rnn.py 77.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Feiyu Chan 已提交
15
import math
16
from collections.abc import Sequence
17
from functools import partial, reduce
F
Feiyu Chan 已提交
18

19
import numpy as np
20

F
Feiyu Chan 已提交
21
import paddle
22
from paddle import _C_ops, _legacy_C_ops, framework, in_dynamic_mode
23 24 25
from paddle.fluid.data_feeder import check_type, check_variable_and_dtype
from paddle.fluid.framework import _non_static_mode, in_dygraph_mode
from paddle.fluid.layers import control_flow, sequence_lod, utils
26
from paddle.fluid.layers.utils import flatten, map_structure
Z
zhiboniu 已提交
27
from paddle.framework import core
28 29 30
from paddle.nn import Layer
from paddle.nn import functional as F
from paddle.nn import initializer as I
31
from paddle.static import Variable, default_startup_program, program_guard
32

33
from .container import LayerList
Z
zhiboniu 已提交
34

35 36
__all__ = []

F
Feiyu Chan 已提交
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
def rnn(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
    r"""
    rnn creates a recurrent neural network specified by RNNCell `cell`,
    which performs :code:`cell.call()` (for dygraph mode :code:`cell.forward`)
    repeatedly until reaches to the maximum length of `inputs`.

    Parameters:
        cell(RNNCellBase): An instance of `RNNCellBase`.
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
        initial_states(Tensor|tuple|list, optional): the initial state of the
            rnn cell. Tensor or a possibly nested structure of tensors. If not
            provided, `cell.get_initial_states` would be called to produce
            the initial state. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
            index are not less than the valid length are treated as paddings.
        time_major (bool, optional): Whether the first dimension of the input means the
            time steps. Defaults to False.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        **kwargs: Additional keyword arguments to pass to `forward` of the cell.

    Returns:
        outputs (Tensor|list|tuple): the output sequence. Tensor or nested
            structure of Tensors.
            If `time_major` is True, the shape of each tensor in outpus is
            `[time_steps, batch_size, hidden_size]`, else
            `[batch_size, time_steps, hidden_size]`.
        final_states (Tensor|list|tuple): final states. A (possibly nested structure of)
            tensor[s], representing the final state for RNN. It has the same
            structure of intial state. Each tensor in final states has the same
            shape and dtype as the corresponding tensor in initial states.

    Examples:

        .. code-block:: python

            import paddle
            paddle.disable_static()

            cell = paddle.nn.SimpleRNNCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))
            outputs, final_states = paddle.nn.layer.rnn(cell, inputs, prev_h)

    """

    if _non_static_mode():
        return _rnn_dynamic_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
            **kwargs
        )
    else:
        return _rnn_static_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
            **kwargs
        )


class ArrayWrapper:
    def __init__(self, x):
        self.array = [x]

    def append(self, x):
        self.array.append(x)
        return self

    def __getitem__(self, item):
        return self.array.__getitem__(item)


def _maybe_copy(state, new_state, step_mask):
    """update rnn state or just pass the old state through"""
    new_state = paddle.tensor.math._multiply_with_axis(
        new_state, step_mask, axis=0
    ) + paddle.tensor.math._multiply_with_axis(state, (1 - step_mask), axis=0)
    return new_state


def _transpose_batch_time(x):
    perm = [1, 0] + list(range(2, len(x.shape)))
    return paddle.transpose(x, perm)


def _rnn_dynamic_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
    time_step_index = 0 if time_major else 1
    flat_inputs = flatten(inputs)
    time_steps = flat_inputs[0].shape[time_step_index]

    if initial_states is None:
        initial_states = cell.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )

    if not time_major:
        inputs = map_structure(_transpose_batch_time, inputs)

    if sequence_length is not None:
        mask = sequence_lod.sequence_mask(
            sequence_length, maxlen=time_steps, dtype=inputs.dtype
        )
        mask = paddle.transpose(mask, [1, 0])

    if is_reverse:
        inputs = map_structure(lambda x: paddle.reverse(x, axis=[0]), inputs)
        mask = (
            paddle.reverse(mask, axis=[0])
            if sequence_length is not None
            else None
        )

    states = initial_states
    outputs = []
    for i in range(time_steps):
        step_inputs = map_structure(lambda x: x[i], inputs)
        step_outputs, new_states = cell(step_inputs, states, **kwargs)
        if sequence_length is not None:
            new_states = map_structure(
                partial(_maybe_copy, step_mask=mask[i]), states, new_states
            )
        states = new_states
        outputs = (
            map_structure(lambda x: ArrayWrapper(x), step_outputs)
            if i == 0
            else map_structure(
                lambda x, x_array: x_array.append(x), step_outputs, outputs
            )
        )

    final_outputs = map_structure(
        lambda x: paddle.stack(x.array, axis=time_step_index), outputs
    )

    if is_reverse:
        final_outputs = map_structure(
            lambda x: paddle.reverse(x, axis=time_step_index), final_outputs
        )

    final_states = new_states
    return final_outputs, final_states


def _rnn_static_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
    check_type(inputs, 'inputs', (Variable, list, tuple), 'rnn')
    if isinstance(inputs, (list, tuple)):
        for i, input_x in enumerate(inputs):
            check_variable_and_dtype(
                input_x, 'inputs[' + str(i) + ']', ['float32', 'float64'], 'rnn'
            )
    check_type(
        initial_states,
        'initial_states',
        (Variable, list, tuple, type(None)),
        'rnn',
    )

    check_type(
        sequence_length, 'sequence_length', (Variable, type(None)), 'rnn'
    )

    def _switch_grad(x, stop=False):
        x.stop_gradient = stop
        return x

    if initial_states is None:
        initial_states = cell.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
    initial_states = map_structure(_switch_grad, initial_states)

    if not time_major:
        inputs = map_structure(_transpose_batch_time, inputs)

H
hong 已提交
251
    max_seq_len = paddle.shape(flatten(inputs)[0])[0]
252 253 254 255 256 257 258 259 260 261 262
    if sequence_length:
        mask = sequence_lod.sequence_mask(
            sequence_length,
            maxlen=max_seq_len,
            dtype=flatten(initial_states)[0].dtype,
        )
        mask = paddle.transpose(mask, [1, 0])
    if is_reverse:
        inputs = map_structure(lambda x: paddle.reverse(x, axis=[0]), inputs)
        mask = paddle.reverse(mask, axis=[0]) if sequence_length else None

