rnn.py 64.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Feiyu Chan 已提交
15 16 17 18 19 20 21 22 23
import copy
import collections
import itertools
import six
import math
import sys
import warnings
from functools import partial, reduce

24
import numpy as np
F
Feiyu Chan 已提交
25
import paddle
26
import paddle.fluid as fluid
F
Feiyu Chan 已提交
27
from paddle import framework
28
from paddle.device import get_device, get_cudnn_version
F
Feiyu Chan 已提交
29 30
from paddle.nn import functional as F
from paddle.nn import initializer as I
Z
zhiboniu 已提交
31
from paddle.nn import Layer, LayerList
F
Feiyu Chan 已提交
32 33 34
from paddle.fluid.layers import utils
from paddle.fluid.layers.utils import map_structure, flatten, pack_sequence_as
from paddle.fluid.data_feeder import convert_dtype
35
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
36
from paddle import in_dynamic_mode
37
from paddle.fluid.framework import in_dygraph_mode
Z
zhiboniu 已提交
38 39 40
from paddle.framework import core
from paddle.static import default_startup_program
from paddle.static import program_guard
41 42 43 44
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
Z
zhiboniu 已提交
45

46 47
__all__ = []

F
Feiyu Chan 已提交
48 49 50 51 52 53

def split_states(states, bidirectional=False, state_components=1):
    r"""
    Split states of RNN network into possibly nested list or tuple of
    states of each RNN cells of the RNN network.

54
    Parameters:
F
Feiyu Chan 已提交
55 56
        states (Tensor|tuple|list): the concatenated states for RNN network.
            When `state_components` is 1, states in a Tensor with shape
57 58 59 60 61 62 63 64 65 66 67
            `(L*D, N, C)` where `L` is the number of layers of the RNN
            network, `D` is the number of directions of the RNN network(1
            for unidirectional RNNs and 2 for bidirectional RNNs), `N` is
            the batch size of the input to the RNN network, `C` is the
            hidden size of the RNN network.

            When `state_components` is larger than 1, `states` is a tuple of
            `state_components` Tensors that meet the requirements described
            above.

            For SimpleRNNs and GRUs, `state_components` is 1, and for LSTMs,
F
Feiyu Chan 已提交
68
            `state_components` is 2.
69
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
70 71 72
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
73

F
Feiyu Chan 已提交
74
    Returns:
75 76 77
        A nested list or tuple of RNN cell states.
        If `bidirectional` is True, it can be indexed twice to get an RNN
        cell state. The first index indicates the layer, the second index
F
Feiyu Chan 已提交
78 79 80 81
        indicates the direction.
        If `bidirectional` is False, it can be indexed once to get an RNN
        cell state. The index indicates the layer.
        Note that if `state_components` is larger than 1, an RNN cell state
82
        can be indexed one more time to get a tensor of shape(N, C), where
F
Feiyu Chan 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        `N` is the batch size of the input to the RNN cell, and `C` is the
        hidden size of the RNN cell.
    """
    if state_components == 1:
        states = paddle.unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([paddle.unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    r"""
104
    Concatenate a possibly nested list or tuple of RNN cell states into a
F
Feiyu Chan 已提交
105 106
    compact form.

107
    Parameters:
108 109 110 111
        states (list|tuple): a possibly nested list or tuple of RNN cell
            states.
            If `bidirectional` is True, it can be indexed twice to get an
            RNN cell state. The first index indicates the layer, the second
F
Feiyu Chan 已提交
112 113 114
            index indicates the direction.
            If `bidirectional` is False, it can be indexed once to get an RNN
            cell state. The index indicates the layer.
115 116 117 118 119
            Note that if `state_components` is larger than 1, an RNN cell
            state can be indexed one more time to get a tensor of shape(N, C),
            where `N` is the batch size of the input to the RNN cell, and
            `C` is the hidden size of the RNN cell.
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
120 121 122
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
123

F
Feiyu Chan 已提交
124 125 126
    Returns:
        Concatenated states for RNN network.
        When `state_components` is 1, states in a Tensor with shape
127 128 129 130
        `(L\*D, N, C)` where `L` is the number of layers of the RNN
        network, `D` is the number of directions of the RNN network(1 for
        unidirectional RNNs and 2 for bidirectional RNNs), `N` is the batch
        size of the input to the RNN network, `C` is the hidden size of the
F
Feiyu Chan 已提交
131
        RNN network.
132

F
Feiyu Chan 已提交
133 134 135 136 137 138 139 140
    """
    if state_components == 1:
        return paddle.stack(flatten(states))
    else:
        states = flatten(states)
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
141
        return tuple([paddle.stack(item) for item in componnets])
F
Feiyu Chan 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159


class RNNCellBase(Layer):
    r"""
    RNNCellBase is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

    def get_initial_states(self,
                           batch_ref,
                           shape=None,
                           dtype=None,
                           init_value=0.,
                           batch_dim_idx=0):
        r"""
        Generate initialized states according to provided shape, data type and
        value.
160 161

