conv.py 51.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17 18
import numpy as np

Z
zhiboniu 已提交
19
from paddle import get_flags
L
LielinJiang 已提交
20
from ...device import get_cudnn_version
Z
zhiboniu 已提交
21 22
from .. import Layer
from ..initializer import Normal
23 24 25
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd
Z
zhiboniu 已提交
26 27
from ...device import is_compiled_with_cuda
from ...device import is_compiled_with_rocm
28

29 30
__all__ = []

31 32 33

def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
L
Ligoml 已提交
34
    std = (2.0 / filter_elem_num) ** 0.5
Z
zhiboniu 已提交
35
    return Normal(0.0, std)
36 37


38 39 40 41 42 43 44 45
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
    return list(x for x in reversed(t) for _ in range(n))


Z
zhiboniu 已提交
46
class _ConvNd(Layer):
L
Ligoml 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        transposed,
        dims,
        stride=1,
        padding=0,
        padding_mode='zeros',
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
L
LielinJiang 已提交
64
        super(_ConvNd, self).__init__()
L
Ligoml 已提交
65 66 67
        assert (
            weight_attr is not False
        ), "weight_attr should not be False in Conv."
L
LielinJiang 已提交
68 69 70 71 72 73 74
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

75 76 77
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
L
Ligoml 已提交
78 79 80 81
                "padding_mode must be one of {}, but got padding_mode='{}'".format(
                    valid_padding_modes, padding_mode
                )
            )
82

L
Ligoml 已提交
83 84 85 86 87
        if padding_mode in {
            'reflect',
            'replicate',
            'circular',
        } and not isinstance(padding, int):
88 89 90 91
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

92 93 94
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
L
Ligoml 已提交
95 96 97 98
                "data_format must be one of {}, but got data_format='{}'".format(
                    valid_format, data_format
                )
            )
99

L
Ligoml 已提交
100 101 102 103 104
        channel_last = (
            (data_format == "NHWC")
            or (data_format == "NDHWC")
            or (data_format == "NLC")
        )
L
LielinJiang 已提交
105 106 107 108 109
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

L
LielinJiang 已提交
110 111
        self._stride = utils.convert_to_list(stride, dims, 'stride')
        self._dilation = utils.convert_to_list(dilation, dims, 'dilation')
L
Ligoml 已提交
112 113 114
        self._kernel_size = utils.convert_to_list(
            kernel_size, dims, 'kernel_size'
        )
L
LielinJiang 已提交
115
        self._padding = padding
116
        self._padding_mode = padding_mode
117
        self.output_padding = output_padding
L
LielinJiang 已提交
118
        if dims != 1:
119
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
L
Ligoml 已提交
120 121
                padding, channel_last, dims
            )
L
LielinJiang 已提交
122 123

        if transposed:
L
Ligoml 已提交
124 125 126 127
            filter_shape = [
                self._in_channels,
                out_channels // groups,
            ] + self._kernel_size
L
LielinJiang 已提交
128
        else:
129 130 131 132
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
L
Ligoml 已提交
133 134 135
                _paired_padding = utils.convert_to_list(
                    padding, dims, 'padding'
                )
136
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
L
Ligoml 已提交
137 138
                    _paired_padding, 2
                )
139

L
Ligoml 已提交
140 141 142 143
                (
                    self._updated_padding,
                    self._padding_algorithm,
                ) = _update_padding_nd(0, channel_last, dims)
L
LielinJiang 已提交
144

L
Ligoml 已提交
145 146 147 148
            filter_shape = [
                out_channels,
                in_channels // groups,
            ] + self._kernel_size
L
LielinJiang 已提交
149

L
LielinJiang 已提交
150 151 152 153
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
L
Ligoml 已提交
154
            std = (2.0 / filter_elem_num) ** 0.5
Z
zhiboniu 已提交
155
            return Normal(0.0, std)
L
LielinJiang 已提交
156

L
LielinJiang 已提交
157
        self.weight = self.create_parameter(
L
LielinJiang 已提交
158 159
            shape=filter_shape,
            attr=self._param_attr,
L
Ligoml 已提交
160 161 162 163 164
            default_initializer=_get_default_param_initializer(),
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True
        )
L
LielinJiang 已提交
165