H
hong 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    with paddle.fluid.framework.device_guard("cpu"):
        start_i = paddle.zeros([1], dtype="int64")
        end = max_seq_len

        end = paddle.cast(end, "int64")
        cond = start_i < end
    while_op = control_flow.While(cond)

    out_array = paddle.tensor.create_array(dtype=flatten(inputs)[0].dtype)

    init_array = map_structure(
        lambda x: paddle.tensor.create_array(dtype=x.dtype), initial_states
    )

    map_structure(
        lambda x, y: paddle.tensor.array_write(x, start_i, y),
        initial_states,
        init_array,
    )

    with while_op.block():

        step_in = inputs[start_i]
        # step_in = paddle.fluid.layers.Print( step_in, message="step in")
        pre_state = map_structure(
            lambda x: paddle.tensor.array_read(x, start_i), init_array
        )
        # pre_state = paddle.fluid.layers.Print( pre_state, message="pre")
        outputs, new_states = cell(step_in, pre_state, **kwargs)
        assert isinstance(outputs, paddle.fluid.framework.Variable)
        utils.assert_same_structure(new_states, pre_state)
294
        if sequence_length:
H
hong 已提交
295 296 297 298 299 300
            step_mask = paddle.unsqueeze(mask[start_i], 1)
            # paddle.fluid.layers.Print( step_mask, message="mask")
            # new_states = map_structure(
            #     partial(_maybe_copy, step_mask=step_mask),
            #     pre_state, new_states
            # )
301
            new_states = map_structure(
H
hong 已提交
302 303 304
                lambda x, y: (x * step_mask + y * (1.0 - step_mask)),
                new_states,
                pre_state,
305 306
            )

H
hong 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        paddle.tensor.array_write(outputs, start_i, out_array)

        with paddle.fluid.framework.device_guard("cpu"):

            start_i = paddle.tensor.increment(x=start_i, value=1)
        map_structure(
            lambda x, y: paddle.tensor.array_write(x, start_i, y),
            new_states,
            init_array,
        )

        with paddle.fluid.framework.device_guard("cpu"):
            new_cond = paddle.tensor.less_than(start_i, end)
            paddle.fluid.layers.assign(new_cond, cond)

    out, _ = paddle.fluid.layers.tensor_array_to_tensor(
        out_array, axis=0, use_stack=True
    )
325

H
hong 已提交
326 327 328 329 330 331 332 333
    all_state = map_structure(
        lambda x: paddle.fluid.layers.tensor_array_to_tensor(
            x, axis=0, use_stack=True
        )[0],
        init_array,
    )
    final_outputs = out
    final_states = map_structure(lambda x: x[-1], all_state)
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

    if is_reverse:
        final_outputs = map_structure(
            lambda x: paddle.reverse(x, axis=[0]), final_outputs
        )

    if not time_major:
        final_outputs = map_structure(_transpose_batch_time, final_outputs)

    return (final_outputs, final_states)


def birnn(
    cell_fw,
    cell_bw,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    **kwargs
):
    r"""
    birnn creates a bidirectional recurrent neural network specified by
    RNNCell `cell_fw` and `cell_bw`, which performs :code:`cell.call()`
    (for dygraph mode :code:`cell.forward`) repeatedly until reaches to
    the maximum length of `inputs` and then concat the outputs for both RNNs
    along the last axis.

    Parameters:
        cell_fw(RNNCellBase): An instance of `RNNCellBase`.
        cell_bw(RNNCellBase): An instance of `RNNCellBase`.
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
        initial_states(tuple, optional): A tuple of initial states of
            `cell_fw` and `cell_bw`.
            If not provided, `cell.get_initial_states` would be called to
            produce initial state for each cell. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
            index are not less than the valid length are treated as paddings.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.
        **kwargs: Additional keyword arguments to pass to `forward` of each cell.

    Returns:
        outputs (Tensor): the outputs of the bidirectional RNN. It is the
            concatenation of the outputs from the forward RNN and backward
            RNN along the last axis.
            If time major is True, the shape is `[time_steps, batch_size, size]`,
            else the shape is `[batch_size, time_steps, size]`, where size is
            `cell_fw.hidden_size + cell_bw.hidden_size`.
        final_states (tuple): A tuple of the final states of the forward
            cell and backward cell.

    Examples:

        .. code-block:: python

            import paddle
            paddle.disable_static()

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            hf, cf = paddle.rand((4, 32)), paddle.rand((4, 32))
            hb, cb = paddle.rand((4, 32)), paddle.rand((4, 32))
            initial_states = ((hf, cf), (hb, cb))
            outputs, final_states = paddle.nn.layer.birnn(
                cell_fw, cell_bw, inputs, initial_states)

    """

    if initial_states is None:
        states_fw = cell_fw.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
        states_bw = cell_fw.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
    else:
        states_fw, states_bw = initial_states
    outputs_fw, states_fw = rnn(
        cell_fw,
        inputs,
        states_fw,
        sequence_length,
        time_major=time_major,
        **kwargs
    )

    outputs_bw, states_bw = rnn(
        cell_bw,
        inputs,
        states_bw,
        sequence_length,
        time_major=time_major,
        is_reverse=True,
        **kwargs
    )

    outputs = map_structure(
        lambda x, y: paddle.concat([x, y], -1), outputs_fw, outputs_bw
    )

    final_states = (states_fw, states_bw)
    return outputs, final_states


F
Feiyu Chan 已提交
447 448 449 450 451
def split_states(states, bidirectional=False, state_components=1):
    r"""
    Split states of RNN network into possibly nested list or tuple of
    states of each RNN cells of the RNN network.

452
    Parameters:
F
Feiyu Chan 已提交
453 454
        states (Tensor|tuple|list): the concatenated states for RNN network.
            When `state_components` is 1, states in a Tensor with shape
455 456 457 458 459 460 461 462 463 464 465
            `(L*D, N, C)` where `L` is the number of layers of the RNN
            network, `D` is the number of directions of the RNN network(1
            for unidirectional RNNs and 2 for bidirectional RNNs), `N` is
            the batch size of the input to the RNN network, `C` is the
            hidden size of the RNN network.

            When `state_components` is larger than 1, `states` is a tuple of
            `state_components` Tensors that meet the requirements described
            above.

            For SimpleRNNs and GRUs, `state_components` is 1, and for LSTMs,
F
Feiyu Chan 已提交
466
            `state_components` is 2.
467
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
468 469 470
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
471

F
Feiyu Chan 已提交
472
    Returns:
473 474 475
        A nested list or tuple of RNN cell states.
        If `bidirectional` is True, it can be indexed twice to get an RNN
        cell state. The first index indicates the layer, the second index
F
Feiyu Chan 已提交
476 477 478 479
        indicates the direction.
        If `bidirectional` is False, it can be indexed once to get an RNN
        cell state. The index indicates the layer.
        Note that if `state_components` is larger than 1, an RNN cell state
480
        can be indexed one more time to get a tensor of shape(N, C), where
F
Feiyu Chan 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        `N` is the batch size of the input to the RNN cell, and `C` is the
        hidden size of the RNN cell.
    """
    if state_components == 1:
        states = paddle.unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([paddle.unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    r"""
502
    Concatenate a possibly nested list or tuple of RNN cell states into a
F
Feiyu Chan 已提交
503 504
    compact form.

