rnn.py 64.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Feiyu Chan 已提交
15
import math
16
from functools import reduce
F
Feiyu Chan 已提交
17

18
import numpy as np
F
Feiyu Chan 已提交
19 20 21 22
import paddle
from paddle import framework
from paddle.nn import functional as F
from paddle.nn import initializer as I
Z
zhiboniu 已提交
23
from paddle.nn import Layer, LayerList
F
Feiyu Chan 已提交
24
from paddle.fluid.layers import utils
25
from paddle.fluid.layers.utils import flatten, map_structure
26
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
27
from paddle import in_dynamic_mode
28
from paddle.fluid.framework import in_dygraph_mode
Z
zhiboniu 已提交
29 30 31
from paddle.framework import core
from paddle.static import default_startup_program
from paddle.static import program_guard
32

33 34 35 36
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
Z
zhiboniu 已提交
37

38 39
__all__ = []

F
Feiyu Chan 已提交
40 41 42 43 44 45

def split_states(states, bidirectional=False, state_components=1):
    r"""
    Split states of RNN network into possibly nested list or tuple of
    states of each RNN cells of the RNN network.

46
    Parameters:
F
Feiyu Chan 已提交
47 48
        states (Tensor|tuple|list): the concatenated states for RNN network.
            When `state_components` is 1, states in a Tensor with shape
49 50 51 52 53 54 55 56 57 58 59
            `(L*D, N, C)` where `L` is the number of layers of the RNN
            network, `D` is the number of directions of the RNN network(1
            for unidirectional RNNs and 2 for bidirectional RNNs), `N` is
            the batch size of the input to the RNN network, `C` is the
            hidden size of the RNN network.

            When `state_components` is larger than 1, `states` is a tuple of
            `state_components` Tensors that meet the requirements described
            above.

            For SimpleRNNs and GRUs, `state_components` is 1, and for LSTMs,
F
Feiyu Chan 已提交
60
            `state_components` is 2.
61
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
62 63 64
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
65

F
Feiyu Chan 已提交
66
    Returns:
67 68 69
        A nested list or tuple of RNN cell states.
        If `bidirectional` is True, it can be indexed twice to get an RNN
        cell state. The first index indicates the layer, the second index
F
Feiyu Chan 已提交
70 71 72 73
        indicates the direction.
        If `bidirectional` is False, it can be indexed once to get an RNN
        cell state. The index indicates the layer.
        Note that if `state_components` is larger than 1, an RNN cell state
74
        can be indexed one more time to get a tensor of shape(N, C), where
F
Feiyu Chan 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        `N` is the batch size of the input to the RNN cell, and `C` is the
        hidden size of the RNN cell.
    """
    if state_components == 1:
        states = paddle.unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([paddle.unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    r"""
96
    Concatenate a possibly nested list or tuple of RNN cell states into a
F
Feiyu Chan 已提交
97 98
    compact form.

99
    Parameters:
100 101 102 103
        states (list|tuple): a possibly nested list or tuple of RNN cell
            states.
            If `bidirectional` is True, it can be indexed twice to get an
            RNN cell state. The first index indicates the layer, the second
F
Feiyu Chan 已提交
104 105 106
            index indicates the direction.
            If `bidirectional` is False, it can be indexed once to get an RNN
            cell state. The index indicates the layer.
107 108 109 110 111
            Note that if `state_components` is larger than 1, an RNN cell
            state can be indexed one more time to get a tensor of shape(N, C),
            where `N` is the batch size of the input to the RNN cell, and
            `C` is the hidden size of the RNN cell.
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
112 113 114
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
115

F
Feiyu Chan 已提交
116 117 118
    Returns:
        Concatenated states for RNN network.
        When `state_components` is 1, states in a Tensor with shape
119 120 121 122
        `(L\*D, N, C)` where `L` is the number of layers of the RNN
        network, `D` is the number of directions of the RNN network(1 for
        unidirectional RNNs and 2 for bidirectional RNNs), `N` is the batch
        size of the input to the RNN network, `C` is the hidden size of the
F
Feiyu Chan 已提交
123
        RNN network.
124

F
Feiyu Chan 已提交
125 126 127 128 129 130 131 132
    """
    if state_components == 1:
        return paddle.stack(flatten(states))
    else:
        states = flatten(states)
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
133
        return tuple([paddle.stack(item) for item in componnets])
F
Feiyu Chan 已提交
134 135 136 137 138 139 140 141 142


class RNNCellBase(Layer):
    r"""
    RNNCellBase is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

143 144 145
    def get_initial_states(
        self, batch_ref, shape=None, dtype=None, init_value=0.0, batch_dim_idx=0
    ):
F
Feiyu Chan 已提交
146 147 148
        r"""
        Generate initialized states according to provided shape, data type and
        value.
149 150

