logic.py 34.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
17
from .layer_function_generator import templatedoc
Z
zhiboniu 已提交
18
from ..static import Variable
W
Weilong Wu 已提交
19
# TODO: define logic functions of a tensor
20 21 22
from ..fluid.framework import _in_eager_mode_
if _in_eager_mode_:
    Tensor = paddle.fluid.framework.core.eager.Tensor
W
Weilong Wu 已提交
23 24
else:
    from ..framework import VarBase as Tensor
25 26 27 28 29

from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
from ..fluid.framework import _in_legacy_dygraph
# TODO: define logic functions of a tensor  
W
wanghuancoder 已提交
30
from paddle import _C_ops
31
from paddle.tensor.creation import full
32

33 34
__all__ = []

35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
    if _non_static_mode():
        op = getattr(_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
    check_variable_and_dtype(x, "x", [
        "bool", "int8", "int16", "int32", "int64", "float32", "float64"
    ], op_name)
    if y is not None:
        check_variable_and_dtype(y, "y", [
            "bool", "int8", "int16", "int32", "int64", "float32", "float64"
        ], op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())

    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
            % (op_name, x.dtype, y.dtype))

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


def logical_and(x, y, out=None, name=None):
    r"""

    ``logical_and`` operator computes element-wise logical AND on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x \&\& y

    .. note::
        ``paddle.logical_and`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True])
            y = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_and(x, y)
            print(res) # [True False True False]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_and(x, y)

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


def logical_or(x, y, out=None, name=None):
    """

    ``logical_or`` operator computes element-wise logical OR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x || y

    .. note::
        ``paddle.logical_or`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
    
    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Variable`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x_data = np.array([True, False], dtype=np.bool).reshape(2, 1)
            y_data = np.array([True, False, True, False], dtype=np.bool).reshape(2, 2)
            x = paddle.to_tensor(x_data)
            y = paddle.to_tensor(y_data)
            res = paddle.logical_or(x, y)
            print(res) # [[ True  True] [ True False]]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_or(x, y)
    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


def logical_xor(x, y, out=None, name=None):
    r"""

    ``logical_xor`` operator computes element-wise logical XOR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = (x || y) \&\& !(x \&\& y)

    .. note::
        ``paddle.logical_xor`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x_data = np.array([True, False], dtype=np.bool).reshape([2, 1])
            y_data = np.array([True, False, True, False], dtype=np.bool).reshape([2, 2])
            x = paddle.to_tensor(x_data)
            y = paddle.to_tensor(y_data)
            res = paddle.logical_xor(x, y)
            print(res) # [[False,  True], [ True, False]]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_xor(x, y)

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_not(x, out=None, name=None):
    """

    ``logical_not`` operator computes element-wise logical NOT on ``x``, and returns ``out``. ``out`` is N-dim boolean ``Variable``.
    Each element of ``out`` is calculated by

    .. math::

        out = !x

    Args:
        x(Tensor):  Operand of logical_not operator. Must be a Tensor of type bool, int8, int16, in32, in64, float32, or float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_not(x)
            print(res) # [False  True False  True]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_not(x)
    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)


def is_empty(x, name=None):
    """

    Test whether a Tensor is empty.

    Args:
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])

    """
    if in_dygraph_mode():
        return _C_ops.final_state_is_empty(x)
    if _in_legacy_dygraph():
        return _C_ops.is_empty(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'is_empty')
    check_type(name, "name", (str, type(None)), "is_empty")

    helper = LayerHelper("is_empty", **locals())
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond


W
wawltor 已提交
276
def equal_all(x, y, name=None):
277 278 279
    """
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

W
wawltor 已提交
280
    **NOTICE**: The output of this OP has no gradient.
281 282

    Args:
283 284
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
285 286
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
287 288

    Returns:
W
wawltor 已提交
289
        Tensor: output Tensor, data type is bool, value is [False] or [True].
290 291 292 293 294

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
295

296 297 298
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
299
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
300
          print(result1) # result1 = [True ]
W
wawltor 已提交
301
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
302
          print(result2) # result2 = [False ]
303
    """
H
hong 已提交
304 305 306
    if in_dygraph_mode():
        return _C_ops.final_state_equal_all(x, y)

Z
zhiboniu 已提交
307
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
308
        return _C_ops.equal_all(x, y)
W
wawltor 已提交
309 310

    helper = LayerHelper("equal_all", **locals())
311 312
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
313 314
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
315
    return out
Z
Zhen Wang 已提交
316 317 318