L
LielinJiang 已提交
166 167
        cudnn_version = get_cudnn_version()

L
Ligoml 已提交
168 169 170 171 172
        self._use_cudnn = (
            True
            if (is_compiled_with_cuda() and cudnn_version is not None)
            else False
        )
L
LielinJiang 已提交
173 174

        self._op_type = "conv" + str(dims) + 'd'
L
Ligoml 已提交
175 176 177 178 179
        if self._op_type == 'conv2d' and (
            in_channels == groups
            and in_channels != 1
            and out_channels % in_channels == 0
        ):
L
LielinJiang 已提交
180
            self._op_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
181
            if is_compiled_with_rocm():
182 183 184 185
                self._use_cudnn = True
            else:
                self._use_cudnn = False

L
Ligoml 已提交
186 187 188 189 190 191
        if (
            is_compiled_with_cuda()
            and get_flags("FLAGS_conv2d_disable_cudnn")[
                "FLAGS_conv2d_disable_cudnn"
            ]
        ):
L
LielinJiang 已提交
192 193
            self._use_cudnn = False

194 195 196 197 198 199
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
200
        if self._padding_mode != 'zeros':
201
            main_str += ', padding_mode={_padding_mode}'
202 203
        if self.output_padding != 0:
            main_str += ', output_padding={output_padding}'
204 205 206 207 208 209 210
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
211

C
cnn 已提交
212
class Conv1D(_ConvNd):
213
    r"""
C
cnn 已提交
214
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
215 216 217 218 219 220 221 222 223 224 225
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
    C is the number of input feature map, K is the size of the kernel. 
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
226 227 228

    For each input :math:`X` , the equation is:

W
whs 已提交
229
    .. math::
W
whs 已提交
230

231
        Out = \sigma (W \ast X + b)
W
whs 已提交
232

W
whs 已提交
233
    Where:
W
whs 已提交
234

W
whs 已提交
235 236 237
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
238
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
W
whs 已提交
239 240
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
241

W
whs 已提交
242
    Example:
W
whs 已提交
243

W
whs 已提交
244
        - Input:
W
whs 已提交
245

W
whs 已提交
246
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
247

W
whs 已提交
248
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
249

W
whs 已提交
250
        - Output:
W
whs 已提交
251

W
whs 已提交
252
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
253

W
whs 已提交
254
        Where
W
whs 已提交
255

W
whs 已提交
256
        .. math::
W
whs 已提交
257

258
            L_{out}&= \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1 \\
W
whs 已提交
259

W
whs 已提交
260 261 262 263
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
264
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple/list,
W
whs 已提交
265
            it must contain one integer, (kernel_size).
266
        stride (int|tuple|list, optional): The stride size. If stride is a tuple/list, it must
W
whs 已提交
267 268 269 270 271 272
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
273
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple/list, it must
W
whs 已提交
274 275 276 277 278 279 280 281 282 283 284 285
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
286
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
287 288 289
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
290
            and the :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
W
whs 已提交
291 292 293 294 295
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
296

W
whs 已提交
297
    Attribute:
W
wangguanzhong 已提交
298

W
whs 已提交
299
        **weight** (Parameter): the learnable weights of filter of this layer.
W
wangguanzhong 已提交
300

W
whs 已提交
301
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
302

W
whs 已提交
303 304
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
W
wangguanzhong 已提交
305 306
        - weight: 3-D tensor with shape: (out_channels, in_channels, kernel_size)
        - bias: 1-D tensor with shape: (out_channels)
W
whs 已提交
307 308 309 310
        - output: 3-D tensor with same shape as input x.
    
    Raises:
        None
W
whs 已提交
311

W
whs 已提交
312 313
    Examples:
        .. code-block:: python
W
whs 已提交
314

W
whs 已提交
315
          import paddle
C
cnn 已提交
316
          from paddle.nn import Conv1D
W
whs 已提交
317 318 319 320 321 322 323 324 325 326 327 328
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
329
          conv = Conv1D(3, 2, 3)
W
whs 已提交
330 331
          conv.weight.set_value(w)
          y_t = conv(x_t)
W
whs 已提交
332
          print(y_t)
W
whs 已提交
333 334
          # [[[133. 238.]
          #   [160. 211.]]]
335
    """
S
swtkiwi 已提交
336