        Parameters:
151 152 153
            batch_ref (Tensor): A tensor, which shape would be used to
                determine the batch size, which is used to generate initial
                states. For `batch_ref`'s shape d, `d[batch_dim_idx]` is
F
Feiyu Chan 已提交
154
                treated as batch size.
155 156 157 158
            shape (list|tuple, optional): A (possibly nested structure of) shape[s],
                where a shape is a list/tuple of integer. `-1` (for batch size)
                will be automatically prepended if a shape does not starts with
                it. If None, property `state_shape` will be used. Defaults to
F
Feiyu Chan 已提交
159
                None.
160 161 162 163 164
            dtype (str|list|tuple, optional): A (possibly nested structure of)
                data type[s]. The structure must be same as that of `shape`,
                except when all tensors' in states has the same data type, a
                single data type can be used. If None and property `cell.state_shape`
                is not available, current default floating type of paddle is
F
Feiyu Chan 已提交
165
                used. Defaults to None.
166
            init_value (float, optional): A float value used to initialize states.
F
Feiyu Chan 已提交
167
                Defaults to 0.
168
            batch_dim_idx (int, optional): An integer indicating which
F
Feiyu Chan 已提交
169
                dimension of the of `batch_ref` represents batch. Defaults to 0.
170

F
Feiyu Chan 已提交
171
        Returns:
172
            init_states (Tensor|tuple|list): tensor of the provided shape and
F
Feiyu Chan 已提交
173 174 175 176 177 178 179 180
                dtype, or list of tensors that each satisfies the requirements,
                packed in the same structure as `shape` and `type` does.
        """
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
            """For shape, list/tuple of integer is the finest-grained objection"""
181 182 183 184
            if isinstance(seq, list) or isinstance(seq, tuple):
                if reduce(
                    lambda flag, x: isinstance(x, int) and flag, seq, True
                ):
F
Feiyu Chan 已提交
185 186 187 188
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
189
            return isinstance(seq, Sequence) and not isinstance(seq, str)
F
Feiyu Chan 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

        class Shape(object):
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:
            states_dtypes = framework.get_default_dtype()
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
212 213 214 215 216 217 218 219 220 221
            lambda shape, dtype: paddle.fluid.layers.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
                value=init_value,
                input_dim_idx=batch_dim_idx,
            ),
            states_shapes,
            states_dtypes,
        )
F
Feiyu Chan 已提交
222 223 224 225 226 227 228
        return init_states

    @property
    def state_shape(self):
        r"""
        Abstract method (property).
        Used to initialize states.
229
        A (possiblely nested structure of) shape[s], where a shape is a
F
Feiyu Chan 已提交
230 231 232 233 234 235 236
        list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it).
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
237 238
            "Please add implementaion for `state_shape` in the used cell."
        )
F
Feiyu Chan 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252

    @property
    def state_dtype(self):
        r"""
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) data types[s]. The structure must be
        same as that of `shape`, except when all tensors' in states has the same
        data type, a signle data type can be used.
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
253 254
            "Please add implementaion for `state_dtype` in the used cell."
        )
F
Feiyu Chan 已提交
255 256 257 258


class SimpleRNNCell(RNNCellBase):
    r"""
259
    Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it
F
Feiyu Chan 已提交
260 261 262 263 264
    computes the outputs and updates states.

    The formula used is as follows:

    .. math::
265
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
266

F
Feiyu Chan 已提交
267
        y_{t} & = h_{t}
268

269
    where :math:`act` is for :attr:`activation`.
F
Feiyu Chan 已提交
270

271
    Please refer to `Finding Structure in Time
F
Feiyu Chan 已提交
272
    <https://crl.ucsd.edu/~elman/Papers/fsit.pdf>`_ for more details.
273

274
    Parameters:
F
Feiyu Chan 已提交
275 276
        input_size (int): The input size.
        hidden_size (int): The hidden size.
277
        activation (str, optional): The activation in the SimpleRNN cell.
F
Feiyu Chan 已提交
278
            It can be `tanh` or `relu`. Defaults to `tanh`.
279
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
280
            :math:`weight_ih`. Default: None.
281
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
282
            :math:`weight_hh`. Default: None.
283
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
284
            :math:`bias_ih`. Default: None.
285
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
286
            :math:`bias_hh`. Default: None.
287
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
288 289
            None). For more information, please refer to :ref:`api_guide_Name`.

290 291 292 293 294
    Variables:
        - **weight_ih** (Parameter): shape (hidden_size, input_size), input to hidden weight, corresponding to :math:`W_{ih}` in the formula.
        - **weight_hh** (Parameter): shape (hidden_size, hidden_size), hidden to hidden weight, corresponding to :math:`W_{hh}` in the formula.
        - **bias_ih** (Parameter): shape (hidden_size, ), input to hidden bias, corresponding to :math:`b_{ih}` in the formula.
        - **bias_hh** (Parameter): shape (hidden_size, ), hidden to hidden bias, corresponding to :math:`b_{hh}` in the formula.
295

F
Feiyu Chan 已提交
296
    Inputs:
297 298
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_{t}` in the formula.
        - **states** (Tensor, optional): shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
299 300

    Returns:
301 302
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
303

F
Feiyu Chan 已提交
304
    Notes:
305
        All the weights and bias are initialized with `Uniform(-std, std)` by default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
306 307 308 309 310 311 312 313 314 315 316 317

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            y, h = cell(x, prev_h)
318 319 320
            print(y.shape)

            #[4,32]
F
Feiyu Chan 已提交
321 322 323

    """