@templatedoc()
319
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
320 321 322 323
    """
    ${comment}

    Args:
324 325
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
326 327
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
328 329 330
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
331 332

    Returns:
333 334 335 336 337 338 339 340
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.
Z
Zhen Wang 已提交
341 342 343 344 345 346

    Examples:
        .. code-block:: python

          import paddle

347 348
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
349
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
350
                                  equal_nan=False, name="ignore_nan")
351 352 353
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
354
                                      equal_nan=True, name="equal_nan")
355 356 357
          np_result2 = result2.numpy()
          # [False]

358 359
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
360 361 362 363 364 365 366 367
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
368 369
    """

370
    if in_dygraph_mode():
371 372 373 374 375 376
        # NOTE(dev): Pass tol as Tensor to fix precision loss problem, because
        # C++ backend will cast it into float32 if passing float from python.
        as_tensor = lambda x: paddle.to_tensor([x], dtype='float64', place='cpu')
        return _C_ops.final_state_allclose(x, y,
                                           as_tensor(rtol),
                                           as_tensor(atol), equal_nan)
377
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
378 379 380
        return _C_ops.allclose(x, y, 'rtol',
                               str(rtol), 'atol',
                               str(atol), 'equal_nan', equal_nan)
381 382
    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
383 384 385 386 387 388 389
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

390
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
391
    outputs = {'Out': out}
392
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
Z
Zhen Wang 已提交
393 394 395 396
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
397 398


W
wawltor 已提交
399 400
@templatedoc()
def equal(x, y, name=None):
401
    """
S
swtkiwi 已提交
402

403
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
404

W
wawltor 已提交
405
    **NOTICE**: The output of this OP has no gradient.
406 407

    Args:
408 409
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
410 411 412 413
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
414
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
415 416 417 418 419
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

W
wawltor 已提交
420 421
          import paddle

422 423
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
424
          result1 = paddle.equal(x, y)
N
Noel 已提交
425
          print(result1)  # result1 = [True False False]
426
    """
427 428 429 430 431 432 433
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
            "Type of input args must be float, bool, int or Tensor, but received type {}".
            format(type(y)))
    if not isinstance(y, Variable):
        y = full(shape=[1], dtype=x.dtype, fill_value=y)

J
Jiabin Yang 已提交
434
    if in_dygraph_mode():
435 436
        default_axis = -1
        return _C_ops.final_state_equal(x, y, default_axis)
J
Jiabin Yang 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
    else:
        if _in_legacy_dygraph():
            return _C_ops.equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            helper = LayerHelper("equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
457

W
wawltor 已提交
458 459 460 461 462

@templatedoc()
def greater_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
463

W
wawltor 已提交
464 465 466
    **NOTICE**: The output of this OP has no gradient.

    Args:
467 468
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
469 470 471 472 473 474 475
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
476

W
wawltor 已提交
477 478
            import paddle

479 480
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
481
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
482
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
483
    """
J
Jiabin Yang 已提交
484
    if in_dygraph_mode():
485 486
        default_axis = -1
        return _C_ops.final_state_greater_equal(x, y, default_axis)
J
Jiabin Yang 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    else:
        if _in_legacy_dygraph():
            return _C_ops.greater_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            helper = LayerHelper("greater_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='greater_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
507 508 509 510 511 512


@templatedoc()
def greater_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
513

W
wawltor 已提交
514 515 516
    **NOTICE**: The output of this OP has no gradient.

    Args:
517 518
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
519 520 521 522 523 524 525
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .

    Examples:
        .. code-block:: python
N
Noel 已提交
526

W
wawltor 已提交
527 528
            import paddle

529 530
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
531
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
532
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
533
    """
J
Jiabin Yang 已提交
534
    if in_dygraph_mode():
W
wanghuancoder 已提交
535
        return _C_ops.final_state_greater_than(x, y, -1)
J
Jiabin Yang 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
    else:
        if _in_legacy_dygraph():
            return _C_ops.greater_than(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            helper = LayerHelper("greater_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='greater_than',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
556 557 558 559 560 561


@templatedoc()
def less_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
562

W
wawltor 已提交
563 564 565
    **NOTICE**: The output of this OP has no gradient.