L
Ligoml 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCL",
    ):
        super(Conv1D, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            1,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
366

367
    def forward(self, x):
L
LielinJiang 已提交
368 369
        padding = 0
        if self._padding_mode != "zeros":
L
Ligoml 已提交
370 371 372 373 374 375
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )
L
LielinJiang 已提交
376 377
        else:
            padding = self._padding
378

L
Ligoml 已提交
379 380 381 382 383 384 385 386 387 388
        out = F.conv1d(
            x,
            self.weight,
            bias=self.bias,
            padding=padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
        )
389 390 391
        return out


C
cnn 已提交
392
class Conv1DTranspose(_ConvNd):
393
    r"""
C
cnn 已提交
394
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

410
        Out = \sigma (W \ast X + b)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
446
          and :math:`L^\prime_{out} + stride`.
447 448 449 450 451

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
452
        kernel_size(int|tuple|list, optional): The filter size. If kernel_size is a tuple/list,
453 454 455 456
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
457
            If stride is a tuple/list, it must contain one integer, (stride_size).
458 459 460 461 462 463 464
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
465
             If it is a tuple/list, it must contain one integer. Default: 0.
C
cnn 已提交
466
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
467 468 469 470 471 472 473
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
474
            If dilation is a tuple/list, it must contain one integer, (dilation_size).
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
491 492

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
W
wangguanzhong 已提交
493 494
        - weight(Tensor): 3-D tensor with shape (in_channels, out_channels, kernel_length).
        - bias(Tensor): 1-D tensor with shape (out_channels).
495
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple/list, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
496 497 498 499 500 501
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

          import paddle
C
cnn 已提交
502
          from paddle.nn import Conv1DTranspose
503 504 505 506 507 508 509 510 511
          import numpy as np
          
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2]]]).astype(np.float32)
          # shape: (2, 1, 2)
          y=np.array([[[7, 0]],
                      [[4, 2]]]).astype(np.float32)
          x_t = paddle.to_tensor(x)
C
cnn 已提交
512
          conv = Conv1DTranspose(2, 1, 2)
513 514
          conv.weight.set_value(y)
          y_t = conv(x_t)
W
whs 已提交
515
          print(y_t)
516 517 518 519
          
          # [[[60. 16. 99. 75.  4.]]]
    """

L
Ligoml 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        groups=1,
        dilation=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCL",
    ):
        super(Conv1DTranspose, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
549 550

    def forward(self, x, output_size=None):
L
Ligoml 已提交
551 552 553 554 555 556 557 558 559 560 561 562
        out = F.conv1d_transpose(
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
        )
L
LielinJiang 已提交
563 564 565
        return out


C
cnn 已提交
566
class Conv2D(_ConvNd):
567
    r"""
C
cnn 已提交
568
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

588
        Out = \sigma (W \ast X + b)
L
LielinJiang 已提交
589 590 591 592 593 594

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
595
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
L
LielinJiang 已提交
596 597
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
L
Ligoml 已提交
598

L
LielinJiang 已提交
599 600 601 602
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
603
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
L
LielinJiang 已提交
604 605 606 607
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
L
Ligoml 已提交
608
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
L
LielinJiang 已提交
609 610 611 612
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
613
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
L
LielinJiang 已提交
614 615
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
616
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
617 618 619 620 621 622 623 624 625
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
626
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
L
LielinJiang 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

W
wangguanzhong 已提交
645 646 647 648
        - weight: :math:`(C_{out}, C_{in}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
649 650 651 652 653 654
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

655
           H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
L
LielinJiang 已提交
656

657
           W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
L
LielinJiang 已提交
658 659 660 661 662 663 664

    Examples:

        .. code-block:: python

          import paddle
          import paddle.nn as nn
L
Ligoml 已提交
665

C
cnn 已提交
666
          paddle.disable_static()
L
Ligoml 已提交
667

668
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
L
Ligoml 已提交
669

C
cnn 已提交
670
          conv = nn.Conv2D(4, 6, (3, 3))
L
LielinJiang 已提交
671 672 673 674 675 676
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
          # (2, 6, 6, 6)
    """