324 325 326 327 328 329 330 331 332 333 334
    def __init__(
        self,
        input_size,
        hidden_size,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
335
        super().__init__()
336 337
        if hidden_size <= 0:
            raise ValueError(
338 339 340 341
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
342 343 344 345
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (hidden_size, input_size),
            weight_ih_attr,
346 347
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
348 349 350
        self.weight_hh = self.create_parameter(
            (hidden_size, hidden_size),
            weight_hh_attr,
351 352
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
353
        self.bias_ih = self.create_parameter(
354
            (hidden_size,),
F
Feiyu Chan 已提交
355 356
            bias_ih_attr,
            is_bias=True,
357 358
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
359
        self.bias_hh = self.create_parameter(
360
            (hidden_size,),
F
Feiyu Chan 已提交
361 362
            bias_hh_attr,
            is_bias=True,
363 364
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
365 366 367 368 369 370

        self.input_size = input_size
        self.hidden_size = hidden_size
        if activation not in ["tanh", "relu"]:
            raise ValueError(
                "activation for SimpleRNNCell should be tanh or relu, "
371 372
                "but get {}".format(activation)
            )
F
Feiyu Chan 已提交
373
        self.activation = activation
374
        self._activation_fn = paddle.tanh if activation == "tanh" else F.relu
F
Feiyu Chan 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_h = states
        i2h = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            i2h += self.bias_ih
        h2h = paddle.matmul(pre_h, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h2h += self.bias_hh
        h = self._activation_fn(i2h + h2h)
        return h, h

    @property
    def state_shape(self):
391
        return (self.hidden_size,)
F
Feiyu Chan 已提交
392

393 394
    def extra_repr(self):
        s = '{input_size}, {hidden_size}'
395
        if self.activation != "tanh":
396 397 398
            s += ', activation={activation}'
        return s.format(**self.__dict__)

F
Feiyu Chan 已提交
399 400 401

class LSTMCell(RNNCellBase):
    r"""
402
    Long-Short Term Memory(LSTM) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
403 404 405 406 407 408
    it computes the outputs and updates states.

    The formula used is as follows:

    .. math::
        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
409

F
Feiyu Chan 已提交
410
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
411

F
Feiyu Chan 已提交
412
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
413 414 415 416 417 418 419

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
420 421
        y_{t} & = h_{t}

422
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
423 424 425 426 427
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

428
    Parameters:
F
Feiyu Chan 已提交
429 430
        input_size (int): The input size.
        hidden_size (int): The hidden size.
431
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
432
            `weight_ih`. Default: None.
433
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
434
            `weight_hh`. Default: None.
435
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
436
            `bias_ih`. Default: None.
437
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
438
            `bias_hh`. Default: None.
439
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
440 441
            None). For more information, please refer to :ref:`api_guide_Name`.

442 443 444 445 446
    Variables:
        - **weight_ih** (Parameter): shape (4 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ii}, W_{if}, W_{ig}, W_{io}` in the formula.
        - **weight_hh** (Parameter): shape (4 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hi}, W_{hf}, W_{hg}, W_{ho}` in the formula.
        - **bias_ih** (Parameter): shape (4 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ii}, b_{if}, b_{ig}, b_{io}` in the formula.
        - **bias_hh** (Parameter): shape (4 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hi}, b_{hf}, b_{hg}, b_{ho}` in the formula.
F
Feiyu Chan 已提交
447 448

    Inputs:
449
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_t` in the formula.
450
        - **states** (list|tuple, optional): a list/tuple of two tensors, each of shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}, c_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
451 452

    Returns:
453 454
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (tuple): a tuple of two tensors, each of shape `[batch_size, hidden_size]`, the new hidden states, corresponding to :math:`h_{t}, c_{t}` in the formula.
F
Feiyu Chan 已提交
455 456

    Notes:
457 458
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
459
        information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))
            prev_c = paddle.randn((4, 32))

            cell = paddle.nn.LSTMCell(16, 32)
            y, (h, c) = cell(x, (prev_h, prev_c))

474 475 476 477 478 479 480 481
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,32]
            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
482 483
    """

484 485 486 487 488 489 490 491 492 493
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
494
        super().__init__()
495 496
        if hidden_size <= 0:
            raise ValueError(
497 498 499 500
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
501 502 503 504
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (4 * hidden_size, input_size),
            weight_ih_attr,
505 506
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
507 508 509
        self.weight_hh = self.create_parameter(
            (4 * hidden_size, hidden_size),
            weight_hh_attr,
510 511
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
512
        self.bias_ih = self.create_parameter(
513
            (4 * hidden_size,),
F
Feiyu Chan 已提交
514 515
            bias_ih_attr,
            is_bias=True,
516 517
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
518
        self.bias_hh = self.create_parameter(
519
            (4 * hidden_size,),
F
Feiyu Chan 已提交
520 521
            bias_hh_attr,
            is_bias=True,
522 523
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_hidden, pre_cell = states
        gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = paddle.split(gates, num_or_sections=4, axis=-1)

        i = self._gate_activation(chunked_gates[0])
        f = self._gate_activation(chunked_gates[1])
        o = self._gate_activation(chunked_gates[3])
        c = f * pre_cell + i * self._activation(chunked_gates[2])
        h = o * self._activation(c)

        return h, (h, c)

    @property
    def state_shape(self):
        r"""
554 555 556
        The `state_shape` of LSTMCell is a tuple with two shapes:
        `((hidden_size, ), (hidden_size,))`. (-1 for batch size would be
        automatically inserted into shape). These two shapes correspond
F
Feiyu Chan 已提交
557 558
        to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
559
        return ((self.hidden_size,), (self.hidden_size,))
F
Feiyu Chan 已提交
560

561 562 563
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
564 565 566

class GRUCell(RNNCellBase):
    r"""
567
    Gated Recurrent Unit (GRU) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
568 569 570 571
    it computes the outputs and updates states.