505
    Parameters:
506 507 508 509
        states (list|tuple): a possibly nested list or tuple of RNN cell
            states.
            If `bidirectional` is True, it can be indexed twice to get an
            RNN cell state. The first index indicates the layer, the second
F
Feiyu Chan 已提交
510 511 512
            index indicates the direction.
            If `bidirectional` is False, it can be indexed once to get an RNN
            cell state. The index indicates the layer.
513 514 515 516 517
            Note that if `state_components` is larger than 1, an RNN cell
            state can be indexed one more time to get a tensor of shape(N, C),
            where `N` is the batch size of the input to the RNN cell, and
            `C` is the hidden size of the RNN cell.
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
518 519 520
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
521

F
Feiyu Chan 已提交
522 523 524
    Returns:
        Concatenated states for RNN network.
        When `state_components` is 1, states in a Tensor with shape
525 526 527 528
        `(L\*D, N, C)` where `L` is the number of layers of the RNN
        network, `D` is the number of directions of the RNN network(1 for
        unidirectional RNNs and 2 for bidirectional RNNs), `N` is the batch
        size of the input to the RNN network, `C` is the hidden size of the
F
Feiyu Chan 已提交
529
        RNN network.
530

F
Feiyu Chan 已提交
531 532 533 534 535 536 537 538
    """
    if state_components == 1:
        return paddle.stack(flatten(states))
    else:
        states = flatten(states)
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
539
        return tuple([paddle.stack(item) for item in componnets])
F
Feiyu Chan 已提交
540 541 542 543 544 545 546 547 548


class RNNCellBase(Layer):
    r"""
    RNNCellBase is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

549 550 551
    def get_initial_states(
        self, batch_ref, shape=None, dtype=None, init_value=0.0, batch_dim_idx=0
    ):
F
Feiyu Chan 已提交
552 553 554
        r"""
        Generate initialized states according to provided shape, data type and
        value.
555 556

        Parameters:
557 558 559
            batch_ref (Tensor): A tensor, which shape would be used to
                determine the batch size, which is used to generate initial
                states. For `batch_ref`'s shape d, `d[batch_dim_idx]` is
F
Feiyu Chan 已提交
560
                treated as batch size.
561 562 563 564
            shape (list|tuple, optional): A (possibly nested structure of) shape[s],
                where a shape is a list/tuple of integer. `-1` (for batch size)
                will be automatically prepended if a shape does not starts with
                it. If None, property `state_shape` will be used. Defaults to
F
Feiyu Chan 已提交
565
                None.
566 567 568 569 570
            dtype (str|list|tuple, optional): A (possibly nested structure of)
                data type[s]. The structure must be same as that of `shape`,
                except when all tensors' in states has the same data type, a
                single data type can be used. If None and property `cell.state_shape`
                is not available, current default floating type of paddle is
F
Feiyu Chan 已提交
571
                used. Defaults to None.
572
            init_value (float, optional): A float value used to initialize states.
F
Feiyu Chan 已提交
573
                Defaults to 0.
574
            batch_dim_idx (int, optional): An integer indicating which
F
Feiyu Chan 已提交
575
                dimension of the of `batch_ref` represents batch. Defaults to 0.
576

F
Feiyu Chan 已提交
577
        Returns:
578
            init_states (Tensor|tuple|list): tensor of the provided shape and
F
Feiyu Chan 已提交
579 580 581 582 583 584 585 586
                dtype, or list of tensors that each satisfies the requirements,
                packed in the same structure as `shape` and `type` does.
        """
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
            """For shape, list/tuple of integer is the finest-grained objection"""
587 588 589 590
            if isinstance(seq, list) or isinstance(seq, tuple):
                if reduce(
                    lambda flag, x: isinstance(x, int) and flag, seq, True
                ):
F
Feiyu Chan 已提交
591 592 593 594
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
595
            return isinstance(seq, Sequence) and not isinstance(seq, str)
F
Feiyu Chan 已提交
596

597
        class Shape:
F
Feiyu Chan 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:
            states_dtypes = framework.get_default_dtype()
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
618 619 620 621 622 623 624 625 626 627
            lambda shape, dtype: paddle.fluid.layers.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
                value=init_value,
                input_dim_idx=batch_dim_idx,
            ),
            states_shapes,
            states_dtypes,
        )
F
Feiyu Chan 已提交
628 629 630 631 632 633 634
        return init_states

    @property
    def state_shape(self):
        r"""
        Abstract method (property).
        Used to initialize states.
635
        A (possiblely nested structure of) shape[s], where a shape is a
F
Feiyu Chan 已提交
636 637 638 639 640 641 642
        list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it).
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
643 644
            "Please add implementaion for `state_shape` in the used cell."
        )
F
Feiyu Chan 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658

    @property
    def state_dtype(self):
        r"""
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) data types[s]. The structure must be
        same as that of `shape`, except when all tensors' in states has the same
        data type, a signle data type can be used.
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
659 660
            "Please add implementaion for `state_dtype` in the used cell."
        )
F
Feiyu Chan 已提交
661 662 663 664


class SimpleRNNCell(RNNCellBase):
    r"""
665
    Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it
F
Feiyu Chan 已提交
666 667 668 669 670
    computes the outputs and updates states.

    The formula used is as follows:

    .. math::
671
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
672

F
Feiyu Chan 已提交
673
        y_{t} & = h_{t}
674

675
    where :math:`act` is for :attr:`activation`.
F
Feiyu Chan 已提交
676

677
    Please refer to `Finding Structure in Time
F
Feiyu Chan 已提交
678
    <https://crl.ucsd.edu/~elman/Papers/fsit.pdf>`_ for more details.
679

680
    Parameters:
F
Feiyu Chan 已提交
681 682
        input_size (int): The input size.
        hidden_size (int): The hidden size.
683
        activation (str, optional): The activation in the SimpleRNN cell.
F
Feiyu Chan 已提交
684
            It can be `tanh` or `relu`. Defaults to `tanh`.
685
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
686
            :math:`weight_ih`. Default: None.
687
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
688
            :math:`weight_hh`. Default: None.
689
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
690
            :math:`bias_ih`. Default: None.
691
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
692
            :math:`bias_hh`. Default: None.
693
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
694 695
            None). For more information, please refer to :ref:`api_guide_Name`.