        Parameters:
162 163 164
            batch_ref (Tensor): A tensor, which shape would be used to
                determine the batch size, which is used to generate initial
                states. For `batch_ref`'s shape d, `d[batch_dim_idx]` is
F
Feiyu Chan 已提交
165
                treated as batch size.
166 167 168 169
            shape (list|tuple, optional): A (possibly nested structure of) shape[s],
                where a shape is a list/tuple of integer. `-1` (for batch size)
                will be automatically prepended if a shape does not starts with
                it. If None, property `state_shape` will be used. Defaults to
F
Feiyu Chan 已提交
170
                None.
171 172 173 174 175
            dtype (str|list|tuple, optional): A (possibly nested structure of)
                data type[s]. The structure must be same as that of `shape`,
                except when all tensors' in states has the same data type, a
                single data type can be used. If None and property `cell.state_shape`
                is not available, current default floating type of paddle is
F
Feiyu Chan 已提交
176
                used. Defaults to None.
177
            init_value (float, optional): A float value used to initialize states.
F
Feiyu Chan 已提交
178
                Defaults to 0.
179
            batch_dim_idx (int, optional): An integer indicating which
F
Feiyu Chan 已提交
180
                dimension of the of `batch_ref` represents batch. Defaults to 0.
181

F
Feiyu Chan 已提交
182
        Returns:
183
            init_states (Tensor|tuple|list): tensor of the provided shape and
F
Feiyu Chan 已提交
184 185 186 187 188 189 190 191 192
                dtype, or list of tensors that each satisfies the requirements,
                packed in the same structure as `shape` and `type` does.
        """
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
            """For shape, list/tuple of integer is the finest-grained objection"""
            if (isinstance(seq, list) or isinstance(seq, tuple)):
193 194
                if reduce(lambda flag, x: isinstance(x, int) and flag, seq,
                          True):
F
Feiyu Chan 已提交
195 196 197 198
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
199 200
            return (isinstance(seq, Sequence)
                    and not isinstance(seq, six.string_types))
F
Feiyu Chan 已提交
201 202

        class Shape(object):
203

F
Feiyu Chan 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:
            states_dtypes = framework.get_default_dtype()
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
224 225 226 227 228 229 230
            lambda shape, dtype: paddle.fluid.layers.
            fill_constant_batch_size_like(input=batch_ref,
                                          shape=shape.shape,
                                          dtype=dtype,
                                          value=init_value,
                                          input_dim_idx=batch_dim_idx),
            states_shapes, states_dtypes)
F
Feiyu Chan 已提交
231 232 233 234 235 236 237
        return init_states

    @property
    def state_shape(self):
        r"""
        Abstract method (property).
        Used to initialize states.
238
        A (possiblely nested structure of) shape[s], where a shape is a
F
Feiyu Chan 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it).
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
            "Please add implementaion for `state_shape` in the used cell.")

    @property
    def state_dtype(self):
        r"""
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) data types[s]. The structure must be
        same as that of `shape`, except when all tensors' in states has the same
        data type, a signle data type can be used.
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
            "Please add implementaion for `state_dtype` in the used cell.")


class SimpleRNNCell(RNNCellBase):
    r"""
266
    Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it
F
Feiyu Chan 已提交
267 268 269 270 271
    computes the outputs and updates states.

    The formula used is as follows:

    .. math::
272
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
273

F
Feiyu Chan 已提交
274
        y_{t} & = h_{t}
275

276
    where :math:`act` is for :attr:`activation`.
F
Feiyu Chan 已提交
277

278
    Please refer to `Finding Structure in Time
F
Feiyu Chan 已提交
279
    <https://crl.ucsd.edu/~elman/Papers/fsit.pdf>`_ for more details.
280

281
    Parameters:
F
Feiyu Chan 已提交
282 283
        input_size (int): The input size.
        hidden_size (int): The hidden size.
284
        activation (str, optional): The activation in the SimpleRNN cell.
F
Feiyu Chan 已提交
285
            It can be `tanh` or `relu`. Defaults to `tanh`.
286
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
287
            :math:`weight_ih`. Default: None.
288
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
289
            :math:`weight_hh`. Default: None.
290
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
291
            :math:`bias_ih`. Default: None.
292
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
293
            :math:`bias_hh`. Default: None.
294
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
295 296
            None). For more information, please refer to :ref:`api_guide_Name`.

297 298 299 300 301
    Variables:
        - **weight_ih** (Parameter): shape (hidden_size, input_size), input to hidden weight, corresponding to :math:`W_{ih}` in the formula.
        - **weight_hh** (Parameter): shape (hidden_size, hidden_size), hidden to hidden weight, corresponding to :math:`W_{hh}` in the formula.
        - **bias_ih** (Parameter): shape (hidden_size, ), input to hidden bias, corresponding to :math:`b_{ih}` in the formula.
        - **bias_hh** (Parameter): shape (hidden_size, ), hidden to hidden bias, corresponding to :math:`b_{hh}` in the formula.
302

F
Feiyu Chan 已提交
303
    Inputs:
304 305
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_{t}` in the formula.
        - **states** (Tensor, optional): shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
306 307

    Returns:
308 309
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
310

F
Feiyu Chan 已提交
311
    Notes:
312
        All the weights and bias are initialized with `Uniform(-std, std)` by default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
313 314 315 316 317 318 319 320 321 322 323 324

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            y, h = cell(x, prev_h)
325 326 327
            print(y.shape)