    The formula for GRU used is as follows:

572
    ..  math::
F
Feiyu Chan 已提交
573

574
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
575

576
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
577

578
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
579 580 581

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
582
        y_{t} & = h_{t}
583 584

    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
585 586 587 588 589 590
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

    Parameters:
591
        input_size (int): The input size.
F
Feiyu Chan 已提交
592
        hidden_size (int): The hidden size.
593
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
594
            `weight_ih`. Default: None.
595
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
596
            `weight_hh`. Default: None.
597
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
598
            `bias_ih`. Default: None.
599
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
600
            `bias_hh`. Default: None.
601
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
602 603
            None). For more information, please refer to :ref:`api_guide_Name`.

604 605 606 607 608
    Variables:
        - **weight_ih** (Parameter): shape (3 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ir}, W_{iz}, W_{ic}` in the formula.
        - **weight_hh** (Parameter): shape (3 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hr}, W_{hz}, W_{hc}` in the formula.
        - **bias_ih** (Parameter): shape (3 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ir}, b_{iz}, b_{ic}` in the formula.
        - **bias_hh** (Parameter): shape (3 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hr}, b_{hz}, b_{hc}` in the formula.
F
Feiyu Chan 已提交
609 610

    Inputs:
611 612
        - **inputs** (Tensor): A tensor with shape `[batch_size, input_size]`, corresponding to :math:`x_t` in the formula.
        - **states** (Tensor): A tensor with shape `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}` in the formula.
F
Feiyu Chan 已提交
613 614

    Returns:
615 616
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
617

F
Feiyu Chan 已提交
618
    Notes:
619 620
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
621
        information about parameter initialization, please refer to s:ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.GRUCell(16, 32)
            y, h = cell(x, prev_h)

635 636 637 638 639 640
            print(y.shape)
            print(h.shape)

            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
641 642
    """

643 644 645 646 647 648 649 650 651 652
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
653
        super().__init__()
654 655
        if hidden_size <= 0:
            raise ValueError(
656 657 658 659
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
660 661 662 663
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (3 * hidden_size, input_size),
            weight_ih_attr,
664 665
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
666 667 668
        self.weight_hh = self.create_parameter(
            (3 * hidden_size, hidden_size),
            weight_hh_attr,
669 670
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
671
        self.bias_ih = self.create_parameter(
672
            (3 * hidden_size,),
F
Feiyu Chan 已提交
673 674
            bias_ih_attr,
            is_bias=True,
675 676
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
677
        self.bias_hh = self.create_parameter(
678
            (3 * hidden_size,),
F
Feiyu Chan 已提交
679 680
            bias_hh_attr,
            is_bias=True,
681 682
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)

        pre_hidden = states
        x_gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            x_gates = x_gates + self.bias_ih
        h_gates = paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h_gates = h_gates + self.bias_hh

        x_r, x_z, x_c = paddle.split(x_gates, num_or_sections=3, axis=1)
        h_r, h_z, h_c = paddle.split(h_gates, num_or_sections=3, axis=1)

        r = self._gate_activation(x_r + h_r)
        z = self._gate_activation(x_z + h_z)
        c = self._activation(x_c + r * h_c)  # apply reset gate after mm
        h = (pre_hidden - c) * z + c

        return h, h

    @property
    def state_shape(self):
        r"""
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to the shape of :math:`h_{t-1}`.
        """
718
        return (self.hidden_size,)
F
Feiyu Chan 已提交
719

720 721 722
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
723 724 725

class RNN(Layer):
    r"""
726 727
    Wrapper for RNN, which creates a recurrent neural network with an RNN cell.
    It performs :code:`cell.forward()` repeatedly until reaches to the maximum
F
Feiyu Chan 已提交
728 729
    length of `inputs`.

730
    Parameters:
F
Feiyu Chan 已提交
731 732 733 734 735 736 737
        cell(RNNCellBase): An instance of `RNNCellBase`.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
738 739 740
        - **inputs** (Tensor): A (possibly nested structure of) tensor[s]. The input sequences. If time major is False, the shape is `[batch_size, time_steps, input_size]`. If time major is True, the shape is `[time_steps, batch_size, input_size]` where `input_size` is the input size of the cell.
        - **initial_states** (Tensor|list|tuple, optional): Tensor of a possibly nested structure of tensors, representing the initial state for the rnn cell. If not provided, `cell.get_initial_states` would be called to produce the initial states. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None.If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
741
        - **kwargs**: Additional keyword arguments to pass to `forward` of the cell.
F
Feiyu Chan 已提交
742 743

    Returns:
744 745
        - **outputs** (Tensor|list|tuple): the output sequences. If `time_major` is True, the shape is `[time_steps, batch_size, hidden_size]`, else `[batch_size, time_steps, hidden_size]`.
        - **final_states** (Tensor|list|tuple): final states of the cell. Tensor or a possibly nested structure of tensors which has the same structure with intial state. Each tensor in final states has the same shape and dtype as the corresponding tensor in initial states.
746

F
Feiyu Chan 已提交
747 748
    Notes:
        This class is a low level API for wrapping rnn cell into a RNN network.
749 750
        Users should take care of the state of the cell. If `initial_states` is
        passed to the `forward` method, make sure that it satisfies the
F
Feiyu Chan 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
        requirements of the cell.