696 697 698 699 700
    Variables:
        - **weight_ih** (Parameter): shape (hidden_size, input_size), input to hidden weight, corresponding to :math:`W_{ih}` in the formula.
        - **weight_hh** (Parameter): shape (hidden_size, hidden_size), hidden to hidden weight, corresponding to :math:`W_{hh}` in the formula.
        - **bias_ih** (Parameter): shape (hidden_size, ), input to hidden bias, corresponding to :math:`b_{ih}` in the formula.
        - **bias_hh** (Parameter): shape (hidden_size, ), hidden to hidden bias, corresponding to :math:`b_{hh}` in the formula.
701

F
Feiyu Chan 已提交
702
    Inputs:
703 704
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_{t}` in the formula.
        - **states** (Tensor, optional): shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
705 706

    Returns:
707 708
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
709

F
Feiyu Chan 已提交
710
    Notes:
711
        All the weights and bias are initialized with `Uniform(-std, std)` by default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
712 713 714 715 716 717 718 719 720 721 722 723

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            y, h = cell(x, prev_h)
724 725 726
            print(y.shape)

            #[4,32]
F
Feiyu Chan 已提交
727 728 729

    """

730 731 732 733 734 735 736 737 738 739 740
    def __init__(
        self,
        input_size,
        hidden_size,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
741
        super().__init__()
742 743
        if hidden_size <= 0:
            raise ValueError(
744 745 746 747
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
748 749 750 751
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (hidden_size, input_size),
            weight_ih_attr,
752 753
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
754 755 756
        self.weight_hh = self.create_parameter(
            (hidden_size, hidden_size),
            weight_hh_attr,
757 758
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
759
        self.bias_ih = self.create_parameter(
760
            (hidden_size,),
F
Feiyu Chan 已提交
761 762
            bias_ih_attr,
            is_bias=True,
763 764
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
765
        self.bias_hh = self.create_parameter(
766
            (hidden_size,),
F
Feiyu Chan 已提交
767 768
            bias_hh_attr,
            is_bias=True,
769 770
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
771 772 773 774 775 776

        self.input_size = input_size
        self.hidden_size = hidden_size
        if activation not in ["tanh", "relu"]:
            raise ValueError(
                "activation for SimpleRNNCell should be tanh or relu, "
777 778
                "but get {}".format(activation)
            )
F
Feiyu Chan 已提交
779
        self.activation = activation
780
        self._activation_fn = paddle.tanh if activation == "tanh" else F.relu
F
Feiyu Chan 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_h = states
        i2h = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            i2h += self.bias_ih
        h2h = paddle.matmul(pre_h, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h2h += self.bias_hh
        h = self._activation_fn(i2h + h2h)
        return h, h

    @property
    def state_shape(self):
797
        return (self.hidden_size,)
F
Feiyu Chan 已提交
798

799 800
    def extra_repr(self):
        s = '{input_size}, {hidden_size}'
801
        if self.activation != "tanh":
802 803 804
            s += ', activation={activation}'
        return s.format(**self.__dict__)

F
Feiyu Chan 已提交
805 806 807

class LSTMCell(RNNCellBase):
    r"""
808
    Long-Short Term Memory(LSTM) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
809 810 811 812 813 814
    it computes the outputs and updates states.

    The formula used is as follows:

    .. math::
        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
815

F
Feiyu Chan 已提交
816
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
817

F
Feiyu Chan 已提交
818
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
819 820 821 822 823 824 825

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
826 827
        y_{t} & = h_{t}

828
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
829 830 831 832 833
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

834
    Parameters:
F
Feiyu Chan 已提交
835 836
        input_size (int): The input size.
        hidden_size (int): The hidden size.
837
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
838
            `weight_ih`. Default: None.
839
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
840
            `weight_hh`. Default: None.
841
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
842
            `bias_ih`. Default: None.
843
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
844
            `bias_hh`. Default: None.
845
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
846 847
            None). For more information, please refer to :ref:`api_guide_Name`.

848 849 850 851 852
    Variables:
        - **weight_ih** (Parameter): shape (4 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ii}, W_{if}, W_{ig}, W_{io}` in the formula.
        - **weight_hh** (Parameter): shape (4 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hi}, W_{hf}, W_{hg}, W_{ho}` in the formula.
        - **bias_ih** (Parameter): shape (4 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ii}, b_{if}, b_{ig}, b_{io}` in the formula.
        - **bias_hh** (Parameter): shape (4 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hi}, b_{hf}, b_{hg}, b_{ho}` in the formula.
F
Feiyu Chan 已提交
853 854

    Inputs:
855
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_t` in the formula.
856
        - **states** (list|tuple, optional): a list/tuple of two tensors, each of shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}, c_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
857 858

    Returns:
859 860
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (tuple): a tuple of two tensors, each of shape `[batch_size, hidden_size]`, the new hidden states, corresponding to :math:`h_{t}, c_{t}` in the formula.
F
Feiyu Chan 已提交
861 862

    Notes:
863 864
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
865
        information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))
            prev_c = paddle.randn((4, 32))

            cell = paddle.nn.LSTMCell(16, 32)
            y, (h, c) = cell(x, (prev_h, prev_c))

880 881 882 883 884 885 886 887
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,32]
            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
888 889
    """

890 891 892 893 894 895 896 897 898 899
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
900
        super().__init__()
901 902
        if hidden_size <= 0:
            raise ValueError(
903 904 905 906
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
907 908 909 910
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (4 * hidden_size, input_size),
            weight_ih_attr,
911 912
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
913 914 915
        self.weight_hh = self.create_parameter(
            (4 * hidden_size, hidden_size),
            weight_hh_attr,
916 917
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
918
        self.bias_ih = self.create_parameter(
919
            (4 * hidden_size,),
F
Feiyu Chan 已提交
920 921
            bias_ih_attr,
            is_bias=True,
922 923
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
924
        self.bias_hh = self.create_parameter(
925
            (4 * hidden_size,),
F
Feiyu Chan 已提交
926 927
            bias_hh_attr,
            is_bias=True,
928 929
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_hidden, pre_cell = states
        gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = paddle.split(gates, num_or_sections=4, axis=-1)

        i = self._gate_activation(chunked_gates[0])
        f = self._gate_activation(chunked_gates[1])
        o = self._gate_activation(chunked_gates[3])
        c = f * pre_cell + i * self._activation(chunked_gates[2])
        h = o * self._activation(c)

        return h, (h, c)

    @property
    def state_shape(self):
        r"""
960 961 962
        The `state_shape` of LSTMCell is a tuple with two shapes:
        `((hidden_size, ), (hidden_size,))`. (-1 for batch size would be
        automatically inserted into shape). These two shapes correspond
F
Feiyu Chan 已提交
963 964
        to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
965
        return ((self.hidden_size,), (self.hidden_size,))
F
Feiyu Chan 已提交
966

967 968 969
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
970 971 972

class GRUCell(RNNCellBase):
    r"""
973
    Gated Recurrent Unit (GRU) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
974 975 976 977
    it computes the outputs and updates states.