            #[4,32]
F
Feiyu Chan 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340

    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 activation="tanh",
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
        super(SimpleRNNCell, self).__init__()
341 342
        if hidden_size <= 0:
            raise ValueError(
343 344
                "hidden_size of {} must be greater than 0, but now equals to {}"
                .format(self.__class__.__name__, hidden_size))
F
Feiyu Chan 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (hidden_size, input_size),
            weight_ih_attr,
            default_initializer=I.Uniform(-std, std))
        self.weight_hh = self.create_parameter(
            (hidden_size, hidden_size),
            weight_hh_attr,
            default_initializer=I.Uniform(-std, std))
        self.bias_ih = self.create_parameter(
            (hidden_size, ),
            bias_ih_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))
        self.bias_hh = self.create_parameter(
            (hidden_size, ),
            bias_hh_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))

        self.input_size = input_size
        self.hidden_size = hidden_size
        if activation not in ["tanh", "relu"]:
            raise ValueError(
                "activation for SimpleRNNCell should be tanh or relu, "
                "but get {}".format(activation))
        self.activation = activation
        self._activation_fn = paddle.tanh \
            if activation == "tanh" \
            else F.relu

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_h = states
        i2h = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            i2h += self.bias_ih
        h2h = paddle.matmul(pre_h, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h2h += self.bias_hh
        h = self._activation_fn(i2h + h2h)
        return h, h

    @property
    def state_shape(self):
        return (self.hidden_size, )

393 394
    def extra_repr(self):
        s = '{input_size}, {hidden_size}'
395
        if self.activation != "tanh":
396 397 398
            s += ', activation={activation}'
        return s.format(**self.__dict__)

F
Feiyu Chan 已提交
399 400 401

class LSTMCell(RNNCellBase):
    r"""
402
    Long-Short Term Memory(LSTM) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
403 404 405 406 407 408
    it computes the outputs and updates states.

    The formula used is as follows:

    .. math::
        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
409

F
Feiyu Chan 已提交
410
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
411

F
Feiyu Chan 已提交
412
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
413 414 415 416 417 418 419

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
420 421
        y_{t} & = h_{t}

422
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
423 424 425 426 427
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

428
    Parameters:
F
Feiyu Chan 已提交
429 430
        input_size (int): The input size.
        hidden_size (int): The hidden size.
431
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
432
            `weight_ih`. Default: None.
433
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
434
            `weight_hh`. Default: None.
435
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
436
            `bias_ih`. Default: None.
437
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
438
            `bias_hh`. Default: None.
439
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
440 441
            None). For more information, please refer to :ref:`api_guide_Name`.

442 443 444 445 446
    Variables:
        - **weight_ih** (Parameter): shape (4 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ii}, W_{if}, W_{ig}, W_{io}` in the formula.
        - **weight_hh** (Parameter): shape (4 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hi}, W_{hf}, W_{hg}, W_{ho}` in the formula.
        - **bias_ih** (Parameter): shape (4 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ii}, b_{if}, b_{ig}, b_{io}` in the formula.
        - **bias_hh** (Parameter): shape (4 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hi}, b_{hf}, b_{hg}, b_{ho}` in the formula.
F
Feiyu Chan 已提交
447 448

    Inputs:
449
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_t` in the formula.
450
        - **states** (list|tuple, optional): a list/tuple of two tensors, each of shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}, c_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
451 452

    Returns:
453 454
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (tuple): a tuple of two tensors, each of shape `[batch_size, hidden_size]`, the new hidden states, corresponding to :math:`h_{t}, c_{t}` in the formula.
F
Feiyu Chan 已提交
455 456

    Notes:
457 458
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
459
        information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))
            prev_c = paddle.randn((4, 32))

            cell = paddle.nn.LSTMCell(16, 32)
            y, (h, c) = cell(x, (prev_h, prev_c))

474 475 476 477 478 479 480 481
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,32]
            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
482 483 484 485 486 487 488 489 490 491 492
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
        super(LSTMCell, self).__init__()
493 494
        if hidden_size <= 0:
            raise ValueError(
495 496
                "hidden_size of {} must be greater than 0, but now equals to {}"
                .format(self.__class__.__name__, hidden_size))
F
Feiyu Chan 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (4 * hidden_size, input_size),
            weight_ih_attr,
            default_initializer=I.Uniform(-std, std))
        self.weight_hh = self.create_parameter(
            (4 * hidden_size, hidden_size),
            weight_hh_attr,
            default_initializer=I.Uniform(-std, std))
        self.bias_ih = self.create_parameter(
            (4 * hidden_size, ),
            bias_ih_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))
        self.bias_hh = self.create_parameter(
            (4 * hidden_size, ),
            bias_hh_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_hidden, pre_cell = states
        gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = paddle.split(gates, num_or_sections=4, axis=-1)

        i = self._gate_activation(chunked_gates[0])
        f = self._gate_activation(chunked_gates[1])
        o = self._gate_activation(chunked_gates[3])
        c = f * pre_cell + i * self._activation(chunked_gates[2])
        h = o * self._activation(c)

        return h, (h, c)

    @property
    def state_shape(self):
        r"""
546 547 548
        The `state_shape` of LSTMCell is a tuple with two shapes:
        `((hidden_size, ), (hidden_size,))`. (-1 for batch size would be
        automatically inserted into shape). These two shapes correspond
F
Feiyu Chan 已提交
549 550 551 552
        to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
        return ((self.hidden_size, ), (self.hidden_size, ))

553 554 555
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
556 557 558

class GRUCell(RNNCellBase):
    r"""
559
    Gated Recurrent Unit (GRU) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
560 561 562 563
    it computes the outputs and updates states.

