logic.py 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zhen Wang 已提交
15
from ..fluid.layer_helper import LayerHelper
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
Z
Zhen Wang 已提交
17
from ..fluid.layers.layer_function_generator import templatedoc
W
wawltor 已提交
18
from .. import fluid
19 20
from ..fluid.framework import in_dygraph_mode
from paddle.common_ops_import import *
21

22
# TODO: define logic functions of a tensor  
23 24 25 26 27 28 29 30 31
from ..fluid.layers import is_empty  #DEFINE_ALIAS
from ..fluid.layers import isfinite  #DEFINE_ALIAS
from ..fluid.layers import logical_and  #DEFINE_ALIAS
from ..fluid.layers import logical_not  #DEFINE_ALIAS
from ..fluid.layers import logical_or  #DEFINE_ALIAS
from ..fluid.layers import logical_xor  #DEFINE_ALIAS
from ..fluid.layers import reduce_all  #DEFINE_ALIAS
from ..fluid.layers import reduce_any  #DEFINE_ALIAS

32 33
__all__ = [
    'equal',
W
wawltor 已提交
34
    'equal_all',
35 36 37 38 39 40 41 42 43 44 45 46 47
    'greater_equal',
    'greater_than',
    'is_empty',
    'isfinite',
    'less_equal',
    'less_than',
    'logical_and',
    'logical_not',
    'logical_or',
    'logical_xor',
    'not_equal',
    'reduce_all',
    'reduce_any',
Z
Zhen Wang 已提交
48
    'allclose',
49
    #       'isnan'
50 51 52
]


W
wawltor 已提交
53
def equal_all(x, y, name=None):
54
    """
W
wawltor 已提交
55 56
	:alias_main: paddle.equal_all
	:alias: paddle.equal_all,paddle.tensor.equal_all,paddle.tensor.logic.equal_all
S
swtkiwi 已提交
57

58 59
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

W
wawltor 已提交
60
    **NOTICE**: The output of this OP has no gradient.
61 62

    Args:
W
wawltor 已提交
63 64 65 66
        x(Tensor): Tensor, data type is float32, float64, int32, int64.
        y(Tensor): Tensor, data type is float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
67 68

    Returns:
W
wawltor 已提交
69
        Tensor: output Tensor, data type is bool, value is [False] or [True].
70 71 72 73 74 75

    Examples:
        .. code-block:: python

          import numpy as np
          import paddle
W
wawltor 已提交
76

77 78 79 80
          paddle.disable_static()
          x = paddle.to_variable(np.array([1, 2, 3]))
          y = paddle.to_variable(np.array([1, 2, 3]))
          z = paddle.to_variable(np.array([1, 4, 3]))
W
wawltor 已提交
81 82 83 84
          result1 = paddle.equal_all(x, y)
          print(result1.numpy()) # result1 = [True ]
          result2 = paddle.equal_all(x, z)
          print(result2.numpy()) # result2 = [False ]
85
    """
W
wawltor 已提交
86 87

    helper = LayerHelper("equal_all", **locals())
88 89
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
90 91
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
92
    return out
Z
Zhen Wang 已提交
93 94 95


@templatedoc()
96
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
97 98 99 100
    """
    ${comment}

    Args:
101 102 103 104 105 106 107
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
        rtol(rtoltype, optional): ${rtol_comment}.
        atol(atoltype, optional): ${atol_comment}.
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
108 109

    Returns:
110 111 112 113 114 115 116 117
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.
Z
Zhen Wang 已提交
118 119 120 121 122 123 124

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

125
          paddle.disable_static()
Z
Zhen Wang 已提交
126

127 128 129 130 131
          np_x = np.array([10000., 1e-07]).astype("float32")
          np_y = np.array([10000.1, 1e-08]).astype("float32")
          x = paddle.to_tensor(np_x)
          y = paddle.to_tensor(np_y)
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
132
                                  equal_nan=False, name="ignore_nan")
133 134 135
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
136
                                      equal_nan=True, name="equal_nan")
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
          np_result2 = result2.numpy()
          # [False]

          np_x = np.array([1.0, float('nan')]).astype("float32")
          np_y = np.array([1.0, float('nan')]).astype("float32")
          x = paddle.to_tensor(np_x)
          y = paddle.to_tensor(np_y)
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
152 153
    """