    The formula for GRU used is as follows:

978
    ..  math::
F
Feiyu Chan 已提交
979

980
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
981

982
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
983

984
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
985 986 987

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
988
        y_{t} & = h_{t}
989 990

    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
991 992 993 994 995 996
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

    Parameters:
997
        input_size (int): The input size.
F
Feiyu Chan 已提交
998
        hidden_size (int): The hidden size.
999
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1000
            `weight_ih`. Default: None.
1001
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1002
            `weight_hh`. Default: None.
1003
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1004
            `bias_ih`. Default: None.
1005
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1006
            `bias_hh`. Default: None.
1007
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1008 1009
            None). For more information, please refer to :ref:`api_guide_Name`.

1010 1011 1012 1013 1014
    Variables:
        - **weight_ih** (Parameter): shape (3 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ir}, W_{iz}, W_{ic}` in the formula.
        - **weight_hh** (Parameter): shape (3 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hr}, W_{hz}, W_{hc}` in the formula.
        - **bias_ih** (Parameter): shape (3 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ir}, b_{iz}, b_{ic}` in the formula.
        - **bias_hh** (Parameter): shape (3 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hr}, b_{hz}, b_{hc}` in the formula.
F
Feiyu Chan 已提交
1015 1016

    Inputs:
1017 1018
        - **inputs** (Tensor): A tensor with shape `[batch_size, input_size]`, corresponding to :math:`x_t` in the formula.
        - **states** (Tensor): A tensor with shape `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}` in the formula.
F
Feiyu Chan 已提交
1019 1020

    Returns:
1021 1022
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
1023

F
Feiyu Chan 已提交
1024
    Notes:
1025 1026
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
1027
        information about parameter initialization, please refer to s:ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.GRUCell(16, 32)
            y, h = cell(x, prev_h)

1041 1042 1043 1044 1045 1046
            print(y.shape)
            print(h.shape)

            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
1047 1048
    """

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1059
        super().__init__()
1060 1061
        if hidden_size <= 0:
            raise ValueError(
1062 1063 1064 1065
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
1066 1067 1068 1069
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (3 * hidden_size, input_size),
            weight_ih_attr,
1070 1071
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1072 1073 1074
        self.weight_hh = self.create_parameter(
            (3 * hidden_size, hidden_size),
            weight_hh_attr,
1075 1076
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1077
        self.bias_ih = self.create_parameter(
1078
            (3 * hidden_size,),
F
Feiyu Chan 已提交
1079 1080
            bias_ih_attr,
            is_bias=True,
1081 1082
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1083
        self.bias_hh = self.create_parameter(
1084
            (3 * hidden_size,),
F
Feiyu Chan 已提交
1085 1086
            bias_hh_attr,
            is_bias=True,
1087 1088
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)

        pre_hidden = states
        x_gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            x_gates = x_gates + self.bias_ih
        h_gates = paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h_gates = h_gates + self.bias_hh

        x_r, x_z, x_c = paddle.split(x_gates, num_or_sections=3, axis=1)
        h_r, h_z, h_c = paddle.split(h_gates, num_or_sections=3, axis=1)

        r = self._gate_activation(x_r + h_r)
        z = self._gate_activation(x_z + h_z)
        c = self._activation(x_c + r * h_c)  # apply reset gate after mm
        h = (pre_hidden - c) * z + c

        return h, h

    @property
    def state_shape(self):
        r"""
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to the shape of :math:`h_{t-1}`.
        """
1124
        return (self.hidden_size,)
F
Feiyu Chan 已提交
1125

1126 1127 1128
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
1129 1130 1131

class RNN(Layer):
    r"""
1132 1133
    Wrapper for RNN, which creates a recurrent neural network with an RNN cell.
    It performs :code:`cell.forward()` repeatedly until reaches to the maximum
F
Feiyu Chan 已提交
1134 1135
    length of `inputs`.

1136
    Parameters:
F
Feiyu Chan 已提交
1137 1138 1139 1140 1141 1142 1143
        cell(RNNCellBase): An instance of `RNNCellBase`.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
1144 1145 1146
        - **inputs** (Tensor): A (possibly nested structure of) tensor[s]. The input sequences. If time major is False, the shape is `[batch_size, time_steps, input_size]`. If time major is True, the shape is `[time_steps, batch_size, input_size]` where `input_size` is the input size of the cell.
        - **initial_states** (Tensor|list|tuple, optional): Tensor of a possibly nested structure of tensors, representing the initial state for the rnn cell. If not provided, `cell.get_initial_states` would be called to produce the initial states. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None.If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
1147
        - **kwargs**: Additional keyword arguments to pass to `forward` of the cell.
F
Feiyu Chan 已提交
1148 1149

    Returns:
1150 1151
        - **outputs** (Tensor|list|tuple): the output sequences. If `time_major` is True, the shape is `[time_steps, batch_size, hidden_size]`, else `[batch_size, time_steps, hidden_size]`.
        - **final_states** (Tensor|list|tuple): final states of the cell. Tensor or a possibly nested structure of tensors which has the same structure with intial state. Each tensor in final states has the same shape and dtype as the corresponding tensor in initial states.
1152

F
Feiyu Chan 已提交
1153 1154
    Notes:
        This class is a low level API for wrapping rnn cell into a RNN network.
1155 1156
        Users should take care of the state of the cell. If `initial_states` is
        passed to the `forward` method, make sure that it satisfies the
F
Feiyu Chan 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
        requirements of the cell.

    Examples:

        .. code-block:: python

            import paddle

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            rnn = paddle.nn.RNN(cell)
            outputs, final_states = rnn(inputs, prev_h)

1172 1173 1174 1175 1176 1177
            print(outputs.shape)
            print(final_states.shape)

            #[4,23,32]
            #[4,32]

F
Feiyu Chan 已提交
1178 1179 1180
    """

    def __init__(self, cell, is_reverse=False, time_major=False):
1181
        super().__init__()
F
Feiyu Chan 已提交
1182 1183 1184 1185 1186 1187 1188
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

1189 1190 1191
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
1192
        final_outputs, final_states = rnn(
1193 1194 1195 1196 1197 1198
            self.cell,
            inputs,
            initial_states=initial_states,
            sequence_length=sequence_length,
            time_major=self.time_major,
            is_reverse=self.is_reverse,
1199 1200
            **kwargs
        )
F
Feiyu Chan 已提交
1201 1202 1203 1204 1205
        return final_outputs, final_states


class BiRNN(Layer):
    r"""
1206 1207 1208
    Wrapper for bidirectional RNN, which builds a bidiretional RNN given the
    forward rnn cell and backward rnn cell. A BiRNN applies forward RNN and
    backward RNN with coresponding cells separately and concats the outputs
F
Feiyu Chan 已提交
1209 1210
    along the last axis.