    Examples:

        .. code-block:: python

            import paddle

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            rnn = paddle.nn.RNN(cell)
            outputs, final_states = rnn(inputs, prev_h)

766 767 768 769 770 771
            print(outputs.shape)
            print(final_states.shape)

            #[4,23,32]
            #[4,32]

F
Feiyu Chan 已提交
772 773 774
    """

    def __init__(self, cell, is_reverse=False, time_major=False):
775
        super().__init__()
F
Feiyu Chan 已提交
776 777 778 779 780 781 782
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

783 784 785
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
786 787 788 789 790 791 792
        final_outputs, final_states = paddle.fluid.layers.rnn(
            self.cell,
            inputs,
            initial_states=initial_states,
            sequence_length=sequence_length,
            time_major=self.time_major,
            is_reverse=self.is_reverse,
793 794
            **kwargs
        )
F
Feiyu Chan 已提交
795 796 797 798 799
        return final_outputs, final_states


class BiRNN(Layer):
    r"""
800 801 802
    Wrapper for bidirectional RNN, which builds a bidiretional RNN given the
    forward rnn cell and backward rnn cell. A BiRNN applies forward RNN and
    backward RNN with coresponding cells separately and concats the outputs
F
Feiyu Chan 已提交
803 804
    along the last axis.

805
    Parameters:
F
Feiyu Chan 已提交
806 807 808 809 810 811
        cell_fw (RNNCellBase): A RNNCellBase instance used for forward RNN.
        cell_bw (RNNCellBase): A RNNCellBase instance used for backward RNN.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
812 813 814 815
        - **inputs** (Tensor): the input sequences of both RNN. If time_major is True, the shape of is `[time_steps, batch_size, input_size]`, else the shape is `[batch_size, time_steps, input_size]`, where input_size is the input size of both cells.
        - **initial_states** (list|tuple, optional): A tuple/list of the initial states of the forward cell and backward cell. Defaults to None. If not provided, `cell.get_initial_states` would be called to produce the initial states for each cell. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
        - **kwargs**: Additional keyword arguments. Arguments passed to `forward` for each cell.
F
Feiyu Chan 已提交
816 817

    Outputs:
818
        - **outputs** (Tensor): the outputs of the bidirectional RNN. It is the concatenation of the outputs from the forward RNN and backward RNN along the last axis. If time major is True, the shape is `[time_steps, batch_size, size]`, else the shape is `[batch_size, time_steps, size]`, where size is `cell_fw.hidden_size + cell_bw.hidden_size`.
819
        - **final_states** (tuple): A tuple of the final states of the forward cell and backward cell.
F
Feiyu Chan 已提交
820 821

    Notes:
822 823 824
        This class is a low level API for wrapping rnn cells into a BiRNN
        network. Users should take care of the states of the cells.
        If `initial_states` is passed to the `forward` method, make sure that
F
Feiyu Chan 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
        it satisfies the requirements of the cells.

    Examples:

        .. code-block:: python

            import paddle

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)
            rnn = paddle.nn.BiRNN(cell_fw, cell_bw)

            inputs = paddle.rand((2, 23, 16))
            outputs, final_states = rnn(inputs)

840 841 842 843 844 845
            print(outputs.shape)
            print(final_states[0][0].shape,len(final_states),len(final_states[0]))

            #[4,23,64]
            #[2,32] 2 2

F
Feiyu Chan 已提交
846 847 848
    """

    def __init__(self, cell_fw, cell_bw, time_major=False):
849
        super().__init__()
F
Feiyu Chan 已提交
850 851 852
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        if cell_fw.input_size != cell_bw.input_size:
853 854 855 856 857 858
            raise ValueError(
                "input size of forward cell({}) does not equals"
                "that of backward cell({})".format(
                    cell_fw.input_size, cell_bw.input_size
                )
            )
F
Feiyu Chan 已提交
859 860 861 862 863 864
        for cell in [self.cell_fw, self.cell_bw]:
            if not hasattr(cell, "call"):
                # for non-dygraph mode, `rnn` api uses cell.call
                cell.call = cell.forward
        self.time_major = time_major

865 866 867
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
F
Feiyu Chan 已提交
868
        if isinstance(initial_states, (list, tuple)):
869 870 871
            assert (
                len(initial_states) == 2
            ), "length of initial_states should be 2 when it is a list/tuple"
F
Feiyu Chan 已提交
872

873
        outputs, final_states = paddle.fluid.layers.birnn(
874 875 876 877 878 879 880 881
            self.cell_fw,
            self.cell_bw,
            inputs,
            initial_states,
            sequence_length,
            self.time_major,
            **kwargs
        )
F
Feiyu Chan 已提交
882 883 884
        return outputs, final_states