    The formula for GRU used is as follows:

564
    ..  math::
F
Feiyu Chan 已提交
565

566
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
567

568
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
569

570
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
571 572 573

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
574
        y_{t} & = h_{t}
575 576

    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
577 578 579 580 581 582
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

    Parameters:
583
        input_size (int): The input size.
F
Feiyu Chan 已提交
584
        hidden_size (int): The hidden size.
585
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
586
            `weight_ih`. Default: None.
587
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
588
            `weight_hh`. Default: None.
589
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
590
            `bias_ih`. Default: None.
591
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
592
            `bias_hh`. Default: None.
593
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
594 595
            None). For more information, please refer to :ref:`api_guide_Name`.

596 597 598 599 600
    Variables:
        - **weight_ih** (Parameter): shape (3 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ir}, W_{iz}, W_{ic}` in the formula.
        - **weight_hh** (Parameter): shape (3 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hr}, W_{hz}, W_{hc}` in the formula.
        - **bias_ih** (Parameter): shape (3 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ir}, b_{iz}, b_{ic}` in the formula.
        - **bias_hh** (Parameter): shape (3 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hr}, b_{hz}, b_{hc}` in the formula.
F
Feiyu Chan 已提交
601 602

    Inputs:
603 604
        - **inputs** (Tensor): A tensor with shape `[batch_size, input_size]`, corresponding to :math:`x_t` in the formula.
        - **states** (Tensor): A tensor with shape `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}` in the formula.
F
Feiyu Chan 已提交
605 606

    Returns:
607 608
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
609

F
Feiyu Chan 已提交
610
    Notes:
611 612
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
613
        information about parameter initialization, please refer to s:ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.GRUCell(16, 32)
            y, h = cell(x, prev_h)

627 628 629 630 631 632
            print(y.shape)
            print(h.shape)

            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
633 634 635 636 637 638 639 640 641 642 643
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
        super(GRUCell, self).__init__()
644 645
        if hidden_size <= 0:
            raise ValueError(
646 647
                "hidden_size of {} must be greater than 0, but now equals to {}"
                .format(self.__class__.__name__, hidden_size))
F
Feiyu Chan 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (3 * hidden_size, input_size),
            weight_ih_attr,
            default_initializer=I.Uniform(-std, std))
        self.weight_hh = self.create_parameter(
            (3 * hidden_size, hidden_size),
            weight_hh_attr,
            default_initializer=I.Uniform(-std, std))
        self.bias_ih = self.create_parameter(
            (3 * hidden_size, ),
            bias_ih_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))
        self.bias_hh = self.create_parameter(
            (3 * hidden_size, ),
            bias_hh_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)

        pre_hidden = states
        x_gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            x_gates = x_gates + self.bias_ih
        h_gates = paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h_gates = h_gates + self.bias_hh

        x_r, x_z, x_c = paddle.split(x_gates, num_or_sections=3, axis=1)
        h_r, h_z, h_c = paddle.split(h_gates, num_or_sections=3, axis=1)

        r = self._gate_activation(x_r + h_r)
        z = self._gate_activation(x_z + h_z)
        c = self._activation(x_c + r * h_c)  # apply reset gate after mm
        h = (pre_hidden - c) * z + c

        return h, h

    @property
    def state_shape(self):
        r"""
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to the shape of :math:`h_{t-1}`.
        """
        return (self.hidden_size, )

704 705 706
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
707 708 709

class RNN(Layer):
    r"""
710 711
    Wrapper for RNN, which creates a recurrent neural network with an RNN cell.
    It performs :code:`cell.forward()` repeatedly until reaches to the maximum
F
Feiyu Chan 已提交
712 713
    length of `inputs`.

714
    Parameters:
F
Feiyu Chan 已提交
715 716 717 718 719 720 721
        cell(RNNCellBase): An instance of `RNNCellBase`.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
722 723 724
        - **inputs** (Tensor): A (possibly nested structure of) tensor[s]. The input sequences. If time major is False, the shape is `[batch_size, time_steps, input_size]`. If time major is True, the shape is `[time_steps, batch_size, input_size]` where `input_size` is the input size of the cell.
        - **initial_states** (Tensor|list|tuple, optional): Tensor of a possibly nested structure of tensors, representing the initial state for the rnn cell. If not provided, `cell.get_initial_states` would be called to produce the initial states. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None.If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
725
        - **kwargs**: Additional keyword arguments to pass to `forward` of the cell.
F
Feiyu Chan 已提交
726 727

    Returns:
728 729
        - **outputs** (Tensor|list|tuple): the output sequences. If `time_major` is True, the shape is `[time_steps, batch_size, hidden_size]`, else `[batch_size, time_steps, hidden_size]`.
        - **final_states** (Tensor|list|tuple): final states of the cell. Tensor or a possibly nested structure of tensors which has the same structure with intial state. Each tensor in final states has the same shape and dtype as the corresponding tensor in initial states.
730

F
Feiyu Chan 已提交
731 732
    Notes:
        This class is a low level API for wrapping rnn cell into a RNN network.
733 734
        Users should take care of the state of the cell. If `initial_states` is
        passed to the `forward` method, make sure that it satisfies the
F
Feiyu Chan 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
        requirements of the cell.

    Examples:

        .. code-block:: python

            import paddle

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            rnn = paddle.nn.RNN(cell)
            outputs, final_states = rnn(inputs, prev_h)

750 751 752 753 754 755
            print(outputs.shape)
            print(final_states.shape)

            #[4,23,32]
            #[4,32]

F
Feiyu Chan 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
    """

    def __init__(self, cell, is_reverse=False, time_major=False):
        super(RNN, self).__init__()
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

    def forward(self,
                inputs,
                initial_states=None,
                sequence_length=None,
                **kwargs):
772 773 774 775 776 777 778 779
        final_outputs, final_states = paddle.fluid.layers.rnn(
            self.cell,
            inputs,
            initial_states=initial_states,
            sequence_length=sequence_length,
            time_major=self.time_major,
            is_reverse=self.is_reverse,
            **kwargs)
F
Feiyu Chan 已提交
780 781 782 783 784
        return final_outputs, final_states


class BiRNN(Layer):
    r"""
785 786 787
    Wrapper for bidirectional RNN, which builds a bidiretional RNN given the
    forward rnn cell and backward rnn cell. A BiRNN applies forward RNN and
    backward RNN with coresponding cells separately and concats the outputs
F
Feiyu Chan 已提交
788 789
    along the last axis.

790
    Parameters:
F
Feiyu Chan 已提交
791 792 793 794 795 796
        cell_fw (RNNCellBase): A RNNCellBase instance used for forward RNN.
        cell_bw (RNNCellBase): A RNNCellBase instance used for backward RNN.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
797 798 799 800
        - **inputs** (Tensor): the input sequences of both RNN. If time_major is True, the shape of is `[time_steps, batch_size, input_size]`, else the shape is `[batch_size, time_steps, input_size]`, where input_size is the input size of both cells.
        - **initial_states** (list|tuple, optional): A tuple/list of the initial states of the forward cell and backward cell. Defaults to None. If not provided, `cell.get_initial_states` would be called to produce the initial states for each cell. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
        - **kwargs**: Additional keyword arguments. Arguments passed to `forward` for each cell.
F
Feiyu Chan 已提交
801 802

    Outputs:
803
        - **outputs** (Tensor): the outputs of the bidirectional RNN. It is the concatenation of the outputs from the forward RNN and backward RNN along the last axis. If time major is True, the shape is `[time_steps, batch_size, size]`, else the shape is `[batch_size, time_steps, size]`, where size is `cell_fw.hidden_size + cell_bw.hidden_size`.
804
        - **final_states** (tuple): A tuple of the final states of the forward cell and backward cell.
F
Feiyu Chan 已提交
805 806

    Notes:
807 808 809
        This class is a low level API for wrapping rnn cells into a BiRNN
        network. Users should take care of the states of the cells.
        If `initial_states` is passed to the `forward` method, make sure that
F
Feiyu Chan 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
        it satisfies the requirements of the cells.

    Examples:

        .. code-block:: python

            import paddle

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)
            rnn = paddle.nn.BiRNN(cell_fw, cell_bw)

            inputs = paddle.rand((2, 23, 16))
            outputs, final_states = rnn(inputs)

825 826 827 828 829 830
            print(outputs.shape)
            print(final_states[0][0].shape,len(final_states),len(final_states[0]))

            #[4,23,64]
            #[2,32] 2 2

F
Feiyu Chan 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
    """

    def __init__(self, cell_fw, cell_bw, time_major=False):
        super(BiRNN, self).__init__()
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        if cell_fw.input_size != cell_bw.input_size:
            raise ValueError("input size of forward cell({}) does not equals"
                             "that of backward cell({})".format(
                                 cell_fw.input_size, cell_bw.input_size))
        for cell in [self.cell_fw, self.cell_bw]:
            if not hasattr(cell, "call"):
                # for non-dygraph mode, `rnn` api uses cell.call
                cell.call = cell.forward
        self.time_major = time_major

    def forward(self,
                inputs,
                initial_states=None,
                sequence_length=None,
                **kwargs):
        if isinstance(initial_states, (list, tuple)):
            assert len(initial_states) == 2, \
                "length of initial_states should be 2 when it is a list/tuple"

856 857 858
        outputs, final_states = paddle.fluid.layers.birnn(
            self.cell_fw, self.cell_bw, inputs, initial_states, sequence_length,
            self.time_major, **kwargs)
F
Feiyu Chan 已提交
859 860 861
        return outputs, final_states


862
class RNNBase(LayerList):
F
Feiyu Chan 已提交
863
    r"""
864 865
    RNNBase class for RNN networks. It provides `forward`, `flatten_parameters`
    and other common methods for SimpleRNN, LSTM and GRU.
F
Feiyu Chan 已提交
866 867
    """

868 869 870 871 872 873 874 875 876 877 878 879 880
    def __init__(self,
                 mode,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
                 dropout=0.,
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None):
        super(RNNBase, self).__init__()
881
        bidirectional_list = ["bidirectional", "bidirect"]
882 883 884 885
        self.mode = mode
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
886
        self.num_directions = 2 if direction in bidirectional_list else 1
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2 if mode == "LSTM" else 1

        kwargs = {
            "weight_ih_attr": weight_ih_attr,
            "weight_hh_attr": weight_hh_attr,
            "bias_ih_attr": bias_ih_attr,
            "bias_hh_attr": bias_hh_attr
        }

        if mode == "LSTM":
            rnn_cls = LSTMCell
        elif mode == "GRU":
            rnn_cls = GRUCell
        else:
            rnn_cls = SimpleRNNCell
            kwargs["activation"] = self.activation