1211
    Parameters:
F
Feiyu Chan 已提交
1212 1213 1214 1215 1216 1217
        cell_fw (RNNCellBase): A RNNCellBase instance used for forward RNN.
        cell_bw (RNNCellBase): A RNNCellBase instance used for backward RNN.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
1218 1219 1220 1221
        - **inputs** (Tensor): the input sequences of both RNN. If time_major is True, the shape of is `[time_steps, batch_size, input_size]`, else the shape is `[batch_size, time_steps, input_size]`, where input_size is the input size of both cells.
        - **initial_states** (list|tuple, optional): A tuple/list of the initial states of the forward cell and backward cell. Defaults to None. If not provided, `cell.get_initial_states` would be called to produce the initial states for each cell. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
        - **kwargs**: Additional keyword arguments. Arguments passed to `forward` for each cell.
F
Feiyu Chan 已提交
1222 1223

    Outputs:
1224
        - **outputs** (Tensor): the outputs of the bidirectional RNN. It is the concatenation of the outputs from the forward RNN and backward RNN along the last axis. If time major is True, the shape is `[time_steps, batch_size, size]`, else the shape is `[batch_size, time_steps, size]`, where size is `cell_fw.hidden_size + cell_bw.hidden_size`.
1225
        - **final_states** (tuple): A tuple of the final states of the forward cell and backward cell.
F
Feiyu Chan 已提交
1226 1227

    Notes:
1228 1229 1230
        This class is a low level API for wrapping rnn cells into a BiRNN
        network. Users should take care of the states of the cells.
        If `initial_states` is passed to the `forward` method, make sure that
F
Feiyu Chan 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
        it satisfies the requirements of the cells.

    Examples:

        .. code-block:: python

            import paddle

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)
            rnn = paddle.nn.BiRNN(cell_fw, cell_bw)

            inputs = paddle.rand((2, 23, 16))
            outputs, final_states = rnn(inputs)

1246 1247 1248 1249 1250 1251
            print(outputs.shape)
            print(final_states[0][0].shape,len(final_states),len(final_states[0]))

            #[4,23,64]
            #[2,32] 2 2

F
Feiyu Chan 已提交
1252 1253 1254
    """

    def __init__(self, cell_fw, cell_bw, time_major=False):
1255
        super().__init__()
F
Feiyu Chan 已提交
1256 1257 1258
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        if cell_fw.input_size != cell_bw.input_size:
1259 1260 1261 1262 1263 1264
            raise ValueError(
                "input size of forward cell({}) does not equals"
                "that of backward cell({})".format(
                    cell_fw.input_size, cell_bw.input_size
                )
            )
F
Feiyu Chan 已提交
1265 1266 1267 1268 1269 1270
        for cell in [self.cell_fw, self.cell_bw]:
            if not hasattr(cell, "call"):
                # for non-dygraph mode, `rnn` api uses cell.call
                cell.call = cell.forward
        self.time_major = time_major

1271 1272 1273
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
F
Feiyu Chan 已提交
1274
        if isinstance(initial_states, (list, tuple)):
1275 1276 1277
            assert (
                len(initial_states) == 2
            ), "length of initial_states should be 2 when it is a list/tuple"
F
Feiyu Chan 已提交
1278

1279
        outputs, final_states = birnn(
1280 1281 1282 1283 1284 1285 1286 1287
            self.cell_fw,
            self.cell_bw,
            inputs,
            initial_states,
            sequence_length,
            self.time_major,
            **kwargs
        )
F
Feiyu Chan 已提交
1288 1289 1290
        return outputs, final_states


1291
class RNNBase(LayerList):
F
Feiyu Chan 已提交
1292
    r"""
1293 1294
    RNNBase class for RNN networks. It provides `forward`, `flatten_parameters`
    and other common methods for SimpleRNN, LSTM and GRU.
F
Feiyu Chan 已提交
1295 1296
    """

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    def __init__(
        self,
        mode,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
    ):
1311
        super().__init__()
1312
        bidirectional_list = ["bidirectional", "bidirect"]
1313 1314 1315 1316
        self.mode = mode
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
1317
        self.num_directions = 2 if direction in bidirectional_list else 1
1318 1319 1320 1321 1322 1323 1324 1325
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2 if mode == "LSTM" else 1

        kwargs = {
            "weight_ih_attr": weight_ih_attr,
            "weight_hh_attr": weight_hh_attr,
            "bias_ih_attr": bias_ih_attr,
1326
            "bias_hh_attr": bias_hh_attr,
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        }

        if mode == "LSTM":
            rnn_cls = LSTMCell
        elif mode == "GRU":
            rnn_cls = GRUCell
        else:
            rnn_cls = SimpleRNNCell
            kwargs["activation"] = self.activation

1337 1338
        if direction in ["forward"]:
            is_reverse = False
1339 1340 1341 1342 1343
            cell = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = rnn_cls(hidden_size, hidden_size, **kwargs)
                self.append(RNN(cell, is_reverse, time_major))
1344
        elif direction in bidirectional_list:
1345 1346 1347 1348 1349 1350 1351 1352 1353
            cell_fw = rnn_cls(input_size, hidden_size, **kwargs)
            cell_bw = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                cell_bw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
1354
                "direction should be forward or bidirect (or bidirectional), "
1355 1356
                "received direction = {}".format(direction)
            )
1357

1358
        self.could_use_cudnn = True
1359
        self.could_use_cudnn &= len(self.parameters()) == num_layers * 4 * (
1360 1361
            2 if direction in bidirectional_list else 1
        )
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