    Args:
566 567
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
568 569 570 571 572 573 574 575
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
576

W
wawltor 已提交
577 578
            import paddle

579 580
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
581
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
582
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
583
    """
J
Jiabin Yang 已提交
584
    if in_dygraph_mode():
0
0x45f 已提交
585 586
        axis = -1
        return _C_ops.final_state_less_equal(x, y, axis)
J
Jiabin Yang 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
    else:
        if _in_legacy_dygraph():
            return _C_ops.less_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            helper = LayerHelper("less_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='less_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
607 608 609 610 611 612


@templatedoc()
def less_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
613

W
wawltor 已提交
614 615 616
    **NOTICE**: The output of this OP has no gradient.

    Args:
617 618
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
619 620 621 622 623 624 625 626
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
627

W
wawltor 已提交
628 629
            import paddle

630 631
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
632
            result1 = paddle.less_than(x, y)
N
Noel 已提交
633
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
634
    """
J
Jiabin Yang 已提交
635
    if in_dygraph_mode():
636 637
        default_axis = -1
        return _C_ops.final_state_less_than(x, y, default_axis)
J
Jiabin Yang 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    else:
        if _in_legacy_dygraph():
            return _C_ops.less_than(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            helper = LayerHelper("less_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='less_than',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
658 659 660 661 662 663


@templatedoc()
def not_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
N
Noel 已提交
664
    
W
wawltor 已提交
665 666 667
    **NOTICE**: The output of this OP has no gradient.

    Args:
668 669
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
670 671 672 673 674 675 676 677
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
678

W
wawltor 已提交
679 680
            import paddle

681 682
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
683
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
684
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
685
    """
J
Jiabin Yang 已提交
686
    if in_dygraph_mode():
0
0x45f 已提交
687 688
        axis = -1
        return _C_ops.final_state_not_equal(x, y, axis)
J
Jiabin Yang 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
    else:
        if _in_legacy_dygraph():
            return _C_ops.not_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            helper = LayerHelper("not_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='not_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
Z
zhulei 已提交
709 710 711 712 713


def is_tensor(x):
    """

C
chentianyu03 已提交
714
    This function tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
715 716 717 718 719

    Args:
        x (object): Object to test.

    Returns:
C
chentianyu03 已提交
720
        A boolean value. True if 'x' is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
            
    """
H
hong 已提交
736
    return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
737 738 739


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
Z
zhiboniu 已提交
740
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
741
        op = getattr(_C_ops, op_name)
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
        if binary_op:
            return op(x, y)
        else:
            return op(x)

    check_variable_and_dtype(
        x, "x", ["bool", "uint8", "int8", "int16", "int32", "int64"], op_name)
    if y is not None:
        check_variable_and_dtype(
            y, "y", ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())
    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def bitwise_and(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}
        
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
0
0x45f 已提交
795
    if in_dygraph_mode() and out is None:
H
hong 已提交
796
        return _C_ops.final_state_bitwise_and(x, y)
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_or(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
0
0x45f 已提交
823
    if in_dygraph_mode() and out is None:
H
hong 已提交
824 825
        return _C_ops.final_state_bitwise_or(x, y)

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
0
0x45f 已提交
852
    if in_dygraph_mode() and out is None:
H
hong 已提交
853
        return _C_ops.final_state_bitwise_xor(x, y)
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(Tensor):  ${x_comment}
        out(Tensor): ${out_comment}
    
    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """
0
0x45f 已提交
878
    if in_dygraph_mode() and out is None:
H
hong 已提交
879
        return _C_ops.final_state_bitwise_not(x)
880 881 882

    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False)
A
andyjpaddle 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
    """
    ${comment}

    Args:
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, True]
    """

937
    if in_dygraph_mode():
938 939 940 941 942 943
        # NOTE(dev): Pass tol as Tensor to fix precision loss problem, because
        # C++ backend will cast it into float32 if passing float from python.
        as_tensor = lambda x: paddle.to_tensor([x], dtype='float64', place='cpu')
        return _C_ops.final_state_isclose(x, y,
                                          as_tensor(rtol),
                                          as_tensor(atol), equal_nan)
944
    if _in_legacy_dygraph():
A
andyjpaddle 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
        return _C_ops.isclose(x, y, 'rtol',
                              str(rtol), 'atol',
                              str(atol), 'equal_nan', equal_nan)

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
    check_type(rtol, 'rtol', float, 'isclose')
    check_type(atol, 'atol', float, 'isclose')
    check_type(equal_nan, 'equal_nan', bool, 'isclose')

    helper = LayerHelper("isclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

    inputs = {'Input': x, 'Other': y}
    outputs = {'Out': out}
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
    helper.append_op(
        type='isclose', inputs=inputs, outputs=outputs, attrs=attrs)
    return out