logic.py 33.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
17
from .layer_function_generator import templatedoc
Z
zhiboniu 已提交
18
from ..static import Variable
W
Weilong Wu 已提交
19
# TODO: define logic functions of a tensor
20 21 22
from ..fluid.framework import _in_eager_mode_
if _in_eager_mode_:
    Tensor = paddle.fluid.framework.core.eager.Tensor
W
Weilong Wu 已提交
23 24
else:
    from ..framework import VarBase as Tensor
25 26 27 28 29

from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
from ..fluid.framework import _in_legacy_dygraph
# TODO: define logic functions of a tensor  
W
wanghuancoder 已提交
30
from paddle import _C_ops
31
from paddle.tensor.creation import full
32

33 34
__all__ = []

35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
    if _non_static_mode():
        op = getattr(_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
    check_variable_and_dtype(x, "x", [
        "bool", "int8", "int16", "int32", "int64", "float32", "float64"
    ], op_name)
    if y is not None:
        check_variable_and_dtype(y, "y", [
            "bool", "int8", "int16", "int32", "int64", "float32", "float64"
        ], op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())

    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
            % (op_name, x.dtype, y.dtype))

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


def logical_and(x, y, out=None, name=None):
    r"""

    ``logical_and`` operator computes element-wise logical AND on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x \&\& y

    .. note::
        ``paddle.logical_and`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True])
            y = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_and(x, y)
            print(res) # [True False True False]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_and(x, y)

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


def logical_or(x, y, out=None, name=None):
    """

    ``logical_or`` operator computes element-wise logical OR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x || y

    .. note::
        ``paddle.logical_or`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
    
    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Variable`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x_data = np.array([True, False], dtype=np.bool).reshape(2, 1)
            y_data = np.array([True, False, True, False], dtype=np.bool).reshape(2, 2)
            x = paddle.to_tensor(x_data)
            y = paddle.to_tensor(y_data)
            res = paddle.logical_or(x, y)
            print(res) # [[ True  True] [ True False]]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_or(x, y)
    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


def logical_xor(x, y, out=None, name=None):
    r"""

    ``logical_xor`` operator computes element-wise logical XOR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = (x || y) \&\& !(x \&\& y)

    .. note::
        ``paddle.logical_xor`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x_data = np.array([True, False], dtype=np.bool).reshape([2, 1])
            y_data = np.array([True, False, True, False], dtype=np.bool).reshape([2, 2])
            x = paddle.to_tensor(x_data)
            y = paddle.to_tensor(y_data)
            res = paddle.logical_xor(x, y)
            print(res) # [[False,  True], [ True, False]]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_xor(x, y)

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_not(x, out=None, name=None):
    """

    ``logical_not`` operator computes element-wise logical NOT on ``x``, and returns ``out``. ``out`` is N-dim boolean ``Variable``.
    Each element of ``out`` is calculated by

    .. math::

        out = !x

    Args:
        x(Tensor):  Operand of logical_not operator. Must be a Tensor of type bool, int8, int16, in32, in64, float32, or float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_not(x)
            print(res) # [False  True False  True]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_not(x)
    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)


def is_empty(x, name=None):
    """

    Test whether a Tensor is empty.

    Args:
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])

    """
    if in_dygraph_mode():
        return _C_ops.final_state_is_empty(x)
    if _in_legacy_dygraph():
        return _C_ops.is_empty(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'is_empty')
    check_type(name, "name", (str, type(None)), "is_empty")

    helper = LayerHelper("is_empty", **locals())
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond


W
wawltor 已提交
276
def equal_all(x, y, name=None):
277
    """
278
    Returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.
279

280 281
    Note: 
        The output has no gradient.
282 283

    Args:
284 285
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
286 287
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
288 289

    Returns:
W
wawltor 已提交
290
        Tensor: output Tensor, data type is bool, value is [False] or [True].
291 292 293 294 295

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
296

297 298 299
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
300
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
301
          print(result1) # result1 = [True ]
W
wawltor 已提交
302
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
303
          print(result2) # result2 = [False ]
304
    """
H
hong 已提交
305 306 307
    if in_dygraph_mode():
        return _C_ops.final_state_equal_all(x, y)

Z
zhiboniu 已提交
308
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
309
        return _C_ops.equal_all(x, y)
W
wawltor 已提交
310 311

    helper = LayerHelper("equal_all", **locals())
312 313
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
314 315
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
316
    return out
Z
Zhen Wang 已提交
317 318 319


@templatedoc()
320
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
321 322 323 324
    """
    ${comment}

    Args:
325 326
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
327 328
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
329 330 331
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
332 333

    Returns:
334 335
        Tensor: ${out_comment}.

Z
Zhen Wang 已提交
336 337 338 339 340
    Examples:
        .. code-block:: python

          import paddle

341 342
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
343
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
344
                                  equal_nan=False, name="ignore_nan")
345 346 347
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
348
                                      equal_nan=True, name="equal_nan")
349 350 351
          np_result2 = result2.numpy()
          # [False]

352 353
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
354 355 356 357 358 359 360 361
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
362 363
    """

364
    if in_dygraph_mode():
365 366 367 368 369 370
        # NOTE(dev): Pass tol as Tensor to fix precision loss problem, because
        # C++ backend will cast it into float32 if passing float from python.
        as_tensor = lambda x: paddle.to_tensor([x], dtype='float64', place='cpu')
        return _C_ops.final_state_allclose(x, y,
                                           as_tensor(rtol),
                                           as_tensor(atol), equal_nan)
371
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
372 373 374
        return _C_ops.allclose(x, y, 'rtol',
                               str(rtol), 'atol',
                               str(atol), 'equal_nan', equal_nan)
375 376
    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
377 378 379 380 381 382 383
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

384
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
385
    outputs = {'Out': out}
386
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
Z
Zhen Wang 已提交
387 388 389 390
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
391 392


W
wawltor 已提交
393 394
@templatedoc()
def equal(x, y, name=None):
395
    """
S
swtkiwi 已提交
396

397
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
398

399 400
    Note: 
        The output has no gradient.
401 402

    Args:
403 404
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
405 406 407 408
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
409
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
410 411 412 413 414
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

W
wawltor 已提交
415 416
          import paddle

417 418
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
419
          result1 = paddle.equal(x, y)
N
Noel 已提交
420
          print(result1)  # result1 = [True False False]
421
    """
422 423 424 425 426 427 428
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
            "Type of input args must be float, bool, int or Tensor, but received type {}".
            format(type(y)))
    if not isinstance(y, Variable):
        y = full(shape=[1], dtype=x.dtype, fill_value=y)

J
Jiabin Yang 已提交
429
    if in_dygraph_mode():
430 431
        default_axis = -1
        return _C_ops.final_state_equal(x, y, default_axis)
J
Jiabin Yang 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    else:
        if _in_legacy_dygraph():
            return _C_ops.equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            helper = LayerHelper("equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
452

W
wawltor 已提交
453 454 455 456

@templatedoc()
def greater_equal(x, y, name=None):
    """
457
    Returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
458

459 460
    Note: 
        The output has no gradient.
W
wawltor 已提交
461 462

    Args:
463 464
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
465 466 467
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
468
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
469 470 471

    Examples:
        .. code-block:: python
N
Noel 已提交
472

W
wawltor 已提交
473 474
            import paddle

475 476
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
477
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
478
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
479
    """
J
Jiabin Yang 已提交
480
    if in_dygraph_mode():
481 482
        default_axis = -1
        return _C_ops.final_state_greater_equal(x, y, default_axis)
J
Jiabin Yang 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    else:
        if _in_legacy_dygraph():
            return _C_ops.greater_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            helper = LayerHelper("greater_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='greater_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
503 504 505 506 507


@templatedoc()
def greater_than(x, y, name=None):
    """
508
    Returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
509

510 511
    Note: 
        The output has no gradient.
W
wawltor 已提交
512 513

    Args:
514 515
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
516 517 518
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
519
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
520 521 522

    Examples:
        .. code-block:: python
N
Noel 已提交
523

W
wawltor 已提交
524 525
            import paddle

526 527
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
528
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
529
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
530
    """
J
Jiabin Yang 已提交
531
    if in_dygraph_mode():
W
wanghuancoder 已提交
532
        return _C_ops.final_state_greater_than(x, y, -1)
J
Jiabin Yang 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    else:
        if _in_legacy_dygraph():
            return _C_ops.greater_than(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            helper = LayerHelper("greater_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='greater_than',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
553 554 555 556 557


@templatedoc()
def less_equal(x, y, name=None):
    """
558
    Returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
559

560 561
    Note: 
        The output has no gradient.
W
wawltor 已提交
562 563

    Args:
564 565
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
566 567 568 569
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
570
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
571 572 573

    Examples:
        .. code-block:: python
N
Noel 已提交
574

W
wawltor 已提交
575 576
            import paddle

577 578
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
579
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
580
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
581
    """
J
Jiabin Yang 已提交
582
    if in_dygraph_mode():
0
0x45f 已提交
583 584
        axis = -1
        return _C_ops.final_state_less_equal(x, y, axis)
J
Jiabin Yang 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
    else:
        if _in_legacy_dygraph():
            return _C_ops.less_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            helper = LayerHelper("less_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='less_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
605 606 607 608 609


@templatedoc()
def less_than(x, y, name=None):
    """
610
    Returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
611

612 613
    Note: 
        The output has no gradient.
W
wawltor 已提交
614 615

    Args:
616 617
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
618 619 620 621
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
622
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
623 624 625

    Examples:
        .. code-block:: python
N
Noel 已提交
626

W
wawltor 已提交
627 628
            import paddle

629 630
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
631
            result1 = paddle.less_than(x, y)
N
Noel 已提交
632
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
633
    """
J
Jiabin Yang 已提交
634
    if in_dygraph_mode():
635 636
        default_axis = -1
        return _C_ops.final_state_less_than(x, y, default_axis)
J
Jiabin Yang 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    else:
        if _in_legacy_dygraph():
            return _C_ops.less_than(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            helper = LayerHelper("less_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='less_than',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
657 658 659 660 661


@templatedoc()
def not_equal(x, y, name=None):
    """
662
    Returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
N
Noel 已提交
663
    
664 665
    Note: 
        The output has no gradient.
W
wawltor 已提交
666 667

    Args:
668 669
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
670 671 672 673
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
674
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
675 676 677

    Examples:
        .. code-block:: python
678

W
wawltor 已提交
679 680
            import paddle

681 682
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
683
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
684
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
685
    """
J
Jiabin Yang 已提交
686
    if in_dygraph_mode():
0
0x45f 已提交
687 688
        axis = -1
        return _C_ops.final_state_not_equal(x, y, axis)
J
Jiabin Yang 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
    else:
        if _in_legacy_dygraph():
            return _C_ops.not_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            helper = LayerHelper("not_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='not_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
Z
zhulei 已提交
709 710 711 712 713


def is_tensor(x):
    """

C
Chen Long 已提交
714
    Tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
715 716 717 718 719

    Args:
        x (object): Object to test.

    Returns:
C
Chen Long 已提交
720
        A boolean value. True if ``x`` is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
            
    """
H
hong 已提交
736
    return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
737 738 739


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
Z
zhiboniu 已提交
740
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
741
        op = getattr(_C_ops, op_name)
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
        if binary_op:
            return op(x, y)
        else:
            return op(x)

    check_variable_and_dtype(
        x, "x", ["bool", "uint8", "int8", "int16", "int32", "int64"], op_name)
    if y is not None:
        check_variable_and_dtype(
            y, "y", ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())
    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def bitwise_and(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}
        
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
0
0x45f 已提交
795
    if in_dygraph_mode() and out is None:
H
hong 已提交
796
        return _C_ops.final_state_bitwise_and(x, y)
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_or(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
0
0x45f 已提交
823
    if in_dygraph_mode() and out is None:
H
hong 已提交
824 825
        return _C_ops.final_state_bitwise_or(x, y)

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
0
0x45f 已提交
852
    if in_dygraph_mode() and out is None:
H
hong 已提交
853
        return _C_ops.final_state_bitwise_xor(x, y)
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(Tensor):  ${x_comment}
        out(Tensor): ${out_comment}
    
    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """
0
0x45f 已提交
878
    if in_dygraph_mode() and out is None:
H
hong 已提交
879
        return _C_ops.final_state_bitwise_not(x)
880 881 882

    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False)
A
andyjpaddle 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
    """
    ${comment}

    Args:
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, True]
    """

937
    if in_dygraph_mode():
938 939 940 941 942 943
        # NOTE(dev): Pass tol as Tensor to fix precision loss problem, because
        # C++ backend will cast it into float32 if passing float from python.
        as_tensor = lambda x: paddle.to_tensor([x], dtype='float64', place='cpu')
        return _C_ops.final_state_isclose(x, y,
                                          as_tensor(rtol),
                                          as_tensor(atol), equal_nan)
944
    if _in_legacy_dygraph():
A
andyjpaddle 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
        return _C_ops.isclose(x, y, 'rtol',
                              str(rtol), 'atol',
                              str(atol), 'equal_nan', equal_nan)

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
    check_type(rtol, 'rtol', float, 'isclose')
    check_type(atol, 'atol', float, 'isclose')
    check_type(equal_nan, 'equal_nan', bool, 'isclose')

    helper = LayerHelper("isclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

    inputs = {'Input': x, 'Other': y}
    outputs = {'Out': out}
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
    helper.append_op(
        type='isclose', inputs=inputs, outputs=outputs, attrs=attrs)
    return out