        # Expose params as RNN's attribute, which can make it compatible when
        # replacing small ops composed rnn with cpp rnn kernel.
        # Moreover, `jit.to_static` assumes params are added by current layer
        # and wouldn't include sublayer's params in current layer, which also
        # requires these params are added to current layer for `jit.save`.
        param_names = []
        for layer in range(self.num_layers):
            for direction in range(self.num_directions):
                suffix = '_reverse' if direction == 1 else ''
                param_names.extend(['weight_ih_l{}{}', 'weight_hh_l{}{}'])
1373
                if bias_ih_attr is not False:
1374
                    param_names.append('bias_ih_l{}{}')
1375
                if bias_hh_attr is not False:
1376
                    param_names.append('bias_hh_l{}{}')
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
                param_names = [x.format(layer, suffix) for x in param_names]
        for name, param in zip(param_names, self.parameters()):
            setattr(self, name, param)

        self.flatten_parameters()

    def flatten_parameters(self):
        """
        Resets parameter data pointer to address in continuous memory block for
        cudnn usage.
        """
        if self.could_use_cudnn:
            # layer.parameters() is depth first and ordered
            # for i in layer: for j in direct: w_ih, w_hh, b_ih, b_hh
            # need to reorganize to cudnn param layout:
            # all bias following all weights
            params = self.parameters(include_sublayers=False)
            shape = [np.prod(param.shape) for param in params]
            self._all_weights = [None] * len(params)
            for i, param in enumerate(params):
1397 1398 1399 1400 1401
                offset = (
                    0
                    if i % 4 < 2
                    else (2 * self.num_layers * self.num_directions)
                )
1402 1403 1404 1405 1406 1407 1408
                layer_idx = i // 4
                self._all_weights[offset + layer_idx * 2 + i % 2] = param
            # Wrap using a list to avoid registed into params and saving, maybe
            # need a better way to handle this later. Use `create_parameter` to
            # add both to main_program and startup_program for static-graph.
            # Use Constant initializer to avoid make effect on random generator.
            self._flat_weight = [
1409 1410 1411 1412 1413
                self.create_parameter(
                    shape=[np.sum(shape)],
                    dtype=params[0].dtype,
                    default_initializer=I.Constant(0.0),
                )
1414 1415 1416 1417
            ]
            # dropout state may also can be hided and avoid saving
            # should dropout state be persistable for static-graph
            self._dropout_state = self.create_variable(
1418 1419
                dtype=core.VarDesc.VarType.UINT8
            )
Z
zhiboniu 已提交
1420
            if in_dynamic_mode():
1421
                with paddle.no_grad():
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
                    _legacy_C_ops.coalesce_tensor(
                        self._all_weights,
                        self._all_weights,
                        self._flat_weight[0],
                        "copy_data",
                        True,
                        "use_align",
                        False,
                        "dtype",
                        params[0].dtype,
                    )
1433
                    return
1434
            # for static-graph, append coalesce_tensor into startup program
1435 1436 1437
            with program_guard(
                default_startup_program(), default_startup_program()
            ):
Z
zhiboniu 已提交
1438
                with paddle.no_grad():
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
                    self._helper.append_op(
                        type="coalesce_tensor",
                        inputs={"Input": self._all_weights},
                        outputs={
                            "Output": self._all_weights,
                            "FusedOutput": self._flat_weight,
                        },
                        attrs={
                            "copy_data": True,
                            "use_align": False,
                            "dtype": params[0].dtype,
                        },
                    )
1452 1453 1454 1455 1456

    def _cudnn_impl(self, inputs, initial_states, sequence_length):
        if not self.time_major:
            inputs = paddle.tensor.transpose(inputs, [1, 0, 2])

Y
YuanRisheng 已提交
1457 1458
        if in_dygraph_mode():
            out, _, state = _C_ops.rnn(
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.dropout,
                self.num_directions == 2,
                self.input_size,
                self.hidden_size,
                self.num_layers,
                self.mode,
                0,
                not self.training,
            )
Y
YuanRisheng 已提交
1473
        elif in_dynamic_mode():
1474
            _, _, out, state = _legacy_C_ops.rnn(
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.state_components,
                'dropout_prob',
                self.dropout,
                'is_bidirec',
                self.num_directions == 2,
                'input_size',
                self.input_size,
                'hidden_size',
                self.hidden_size,
                'num_layers',
                self.num_layers,
                'mode',
                self.mode,
                'is_test',
                not self.training,
            )
1496 1497 1498 1499 1500 1501 1502
        else:
            out = self._helper.create_variable_for_type_inference(inputs.dtype)
            state = [
                self._helper.create_variable_for_type_inference(inputs.dtype)
                for i in range(self.state_components)
            ]
            reserve = self._helper.create_variable_for_type_inference(
1503 1504
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
            )
1505 1506 1507 1508 1509

            inputs = {
                'Input': inputs,
                'WeightList': self._all_weights,
                'PreState': initial_states,
1510
                'SequenceLength': sequence_length,
1511 1512 1513 1514 1515 1516 1517 1518
            }
            attrs = {
                'dropout_prob': self.dropout,
                'is_bidirec': self.num_directions == 2,
                'input_size': self.input_size,
                'hidden_size': self.hidden_size,
                'num_layers': self.num_layers,
                'mode': self.mode,
1519
                'is_test': not self.training,
1520 1521 1522 1523 1524 1525 1526 1527 1528
            }

            outputs = {
                'Out': out,
                'State': state,
                'Reserve': reserve,
                'DropoutState': self._dropout_state,
            }

1529 1530 1531
            self._helper.append_op(
                type="rnn", inputs=inputs, outputs=outputs, attrs=attrs
            )
1532

1533 1534 1535 1536 1537
        out = (
            paddle.tensor.transpose(out, [1, 0, 2])
            if not self.time_major
            else out
        )
G
Guo Sheng 已提交
1538
        return out, tuple(state) if len(state) > 1 else state[0]
1539

F
Feiyu Chan 已提交
1540 1541 1542 1543
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        dtype = inputs.dtype
        if initial_states is None:
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
            state_shape = (
                self.num_layers * self.num_directions,
                -1,
                self.hidden_size,
            )
            initial_states = tuple(
                [
                    paddle.fluid.layers.fill_constant_batch_size_like(
                        inputs, state_shape, dtype, 0, batch_index, 1
                    )
                    for _ in range(self.state_components)
                ]
            )
1557
        else:
1558 1559 1560 1561 1562 1563 1564 1565 1566
            initial_states = (
                [initial_states]
                if isinstance(initial_states, paddle.static.Variable)
                else initial_states
            )

        if self.could_use_cudnn and (
            not paddle.device.is_compiled_with_rocm() or sequence_length is None
        ):
1567 1568 1569
            # Add CPU kernel and dispatch in backend later
            return self._cudnn_impl(inputs, initial_states, sequence_length)

1570 1571 1572
        states = split_states(
            initial_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1573 1574 1575 1576
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
1577 1578 1579 1580 1581 1582
                inputs = F.dropout(
                    inputs,
                    self.dropout,
                    training=self.training,
                    mode="upscale_in_train",
                )
F
Feiyu Chan 已提交
1583 1584 1585 1586
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

1587 1588 1589
        final_states = concat_states(
            final_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1590 1591
        return outputs, final_states

1592 1593 1594 1595
    def extra_repr(self):
        main_str = '{input_size}, {hidden_size}'
        if self.num_layers != 1:
            main_str += ', num_layers={num_layers}'
1596
        if self.time_major is not False:
1597 1598 1599 1600 1601
            main_str += ', time_major={time_major}'
        if self.dropout != 0:
            main_str += ', dropout={dropout}'
        return main_str.format(**self.__dict__)

F
Feiyu Chan 已提交
1602

1603
class SimpleRNN(RNNBase):
F
Feiyu Chan 已提交
1604
    r"""
1605
    Multilayer Elman network(SimpleRNN). It takes input sequences and initial
F
Feiyu Chan 已提交
1606 1607
    states as inputs, and returns the output sequences and the final states.