154 155 156 157 158 159
    if in_dygraph_mode():
        return core.ops.allclose(x, y, 'rtol', rtol, 'atol', atol, 'equal_nan',
                                 equal_nan)

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
160 161 162 163 164 165 166
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

167
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
168 169 170 171 172 173
    outputs = {'Out': out}
    attrs = {'rtol': rtol, 'atol': atol, 'equal_nan': equal_nan}
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
174 175


W
wawltor 已提交
176 177
@templatedoc()
def equal(x, y, name=None):
178
    """
W
wawltor 已提交
179 180
	:alias_main: paddle.equal
	:alias: paddle.equal,paddle.tensor.equal,paddle.tensor.logic.equal
S
swtkiwi 已提交
181

182
    This layer returns the truth value of :math:`x == y` elementwise.
W
wawltor 已提交
183
    **NOTICE**: The output of this OP has no gradient.
184 185

    Args:
W
wawltor 已提交
186 187
        x(Tensor): Tensor, data type is float32, float64, int32, int64.
        y(Tensor): Tensor, data type is float32, float64, int32, int64.
188 189 190 191
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
192
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
193 194 195 196 197 198
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

          import numpy as np
W
wawltor 已提交
199 200
          import paddle

201 202 203
          paddle.disable_static()
          x = paddle.to_variable(np.array([1, 2, 3]))
          y = paddle.to_variable(np.array([1, 3, 2]))
W
wawltor 已提交
204 205
          result1 = paddle.equal(x, y)
          print(result1.numpy())  # result1 = [True False False]
206
    """
W
wawltor 已提交
207 208
    out = fluid.layers.equal(x, y, name=name, cond=None)
    return out
209

W
wawltor 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

@templatedoc()
def greater_equal(x, y, name=None):
    """
    :alias_main: paddle.greater_equal
	:alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal

    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle

233 234 235
            paddle.disable_static()
            x = paddle.to_variable(np.array([1, 2, 3]))
            y = paddle.to_variable(np.array([1, 3, 2]))
W
wawltor 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
            result1 = paddle.greater_equal(x, y)
            print(result1.numpy())  # result1 = [True False True]
    """
    out = fluid.layers.greater_equal(x, y, name=name, cond=None)
    return out


@templatedoc()
def greater_than(x, y, name=None):
    """
    :alias_main: paddle.greater_than
	:alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than

    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle

265 266 267
            paddle.disable_static()
            x = paddle.to_variable(np.array([1, 2, 3]))
            y = paddle.to_variable(np.array([1, 3, 2]))
W
wawltor 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
            result1 = paddle.greater_than(x, y)
            print(result1.numpy())  # result1 = [False False True]
    """
    out = fluid.layers.greater_than(x, y, name=name, cond=None)
    return out


@templatedoc()
def less_equal(x, y, name=None):
    """
    :alias_main: paddle.less_equal
	:alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal

    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle

298 299 300
            paddle.disable_static()
            x = paddle.to_variable(np.array([1, 2, 3]))
            y = paddle.to_variable(np.array([1, 3, 2]))
W
wawltor 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
            result1 = paddle.less_equal(x, y)
            print(result1.numpy())  # result1 = [True True False]
    """
    out = fluid.layers.less_equal(x, y, name=name, cond=None)
    return out


@templatedoc()
def less_than(x, y, name=None):
    """
    :alias_main: paddle.less_than
	:alias: paddle.less_than,paddle.tensor.less_than,paddle.tensor.logic.less_than

    This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle

331 332 333
            paddle.disable_static()
            x = paddle.to_variable(np.array([1, 2, 3]))
            y = paddle.to_variable(np.array([1, 3, 2]))
W
wawltor 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
            result1 = paddle.less_than(x, y)
            print(result1.numpy())  # result1 = [False True False]
    """
    out = fluid.layers.less_than(x, y, force_cpu=False, name=name, cond=None)
    return out


@templatedoc()
def not_equal(x, y, name=None):
    """
    :alias_main: paddle.not_equal
	:alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal

    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle

364 365 366
            paddle.disable_static()
            x = paddle.to_variable(np.array([1, 2, 3]))
            y = paddle.to_variable(np.array([1, 3, 2]))
W
wawltor 已提交
367 368 369 370
            result1 = paddle.not_equal(x, y)
            print(result1.numpy())  # result1 = [False True True]
    """
    out = fluid.layers.not_equal(x, y, name=name, cond=None)
371
    return out