L
Ligoml 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
        super(Conv2D, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
706 707 708

    def forward(self, x):
        if self._padding_mode != 'zeros':
L
Ligoml 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )

        out = F.conv._conv_nd(
            x,
            self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._updated_padding,
            padding_algorithm=self._padding_algorithm,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn,
        )
730 731 732
        return out


C
cnn 已提交
733
class Conv2DTranspose(_ConvNd):
734
    r"""
C
cnn 已提交
735
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
736 737 738 739 740
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
W
wangguanzhong 已提交
741 742
    Filter's shape is [CMHW] , where C is the number of input feature map,
    M is the number of output feature map, H is the height of the filter,
743 744 745 746 747 748
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
W
wangguanzhong 已提交
749
    `conv2dtranspose <https://arxiv.org/pdf/1603.07285.pdf>`_ .
750
    For each input :math:`X`, the equation is:
751 752 753

    ..  math::

754
        Out = \sigma (W \ast X + b)
755

756
    Where:
757

758
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
W
wangguanzhong 已提交
759
    * :math:`W`: Filter value, a ``Tensor`` with shape [CMHW] .
760
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
761
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
762 763
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
L
Ligoml 已提交
764

765
    Parameters:
L
LielinJiang 已提交
766 767
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
768
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
769 770
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
771
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
772 773
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
774 775
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
L
Ligoml 已提交
776
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides
777 778 779 780
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
781 782
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
783
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
784 785
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
786
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
787 788 789 790 791
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
792
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
793 794 795
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
796
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
797 798 799 800
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
801
        data_format(str, optional): Data format that specifies the layout of input.
802
            It can be "NCHW" or "NHWC". Default: "NCHW".
803

804
    Attribute:
805

806
        **weight** (Parameter): the learnable weights of filters of this layer.
807

808
        **bias** (Parameter or None): the learnable bias of this layer.
809

L
LielinJiang 已提交
810
    Shape:
811

L
LielinJiang 已提交
812
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
813

W
wangguanzhong 已提交
814 815 816 817
        - weight: :math:`(C_{in}, C_{out}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
818
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
819

L
LielinJiang 已提交
820
        Where
821 822 823 824 825 826 827 828 829 830 831

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

832
    Examples:
833

834
       .. code-block:: python
835

L
LielinJiang 已提交
836 837
          import paddle
          import paddle.nn as nn
L
Ligoml 已提交
838

C
cnn 已提交
839
          paddle.disable_static()
840 841 842

          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)

C
cnn 已提交
843
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
L
LielinJiang 已提交
844 845 846
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
847 848 849
          # (2, 6, 10, 10)
    """

L
Ligoml 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
        super(Conv2DTranspose, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
879 880

    def forward(self, x, output_size=None):
881
        if output_size is None:
882
            output_padding = self.output_padding
883
        else:
L
LielinJiang 已提交
884
            output_padding = 0
885

L
Ligoml 已提交
886 887 888 889 890 891 892 893 894 895 896 897
        out = F.conv2d_transpose(
            x,
            self.weight,
            bias=self.bias,
            padding=self._padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format,
        )
898 899 900
        return out


C
cnn 已提交
901
class Conv3D(_ConvNd):
902
    r"""
903 904
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
905
    and strides, paddings, dilations, groups parameters. Input(Input) and
L
Ligoml 已提交
906
    Output(Output) are multidimensional tensors with a shape of
907 908 909 910 911 912 913
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
914 915 916

    ..  math::

917
        Out = \sigma (W \ast X + b)
918

919
    In the above equation:
920

921 922 923
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
924
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
925 926
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
927

928
    Parameters:
929 930
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
931
        kernel_size(int|list|tuple, optional): The size of the convolving kernel.
932
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
933 934
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
935
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
936
            1. a string in ['valid', 'same'].
L
Ligoml 已提交
937
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
938 939 940 941
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
942
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
943 944
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
945
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
946 947 948 949
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
950 951
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
952 953 954
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
955
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
956
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
957 958 959 960
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
961
        data_format(str, optional): Data format that specifies the layout of input.
962
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
963

964
    Attribute:
965

966
        **weight** (Parameter): the learnable weights of filters of this layer.
967

968
        **bias** (Parameter): the learnable bias of this layer.
969

970
    Shape:
971

972
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
973

W
wangguanzhong 已提交
974 975 976 977
        - weight: :math:`(C_{out}, C_{in}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

978
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
979

980
        Where
981 982 983

        ..  math::

984
           D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
985

986
           H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
987

988
           W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1
989

990 991 992
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
993

994
    Examples:
995

996
        .. code-block:: python
997

998 999
          import paddle
          import paddle.nn as nn
L
Ligoml 已提交
1000

C
cnn 已提交
1001
          paddle.disable_static()
1002 1003

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
Ligoml 已提交
1004

C
cnn 已提交
1005
          conv = nn.Conv3D(4, 6, (3, 3, 3))
1006 1007 1008
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1009 1010 1011
          # (2, 6, 6, 6, 6)
    """

L
Ligoml 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCDHW",
    ):
        super(Conv3D, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
1041

1042 1043
    def forward(self, x):
        if self._padding_mode != 'zeros':
L
Ligoml 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )

        out = F.conv._conv_nd(
            x,
            self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._updated_padding,
            padding_algorithm=self._padding_algorithm,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn,
        )
1065 1066 1067
        return out


C
cnn 已提交
1068
class Conv3DTranspose(_ConvNd):
1069
    r"""
1070 1071 1072 1073 1074 1075 1076 1077
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
W
wangguanzhong 已提交
1078
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
1079 1080 1081 1082
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1083 1084 1085
    
    ..  math::

1086
        Out = \sigma (W \ast X + b)
1087

1088
    In the above equation:
1089

1090
    * :math:`X`: Input value, a tensor with NCDHW format.
W
wangguanzhong 已提交
1091
    * :math:`W`: Filter value, a tensor with CMDHW format.
1092
    * :math:`\\ast`: Convolution operation.
W
wangguanzhong 已提交
1093
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
1094 1095
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1096

1097
    **Note**:
1098

1099
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
1100
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
1101
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
1102 1103 1104 1105 1106 1107
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
1108
          conv3d_transpose can compute the kernel size automatically.
1109

1110
    Parameters:
L
LielinJiang 已提交
1111 1112
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
1113
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
1114 1115 1116
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution. 
1117
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height, 
L
LielinJiang 已提交
1118 1119
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
1120 1121 1122 1123 1124 1125 1126
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` 
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
L
LielinJiang 已提交
1127 1128
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
1129
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1130 1131
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
1132
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1133 1134 1135 1136 1137
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            The default value is 1.
1138
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1139 1140 1141
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. The default value is None.
1142
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1143 1144 1145 1146
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
1147
        data_format(str, optional): Data format that specifies the layout of input.
1148
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1149

1150
    Attribute:
1151

1152
        **weight** (Parameter): the learnable weights of filters of this layer.
1153

1154
        **bias** (Parameter): the learnable bias of this layer.
1155

L
LielinJiang 已提交
1156
    Shape:
1157

L
LielinJiang 已提交
1158
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1159

W
wangguanzhong 已提交
1160 1161 1162 1163
        - weight: :math:`(C_{in}, C_{out}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
1164
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1165

L
LielinJiang 已提交
1166
        Where
1167 1168 1169 1170 1171 1172 1173 1174 1175

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
           
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
           
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
           
1176 1177 1178 1179
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
1180

1181
       .. code-block:: python
1182

L
LielinJiang 已提交
1183 1184
          import paddle
          import paddle.nn as nn
C
cnn 已提交
1185 1186
          
          paddle.disable_static()
1187 1188

          x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
L
LielinJiang 已提交
1189
          
C
cnn 已提交
1190
          conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
L
LielinJiang 已提交
1191 1192 1193
          y_var = conv(x_var)
          y_np = y_var.numpy()
          print(y_np.shape)
1194 1195 1196
          # (2, 6, 10, 10, 10)
    """

L
Ligoml 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCDHW",
    ):
        super(Conv3DTranspose, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
1226

1227
    def forward(self, x, output_size=None):
1228
        if output_size is None:
1229
            output_padding = self.output_padding
1230
        else:
L
LielinJiang 已提交
1231
            output_padding = 0
1232

L
Ligoml 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
        out = F.conv3d_transpose(
            x,
            self.weight,
            bias=self.bias,
            padding=self._padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format,
        )
1245
        return out