885
class RNNBase(LayerList):
F
Feiyu Chan 已提交
886
    r"""
887 888
    RNNBase class for RNN networks. It provides `forward`, `flatten_parameters`
    and other common methods for SimpleRNN, LSTM and GRU.
F
Feiyu Chan 已提交
889 890
    """

891 892 893 894 895 896 897 898 899 900 901 902 903 904
    def __init__(
        self,
        mode,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
    ):
905
        super().__init__()
906
        bidirectional_list = ["bidirectional", "bidirect"]
907 908 909 910
        self.mode = mode
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
911
        self.num_directions = 2 if direction in bidirectional_list else 1
912 913 914 915 916 917 918 919
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2 if mode == "LSTM" else 1

        kwargs = {
            "weight_ih_attr": weight_ih_attr,
            "weight_hh_attr": weight_hh_attr,
            "bias_ih_attr": bias_ih_attr,
920
            "bias_hh_attr": bias_hh_attr,
921 922 923 924 925 926 927 928 929 930
        }

        if mode == "LSTM":
            rnn_cls = LSTMCell
        elif mode == "GRU":
            rnn_cls = GRUCell
        else:
            rnn_cls = SimpleRNNCell
            kwargs["activation"] = self.activation

931 932
        if direction in ["forward"]:
            is_reverse = False
933 934 935 936 937
            cell = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = rnn_cls(hidden_size, hidden_size, **kwargs)
                self.append(RNN(cell, is_reverse, time_major))
938
        elif direction in bidirectional_list:
939 940 941 942 943 944 945 946 947
            cell_fw = rnn_cls(input_size, hidden_size, **kwargs)
            cell_bw = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                cell_bw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
948
                "direction should be forward or bidirect (or bidirectional), "
949 950
                "received direction = {}".format(direction)
            )
951

952
        self.could_use_cudnn = True
953
        self.could_use_cudnn &= len(self.parameters()) == num_layers * 4 * (
954 955
            2 if direction in bidirectional_list else 1
        )
956 957 958 959 960 961 962 963 964 965 966

        # Expose params as RNN's attribute, which can make it compatible when
        # replacing small ops composed rnn with cpp rnn kernel.
        # Moreover, `jit.to_static` assumes params are added by current layer
        # and wouldn't include sublayer's params in current layer, which also
        # requires these params are added to current layer for `jit.save`.
        param_names = []
        for layer in range(self.num_layers):
            for direction in range(self.num_directions):
                suffix = '_reverse' if direction == 1 else ''
                param_names.extend(['weight_ih_l{}{}', 'weight_hh_l{}{}'])
967
                if bias_ih_attr is not False:
968
                    param_names.append('bias_ih_l{}{}')
969
                if bias_hh_attr is not False:
970
                    param_names.append('bias_hh_l{}{}')
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
                param_names = [x.format(layer, suffix) for x in param_names]
        for name, param in zip(param_names, self.parameters()):
            setattr(self, name, param)

        self.flatten_parameters()

    def flatten_parameters(self):
        """
        Resets parameter data pointer to address in continuous memory block for
        cudnn usage.
        """
        if self.could_use_cudnn:
            # layer.parameters() is depth first and ordered
            # for i in layer: for j in direct: w_ih, w_hh, b_ih, b_hh
            # need to reorganize to cudnn param layout:
            # all bias following all weights
            params = self.parameters(include_sublayers=False)
            shape = [np.prod(param.shape) for param in params]
            self._all_weights = [None] * len(params)
            for i, param in enumerate(params):
991 992 993 994 995
                offset = (
                    0
                    if i % 4 < 2
                    else (2 * self.num_layers * self.num_directions)
                )
996 997 998 999 1000 1001 1002
                layer_idx = i // 4
                self._all_weights[offset + layer_idx * 2 + i % 2] = param
            # Wrap using a list to avoid registed into params and saving, maybe
            # need a better way to handle this later. Use `create_parameter` to
            # add both to main_program and startup_program for static-graph.
            # Use Constant initializer to avoid make effect on random generator.
            self._flat_weight = [
1003 1004 1005 1006 1007
                self.create_parameter(
                    shape=[np.sum(shape)],
                    dtype=params[0].dtype,
                    default_initializer=I.Constant(0.0),
                )
1008 1009 1010 1011
            ]
            # dropout state may also can be hided and avoid saving
            # should dropout state be persistable for static-graph
            self._dropout_state = self.create_variable(
1012 1013
                dtype=core.VarDesc.VarType.UINT8
            )
Z
zhiboniu 已提交
1014
            if in_dynamic_mode():
1015
                with paddle.no_grad():
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
                    _legacy_C_ops.coalesce_tensor(
                        self._all_weights,
                        self._all_weights,
                        self._flat_weight[0],
                        "copy_data",
                        True,
                        "use_align",
                        False,
                        "dtype",
                        params[0].dtype,
                    )
1027
                    return
1028
            # for static-graph, append coalesce_tensor into startup program
1029 1030 1031
            with program_guard(
                default_startup_program(), default_startup_program()
            ):
Z
zhiboniu 已提交
1032
                with paddle.no_grad():
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
                    self._helper.append_op(
                        type="coalesce_tensor",
                        inputs={"Input": self._all_weights},
                        outputs={
                            "Output": self._all_weights,
                            "FusedOutput": self._flat_weight,
                        },
                        attrs={
                            "copy_data": True,
                            "use_align": False,
                            "dtype": params[0].dtype,
                        },
                    )
1046 1047 1048 1049 1050

    def _cudnn_impl(self, inputs, initial_states, sequence_length):
        if not self.time_major:
            inputs = paddle.tensor.transpose(inputs, [1, 0, 2])

Y
YuanRisheng 已提交
1051 1052
        if in_dygraph_mode():
            out, _, state = _C_ops.rnn(
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.dropout,
                self.num_directions == 2,
                self.input_size,
                self.hidden_size,
                self.num_layers,
                self.mode,
                0,
                not self.training,
            )
Y
YuanRisheng 已提交
1067
        elif in_dynamic_mode():
1068
            _, _, out, state = _legacy_C_ops.rnn(
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.state_components,
                'dropout_prob',
                self.dropout,
                'is_bidirec',
                self.num_directions == 2,
                'input_size',
                self.input_size,
                'hidden_size',
                self.hidden_size,
                'num_layers',
                self.num_layers,
                'mode',
                self.mode,
                'is_test',
                not self.training,
            )
1090 1091 1092 1093 1094 1095 1096
        else:
            out = self._helper.create_variable_for_type_inference(inputs.dtype)
            state = [
                self._helper.create_variable_for_type_inference(inputs.dtype)
                for i in range(self.state_components)
            ]
            reserve = self._helper.create_variable_for_type_inference(
1097 1098
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
            )
1099 1100 1101 1102 1103

            inputs = {
                'Input': inputs,
                'WeightList': self._all_weights,
                'PreState': initial_states,
1104
                'SequenceLength': sequence_length,
1105 1106 1107 1108 1109 1110 1111 1112
            }
            attrs = {
                'dropout_prob': self.dropout,
                'is_bidirec': self.num_directions == 2,
                'input_size': self.input_size,
                'hidden_size': self.hidden_size,
                'num_layers': self.num_layers,
                'mode': self.mode,
1113
                'is_test': not self.training,
1114 1115 1116 1117 1118 1119 1120 1121 1122
            }

            outputs = {
                'Out': out,
                'State': state,
                'Reserve': reserve,
                'DropoutState': self._dropout_state,
            }

1123 1124 1125
            self._helper.append_op(
                type="rnn", inputs=inputs, outputs=outputs, attrs=attrs
            )
1126

1127 1128 1129 1130 1131
        out = (
            paddle.tensor.transpose(out, [1, 0, 2])
            if not self.time_major
            else out
        )
G
Guo Sheng 已提交
1132
        return out, tuple(state) if len(state) > 1 else state[0]
1133

F
Feiyu Chan 已提交
1134 1135 1136 1137
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        dtype = inputs.dtype
        if initial_states is None:
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
            state_shape = (
                self.num_layers * self.num_directions,
                -1,
                self.hidden_size,
            )
            initial_states = tuple(
                [
                    paddle.fluid.layers.fill_constant_batch_size_like(
                        inputs, state_shape, dtype, 0, batch_index, 1
                    )
                    for _ in range(self.state_components)
                ]
            )
1151
        else:
1152 1153 1154 1155 1156 1157 1158 1159 1160
            initial_states = (
                [initial_states]
                if isinstance(initial_states, paddle.static.Variable)
                else initial_states
            )

        if self.could_use_cudnn and (
            not paddle.device.is_compiled_with_rocm() or sequence_length is None
        ):
1161 1162 1163
            # Add CPU kernel and dispatch in backend later
            return self._cudnn_impl(inputs, initial_states, sequence_length)

1164 1165 1166
        states = split_states(
            initial_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1167 1168 1169 1170
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
1171 1172 1173 1174 1175 1176
                inputs = F.dropout(
                    inputs,
                    self.dropout,
                    training=self.training,
                    mode="upscale_in_train",
                )
F
Feiyu Chan 已提交
1177 1178 1179 1180
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

1181 1182 1183
        final_states = concat_states(
            final_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1184 1185
        return outputs, final_states

1186 1187 1188 1189
    def extra_repr(self):
        main_str = '{input_size}, {hidden_size}'
        if self.num_layers != 1:
            main_str += ', num_layers={num_layers}'
1190
        if self.time_major is not False:
1191 1192 1193 1194 1195
            main_str += ', time_major={time_major}'
        if self.dropout != 0:
            main_str += ', dropout={dropout}'
        return main_str.format(**self.__dict__)

F
Feiyu Chan 已提交
1196

1197
class SimpleRNN(RNNBase):
F
Feiyu Chan 已提交
1198
    r"""
1199
    Multilayer Elman network(SimpleRNN). It takes input sequences and initial
F
Feiyu Chan 已提交
1200 1201
    states as inputs, and returns the output sequences and the final states.

1202 1203 1204
    Each layer inside the SimpleRNN maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
F
Feiyu Chan 已提交
1205 1206 1207 1208 1209
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
    and new states(:math:`h_{t}`).

    .. math::

1210
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
1211

F
Feiyu Chan 已提交
1212
        y_{t} & = h_{t}
1213

1214
    where :math:`act` is for :attr:`activation`.
1215 1216

    Using key word arguments to construct is recommended.
F
Feiyu Chan 已提交
1217

1218
    Parameters:
1219 1220 1221
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1222 1223
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1224
            outputs of forward and backward is concatenating. Defaults to "forward".
1225 1226
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1227 1228
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1229 1230
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1231
            dropout from 0 to 1. Defaults to 0.
1232
        activation (str, optional): The activation in each SimpleRNN cell. It can be
1233
            `tanh` or `relu`. Defaults to `tanh`.
1234
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1235
            `weight_ih` of each cell. Defaults to None.
1236
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1237
            `weight_hh` of each cell. Defaults to None.
1238
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1239
            `bias_ih` of each cells. Defaults to None.
1240
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1241
            `bias_hh` of each cells. Defaults to None.
1242
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1243 1244
            None). For more information, please refer to :ref:`api_guide_Name`.

1245
    Inputs:
1246
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1247 1248
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1249 1250

    Returns:
1251

1252
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1253

1254
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1255 1256 1257 1258 1259 1260

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1261

F
Feiyu Chan 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.SimpleRNN(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1274 1275 1276 1277 1278 1279
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1280 1281
    """

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1297 1298 1299 1300
        if activation == "tanh":
            mode = "RNN_TANH"
        elif activation == "relu":
            mode = "RNN_RELU"
F
Feiyu Chan 已提交
1301
        else:
1302 1303
            raise ValueError("Unknown activation '{}'".format(activation))
        self.activation = activation
1304
        super().__init__(
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
            mode,
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1317 1318


1319
class LSTM(RNNBase):
F
Feiyu Chan 已提交
1320
    r"""
1321
    Multilayer LSTM. It takes a sequence and an initial state as inputs, and
F
Feiyu Chan 已提交
1322 1323
    returns the output sequences and the final states.

1324 1325 1326 1327
    Each layer inside the LSTM maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}, c_{t-1}`) as inputs, and returns step
F
Feiyu Chan 已提交
1328 1329 1330 1331 1332
    outputs(:math:`y_{t}`) and new states(:math:`h_{t}, c_{t}`).

    .. math::

        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
1333

F
Feiyu Chan 已提交
1334
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
1335

F
Feiyu Chan 已提交
1336
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
1337 1338 1339 1340 1341 1342 1343

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
1344 1345
        y_{t} & = h_{t}

1346
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1347 1348
    multiplication operator.

1349 1350
    Using key word arguments to construct is recommended.

1351
    Parameters:
1352 1353 1354
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1355 1356
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1357
            outputs of forward and backward is concatenating. Defaults to "forward".
1358 1359
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1360 1361
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1362 1363
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1364
            dropout from 0 to 1. Defaults to 0.
1365
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1366
            `weight_ih` of each cell. Default: None.
1367
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1368
            `weight_hh` of each cell. Default: None.
1369
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1370
            `bias_ih` of each cells. Default: None.
1371
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1372
            `bias_hh` of each cells. Default: None.
1373
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1374 1375 1376
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1377
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1378
        - **initial_states** (list|tuple, optional): the initial state, a list/tuple of (h, c), the shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
1379
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1380 1381

    Returns:
1382

1383
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, If `time_major` is False, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1384

1385
        - **final_states** (tuple): the final state, a tuple of two tensors, h and c. The shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1386 1387 1388 1389 1390 1391

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, swith shape `[hidden_size]`.
1392

F
Feiyu Chan 已提交
1393
    Examples:
1394

F
Feiyu Chan 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
        .. code-block:: python

            import paddle

            rnn = paddle.nn.LSTM(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            prev_c = paddle.randn((2, 4, 32))
            y, (h, c) = rnn(x, (prev_h, prev_c))

1406 1407 1408 1409 1410 1411 1412 1413
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,23,32]
            #[2,4,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1414 1415
    """

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1430
        super().__init__(
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
            "LSTM",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1443 1444


1445
class GRU(RNNBase):
F
Feiyu Chan 已提交
1446
    r"""
1447
    Multilayer GRU. It takes input sequencse and initial states as inputs, and
F
Feiyu Chan 已提交
1448 1449
    returns the output sequences and the final states.

1450 1451 1452 1453
    Each layer inside the GRU maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
F
Feiyu Chan 已提交
1454 1455 1456 1457
    and new states(:math:`h_{t}`).

    .. math::

1458
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
1459

1460
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
1461

1462
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
1463 1464 1465

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
1466 1467
        y_{t} & = h_{t}

1468
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1469 1470
    multiplication operator.

1471 1472
    Using key word arguments to construct is recommended.

1473
    Parameters:
1474 1475 1476
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1477 1478
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1479
            outputs of forward and backward is concatenating. Defaults to "forward".
1480 1481
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1482 1483
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1484 1485
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1486
            dropout from 0 to 1. Defaults to 0.
1487
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1488
            `weight_ih` of each cell. Default: None.
1489
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1490
            `weight_hh` of each cell. Default: None.
1491
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1492
            `bias_ih` of each cells. Default: None.
1493
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1494
            `bias_hh` of each cells. Default: None.
1495
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1496 1497 1498
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1499
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1500 1501
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1502 1503

    Returns:
1504

1505
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1506

1507
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1508 1509 1510 1511 1512 1513

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1514

F
Feiyu Chan 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.GRU(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1527 1528 1529 1530 1531 1532
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1533 1534
    """

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1549
        super().__init__(
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
            "GRU",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )