int32", "int64"],
                op_name,
            )
        if out is not None:
            check_type(out, "out", Variable, op_name)
801

802 803 804
        helper = LayerHelper(op_name, **locals())
        if binary_op:
            assert x.dtype == y.dtype
805

806 807
        if out is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
808

809 810 811 812 813 814 815 816
        if binary_op:
            helper.append_op(
                type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
            )
        else:
            helper.append_op(
                type=op_name, inputs={"X": x}, outputs={"Out": out}
            )
817

818
        return out
819 820 821 822 823 824


@templatedoc()
def bitwise_and(x, y, out=None, name=None):
    """
    ${comment}
825

826 827 828 829 830 831 832
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}
833

834 835 836 837 838 839 840 841 842
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
0
0x45f 已提交
843
    if in_dygraph_mode() and out is None:
844
        return _C_ops.bitwise_and(x, y)
845 846 847
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True
    )
848 849 850 851 852 853


@templatedoc()
def bitwise_or(x, y, out=None, name=None):
    """
    ${comment}
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
0
0x45f 已提交
872
    if in_dygraph_mode() and out is None:
873
        return _C_ops.bitwise_or(x, y)
H
hong 已提交
874

875 876 877
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True
    )
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901


@templatedoc()
def bitwise_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
0
0x45f 已提交
902
    if in_dygraph_mode() and out is None:
903
        return _C_ops.bitwise_xor(x, y)
904 905 906
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True
    )
907 908 909 910 911 912 913 914 915 916


@templatedoc()
def bitwise_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(Tensor):  ${x_comment}
        out(Tensor): ${out_comment}
917

918 919 920 921 922 923 924 925 926 927 928
    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """
0
0x45f 已提交
929
    if in_dygraph_mode() and out is None:
930
        return _C_ops.bitwise_not(x)
931

932 933 934
    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False
    )
A
andyjpaddle 已提交
935 936 937 938


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
939 940 941 942 943 944 945 946 947 948
    r"""
    Checks if all :math:`x` and :math:`y` satisfy the condition:

    .. math::

        \left| x - y \right| \leq atol + rtol \times \left| y \right|

    elementwise, for all elements of :math:`x` and :math:`y`. The behaviour of this
    operator is analogous to :math:`numpy.isclose`, namely that it returns :math:`True` if
    two tensors are elementwise equal within a tolerance.
A
andyjpaddle 已提交
949 950

    Args:
951 952
        x(Tensor): The input tensor, it's data type should be float32, float64.
        y(Tensor): The input tensor, it's data type should be float32, float64.
A
andyjpaddle 已提交
953 954
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
955
        equal_nan(equalnantype, optional): If :math:`True` , then two :math:`NaNs` will be compared as equal. Default: :math:`False` .
A
andyjpaddle 已提交
956 957 958 959
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
960
        Tensor: The output tensor, it's data type is bool.
A
andyjpaddle 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, True]
    """

986
    if in_dygraph_mode():
987
        return _C_ops.isclose(x, y, rtol, atol, equal_nan)
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
    else:
        check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
        check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
        check_type(rtol, 'rtol', float, 'isclose')
        check_type(atol, 'atol', float, 'isclose')
        check_type(equal_nan, 'equal_nan', bool, 'isclose')

        helper = LayerHelper("isclose", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')

        inputs = {'Input': x, 'Other': y}
        outputs = {'Out': out}
        attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
        helper.append_op(
            type='isclose', inputs=inputs, outputs=outputs, attrs=attrs
1003
        )
1004
        return out