906 907
        if direction in ["forward"]:
            is_reverse = False
908 909 910 911 912
            cell = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = rnn_cls(hidden_size, hidden_size, **kwargs)
                self.append(RNN(cell, is_reverse, time_major))
913
        elif direction in bidirectional_list:
914 915 916 917 918 919 920 921 922
            cell_fw = rnn_cls(input_size, hidden_size, **kwargs)
            cell_bw = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                cell_bw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
923
                "direction should be forward or bidirect (or bidirectional), "
924 925
                "received direction = {}".format(direction))

926
        self.could_use_cudnn = True
927
        self.could_use_cudnn &= len(self.parameters()) == num_layers * 4 * (
928
            2 if direction in bidirectional_list else 1)
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

        # Expose params as RNN's attribute, which can make it compatible when
        # replacing small ops composed rnn with cpp rnn kernel.
        # Moreover, `jit.to_static` assumes params are added by current layer
        # and wouldn't include sublayer's params in current layer, which also
        # requires these params are added to current layer for `jit.save`.
        param_names = []
        for layer in range(self.num_layers):
            for direction in range(self.num_directions):
                suffix = '_reverse' if direction == 1 else ''
                param_names.extend(['weight_ih_l{}{}', 'weight_hh_l{}{}'])
                if bias_ih_attr != False: param_names.append('bias_ih_l{}{}')
                if bias_hh_attr != False: param_names.append('bias_hh_l{}{}')
                param_names = [x.format(layer, suffix) for x in param_names]
        for name, param in zip(param_names, self.parameters()):
            setattr(self, name, param)

        self.flatten_parameters()

    def flatten_parameters(self):
        """
        Resets parameter data pointer to address in continuous memory block for
        cudnn usage.
        """
        if self.could_use_cudnn:
            # layer.parameters() is depth first and ordered
            # for i in layer: for j in direct: w_ih, w_hh, b_ih, b_hh
            # need to reorganize to cudnn param layout:
            # all bias following all weights
            params = self.parameters(include_sublayers=False)
            shape = [np.prod(param.shape) for param in params]
            self._all_weights = [None] * len(params)
            for i, param in enumerate(params):
                offset = 0 if i % 4 < 2 else (2 * self.num_layers *
                                              self.num_directions)
                layer_idx = i // 4
                self._all_weights[offset + layer_idx * 2 + i % 2] = param
            # Wrap using a list to avoid registed into params and saving, maybe
            # need a better way to handle this later. Use `create_parameter` to
            # add both to main_program and startup_program for static-graph.
            # Use Constant initializer to avoid make effect on random generator.
            self._flat_weight = [
971 972 973
                self.create_parameter(shape=[np.sum(shape)],
                                      dtype=params[0].dtype,
                                      default_initializer=I.Constant(0.0))
974 975 976 977
            ]
            # dropout state may also can be hided and avoid saving
            # should dropout state be persistable for static-graph
            self._dropout_state = self.create_variable(
Z
zhiboniu 已提交
978 979
                dtype=core.VarDesc.VarType.UINT8)
            if in_dynamic_mode():
980
                with paddle.no_grad():
981 982 983 984 985 986
                    _legacy_C_ops.coalesce_tensor(self._all_weights,
                                                  self._all_weights,
                                                  self._flat_weight[0],
                                                  "copy_data", True,
                                                  "use_align", False, "dtype",
                                                  params[0].dtype)
987
                    return
988
            # for static-graph, append coalesce_tensor into startup program
Z
zhiboniu 已提交
989 990
            with program_guard(default_startup_program(),
                               default_startup_program()):
Z
zhiboniu 已提交
991
                with paddle.no_grad():
992 993 994 995 996 997 998 999 1000 1001 1002
                    self._helper.append_op(type="coalesce_tensor",
                                           inputs={"Input": self._all_weights},
                                           outputs={
                                               "Output": self._all_weights,
                                               "FusedOutput": self._flat_weight
                                           },
                                           attrs={
                                               "copy_data": True,
                                               "use_align": False,
                                               "dtype": params[0].dtype
                                           })
1003 1004 1005 1006 1007

    def _cudnn_impl(self, inputs, initial_states, sequence_length):
        if not self.time_major:
            inputs = paddle.tensor.transpose(inputs, [1, 0, 2])

Y
YuanRisheng 已提交
1008 1009 1010 1011 1012 1013 1014
        if in_dygraph_mode():
            out, _, state = _C_ops.rnn(
                inputs, initial_states, self._all_weights, sequence_length,
                self._dropout_state, self.dropout, self.num_directions == 2,
                self.input_size, self.hidden_size, self.num_layers, self.mode,
                0, not self.training)
        elif in_dynamic_mode():
1015
            _, _, out, state = _legacy_C_ops.rnn(
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
                inputs, initial_states, self._all_weights, sequence_length,
                self._dropout_state, self.state_components, 'dropout_prob',
                self.dropout, 'is_bidirec', self.num_directions == 2,
                'input_size', self.input_size, 'hidden_size', self.hidden_size,
                'num_layers', self.num_layers, 'mode', self.mode, 'is_test',
                not self.training)
        else:
            out = self._helper.create_variable_for_type_inference(inputs.dtype)
            state = [
                self._helper.create_variable_for_type_inference(inputs.dtype)
                for i in range(self.state_components)
            ]
            reserve = self._helper.create_variable_for_type_inference(
Z
zhiboniu 已提交
1029
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

            inputs = {
                'Input': inputs,
                'WeightList': self._all_weights,
                'PreState': initial_states,
                'SequenceLength': sequence_length
            }
            attrs = {
                'dropout_prob': self.dropout,
                'is_bidirec': self.num_directions == 2,
                'input_size': self.input_size,
                'hidden_size': self.hidden_size,
                'num_layers': self.num_layers,
                'mode': self.mode,
                'is_test': not self.training
            }

            outputs = {
                'Out': out,
                'State': state,
                'Reserve': reserve,
                'DropoutState': self._dropout_state,
            }

1054 1055 1056 1057
            self._helper.append_op(type="rnn",
                                   inputs=inputs,
                                   outputs=outputs,
                                   attrs=attrs)
1058 1059 1060

        out = paddle.tensor.transpose(out,
                                      [1, 0, 2]) if not self.time_major else out
G
Guo Sheng 已提交
1061
        return out, tuple(state) if len(state) > 1 else state[0]
1062

F
Feiyu Chan 已提交
1063 1064 1065 1066 1067 1068
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        dtype = inputs.dtype
        if initial_states is None:
            state_shape = (self.num_layers * self.num_directions, -1,
                           self.hidden_size)
1069 1070
            initial_states = tuple([
                paddle.fluid.layers.fill_constant_batch_size_like(
F
Feiyu Chan 已提交
1071
                    inputs, state_shape, dtype, 0, batch_index, 1)
1072 1073 1074 1075
                for _ in range(self.state_components)
            ])
        else:
            initial_states = [initial_states] if isinstance(
Z
zhiboniu 已提交
1076
                initial_states, paddle.static.Variable) else initial_states
F
Feiyu Chan 已提交
1077

1078 1079
        if self.could_use_cudnn and (not paddle.device.is_compiled_with_rocm()
                                     or sequence_length is None):
1080 1081 1082
            # Add CPU kernel and dispatch in backend later
            return self._cudnn_impl(inputs, initial_states, sequence_length)

F
Feiyu Chan 已提交
1083 1084 1085 1086 1087 1088
        states = split_states(initial_states, self.num_directions == 2,
                              self.state_components)
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
1089 1090 1091 1092
                inputs = F.dropout(inputs,
                                   self.dropout,
                                   training=self.training,
                                   mode="upscale_in_train")
F
Feiyu Chan 已提交
1093 1094 1095 1096 1097 1098 1099 1100
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

        final_states = concat_states(final_states, self.num_directions == 2,
                                     self.state_components)
        return outputs, final_states

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
    def extra_repr(self):
        main_str = '{input_size}, {hidden_size}'
        if self.num_layers != 1:
            main_str += ', num_layers={num_layers}'
        if self.time_major != False:
            main_str += ', time_major={time_major}'
        if self.dropout != 0:
            main_str += ', dropout={dropout}'
        return main_str.format(**self.__dict__)

F
Feiyu Chan 已提交
1111

1112
class SimpleRNN(RNNBase):
F
Feiyu Chan 已提交
1113
    r"""
1114
    Multilayer Elman network(SimpleRNN). It takes input sequences and initial
F
Feiyu Chan 已提交
1115 1116
    states as inputs, and returns the output sequences and the final states.

1117 1118 1119
    Each layer inside the SimpleRNN maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
F
Feiyu Chan 已提交
1120 1121 1122 1123 1124
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
    and new states(:math:`h_{t}`).

    .. math::

1125
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
1126

F
Feiyu Chan 已提交
1127
        y_{t} & = h_{t}
1128

1129
    where :math:`act` is for :attr:`activation`.
1130 1131

    Using key word arguments to construct is recommended.
F
Feiyu Chan 已提交
1132

1133
    Parameters:
1134 1135 1136
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1137 1138
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1139
            outputs of forward and backward is concatenating. Defaults to "forward".
1140 1141
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1142 1143
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1144 1145
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1146
            dropout from 0 to 1. Defaults to 0.
1147
        activation (str, optional): The activation in each SimpleRNN cell. It can be
1148
            `tanh` or `relu`. Defaults to `tanh`.
1149
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1150
            `weight_ih` of each cell. Defaults to None.
1151
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1152
            `weight_hh` of each cell. Defaults to None.
1153
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1154
            `bias_ih` of each cells. Defaults to None.
1155
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1156
            `bias_hh` of each cells. Defaults to None.
1157
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1158 1159
            None). For more information, please refer to :ref:`api_guide_Name`.

1160
    Inputs:
1161
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1162 1163
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1164 1165

    Returns:
1166

1167
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1168

1169
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1170 1171 1172 1173 1174 1175

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1176

F
Feiyu Chan 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.SimpleRNN(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1189 1190 1191 1192 1193 1194
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1195 1196 1197 1198 1199 1200 1201 1202
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
1203 1204
                 dropout=0.,
                 activation="tanh",
F
Feiyu Chan 已提交
1205 1206 1207 1208 1209
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
1210 1211 1212 1213
        if activation == "tanh":
            mode = "RNN_TANH"
        elif activation == "relu":
            mode = "RNN_RELU"
F
Feiyu Chan 已提交
1214
        else:
1215 1216
            raise ValueError("Unknown activation '{}'".format(activation))
        self.activation = activation
1217 1218 1219 1220
        super(SimpleRNN,
              self).__init__(mode, input_size, hidden_size, num_layers,
                             direction, time_major, dropout, weight_ih_attr,
                             weight_hh_attr, bias_ih_attr, bias_hh_attr)
F
Feiyu Chan 已提交
1221 1222


1223
class LSTM(RNNBase):
F
Feiyu Chan 已提交
1224
    r"""
1225
    Multilayer LSTM. It takes a sequence and an initial state as inputs, and
F
Feiyu Chan 已提交
1226 1227
    returns the output sequences and the final states.

1228 1229 1230 1231
    Each layer inside the LSTM maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}, c_{t-1}`) as inputs, and returns step
F
Feiyu Chan 已提交
1232 1233 1234 1235 1236
    outputs(:math:`y_{t}`) and new states(:math:`h_{t}, c_{t}`).

    .. math::

        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
1237

F
Feiyu Chan 已提交
1238
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
1239

F
Feiyu Chan 已提交
1240
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
1241 1242 1243 1244 1245 1246 1247

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
1248 1249
        y_{t} & = h_{t}

1250
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1251 1252
    multiplication operator.

1253 1254
    Using key word arguments to construct is recommended.

1255
    Parameters:
1256 1257 1258
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1259 1260
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1261
            outputs of forward and backward is concatenating. Defaults to "forward".
1262 1263
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1264 1265
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1266 1267
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1268
            dropout from 0 to 1. Defaults to 0.
1269
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1270
            `weight_ih` of each cell. Default: None.
1271
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1272
            `weight_hh` of each cell. Default: None.
1273
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1274
            `bias_ih` of each cells. Default: None.
1275
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1276
            `bias_hh` of each cells. Default: None.
1277
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1278 1279 1280
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1281
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1282
        - **initial_states** (list|tuple, optional): the initial state, a list/tuple of (h, c), the shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
1283
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1284 1285

    Returns:
1286

1287
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, If `time_major` is False, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1288

1289
        - **final_states** (tuple): the final state, a tuple of two tensors, h and c. The shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1290 1291 1292 1293 1294 1295

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, swith shape `[hidden_size]`.
1296

F
Feiyu Chan 已提交
1297
    Examples:
1298

F
Feiyu Chan 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
        .. code-block:: python

            import paddle

            rnn = paddle.nn.LSTM(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            prev_c = paddle.randn((2, 4, 32))
            y, (h, c) = rnn(x, (prev_h, prev_c))

1310 1311 1312 1313 1314 1315 1316 1317
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,23,32]
            #[2,4,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1318 1319 1320 1321 1322 1323 1324 1325
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
1326
                 dropout=0.,
F
Feiyu Chan 已提交
1327 1328 1329 1330 1331
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
1332 1333 1334 1335
        super(LSTM,
              self).__init__("LSTM", input_size, hidden_size, num_layers,
                             direction, time_major, dropout, weight_ih_attr,
                             weight_hh_attr, bias_ih_attr, bias_hh_attr)
F
Feiyu Chan 已提交
1336 1337


1338
class GRU(RNNBase):
F
Feiyu Chan 已提交
1339
    r"""
1340
    Multilayer GRU. It takes input sequencse and initial states as inputs, and
F
Feiyu Chan 已提交
1341 1342
    returns the output sequences and the final states.

1343 1344 1345 1346
    Each layer inside the GRU maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
F
Feiyu Chan 已提交
1347 1348 1349 1350
    and new states(:math:`h_{t}`).

    .. math::

1351
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
1352

1353
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
1354

1355
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
1356 1357 1358

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
1359 1360
        y_{t} & = h_{t}

1361
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1362 1363
    multiplication operator.

1364 1365
    Using key word arguments to construct is recommended.

1366
    Parameters:
1367 1368 1369
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1370 1371
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1372
            outputs of forward and backward is concatenating. Defaults to "forward".
1373 1374
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1375 1376
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1377 1378
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1379
            dropout from 0 to 1. Defaults to 0.
1380
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1381
            `weight_ih` of each cell. Default: None.
1382
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1383
            `weight_hh` of each cell. Default: None.
1384
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1385
            `bias_ih` of each cells. Default: None.
1386
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1387
            `bias_hh` of each cells. Default: None.
1388
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1389 1390 1391
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1392
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1393 1394
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1395 1396

    Returns:
1397

1398
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1399

1400
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1401 1402 1403 1404 1405 1406

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1407

F
Feiyu Chan 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.GRU(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1420 1421 1422 1423 1424 1425
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1426 1427 1428 1429 1430 1431 1432 1433
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
1434
                 dropout=0.,
F
Feiyu Chan 已提交
1435 1436 1437 1438 1439
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
1440 1441 1442 1443
        super(GRU,
              self).__init__("GRU", input_size, hidden_size, num_layers,
                             direction, time_major, dropout, weight_ih_attr,
                             weight_hh_attr, bias_ih_attr, bias_hh_attr)