1608 1609 1610
    Each layer inside the SimpleRNN maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
F
Feiyu Chan 已提交
1611 1612 1613 1614 1615
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
    and new states(:math:`h_{t}`).

    .. math::

1616
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
1617

F
Feiyu Chan 已提交
1618
        y_{t} & = h_{t}
1619

1620
    where :math:`act` is for :attr:`activation`.
1621 1622

    Using key word arguments to construct is recommended.
F
Feiyu Chan 已提交
1623

1624
    Parameters:
1625 1626 1627
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1628 1629
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1630
            outputs of forward and backward is concatenating. Defaults to "forward".
1631 1632
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1633 1634
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1635 1636
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1637
            dropout from 0 to 1. Defaults to 0.
1638
        activation (str, optional): The activation in each SimpleRNN cell. It can be
1639
            `tanh` or `relu`. Defaults to `tanh`.
1640
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1641
            `weight_ih` of each cell. Defaults to None.
1642
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1643
            `weight_hh` of each cell. Defaults to None.
1644
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1645
            `bias_ih` of each cells. Defaults to None.
1646
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1647
            `bias_hh` of each cells. Defaults to None.
1648
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1649 1650
            None). For more information, please refer to :ref:`api_guide_Name`.

1651
    Inputs:
1652
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1653 1654
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1655 1656

    Returns:
1657

1658
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1659

1660
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1661 1662 1663 1664 1665 1666

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1667

F
Feiyu Chan 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.SimpleRNN(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1680 1681 1682 1683 1684 1685
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1686 1687
    """

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1703 1704 1705 1706
        if activation == "tanh":
            mode = "RNN_TANH"
        elif activation == "relu":
            mode = "RNN_RELU"
F
Feiyu Chan 已提交
1707
        else:
1708 1709
            raise ValueError("Unknown activation '{}'".format(activation))
        self.activation = activation
1710
        super().__init__(
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
            mode,
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1723 1724


1725
class LSTM(RNNBase):
F
Feiyu Chan 已提交
1726
    r"""
1727
    Multilayer LSTM. It takes a sequence and an initial state as inputs, and
F
Feiyu Chan 已提交
1728 1729
    returns the output sequences and the final states.

1730 1731 1732 1733
    Each layer inside the LSTM maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}, c_{t-1}`) as inputs, and returns step
F
Feiyu Chan 已提交
1734 1735 1736 1737 1738
    outputs(:math:`y_{t}`) and new states(:math:`h_{t}, c_{t}`).

    .. math::

        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
1739

F
Feiyu Chan 已提交
1740
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
1741

F
Feiyu Chan 已提交
1742
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
1743 1744 1745 1746 1747 1748 1749

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
1750 1751
        y_{t} & = h_{t}

1752
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1753 1754
    multiplication operator.

1755 1756
    Using key word arguments to construct is recommended.

1757
    Parameters:
1758 1759 1760
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1761 1762
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1763
            outputs of forward and backward is concatenating. Defaults to "forward".
1764 1765
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1766 1767
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1768 1769
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1770
            dropout from 0 to 1. Defaults to 0.
1771
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1772
            `weight_ih` of each cell. Default: None.
1773
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1774
            `weight_hh` of each cell. Default: None.
1775
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1776
            `bias_ih` of each cells. Default: None.
1777
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1778
            `bias_hh` of each cells. Default: None.
1779
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1780 1781 1782
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1783
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1784
        - **initial_states** (list|tuple, optional): the initial state, a list/tuple of (h, c), the shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
1785
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1786 1787

    Returns:
1788

1789
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, If `time_major` is False, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1790

1791
        - **final_states** (tuple): the final state, a tuple of two tensors, h and c. The shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1792 1793 1794 1795 1796 1797

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, swith shape `[hidden_size]`.
1798

F
Feiyu Chan 已提交
1799
    Examples:
1800

F
Feiyu Chan 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
        .. code-block:: python

            import paddle

            rnn = paddle.nn.LSTM(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            prev_c = paddle.randn((2, 4, 32))
            y, (h, c) = rnn(x, (prev_h, prev_c))

1812 1813 1814 1815 1816 1817 1818 1819
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,23,32]
            #[2,4,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1820 1821
    """

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1836
        super().__init__(
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
            "LSTM",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1849 1850


1851
class GRU(RNNBase):
F
Feiyu Chan 已提交
1852
    r"""
1853
    Multilayer GRU. It takes input sequencse and initial states as inputs, and
F
Feiyu Chan 已提交
1854 1855
    returns the output sequences and the final states.

1856 1857 1858 1859
    Each layer inside the GRU maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
F
Feiyu Chan 已提交
1860 1861 1862 1863
    and new states(:math:`h_{t}`).

    .. math::

1864
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
1865

1866
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
1867

1868
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
1869 1870 1871

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
1872 1873
        y_{t} & = h_{t}

1874
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1875 1876
    multiplication operator.

1877 1878
    Using key word arguments to construct is recommended.

1879
    Parameters:
1880 1881 1882
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1883 1884
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1885
            outputs of forward and backward is concatenating. Defaults to "forward".
1886 1887
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1888 1889
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1890 1891
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1892
            dropout from 0 to 1. Defaults to 0.
1893
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1894
            `weight_ih` of each cell. Default: None.
1895
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1896
            `weight_hh` of each cell. Default: None.
1897
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1898
            `bias_ih` of each cells. Default: None.
1899
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1900
            `bias_hh` of each cells. Default: None.
1901
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1902 1903 1904
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1905
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1906 1907
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1908 1909

    Returns:
1910

1911
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1912

1913
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1914 1915 1916 1917 1918 1919

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1920

F
Feiyu Chan 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.GRU(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1933 1934 1935 1936 1937 1938
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1939 1940
    """

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1955
        super().__init__(
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
            "GRU",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )