rnn.py 64.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Feiyu Chan 已提交
15
import math
16
from functools import reduce
F
Feiyu Chan 已提交
17

18
import numpy as np
F
Feiyu Chan 已提交
19 20 21 22
import paddle
from paddle import framework
from paddle.nn import functional as F
from paddle.nn import initializer as I
Z
zhiboniu 已提交
23
from paddle.nn import Layer, LayerList
F
Feiyu Chan 已提交
24
from paddle.fluid.layers import utils
25
from paddle.fluid.layers.utils import flatten, map_structure
26
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
27
from paddle import in_dynamic_mode
28
from paddle.fluid.framework import in_dygraph_mode
Z
zhiboniu 已提交
29 30 31
from paddle.framework import core
from paddle.static import default_startup_program
from paddle.static import program_guard
32 33 34 35
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
Z
zhiboniu 已提交
36

37 38
__all__ = []

F
Feiyu Chan 已提交
39 40 41 42 43 44

def split_states(states, bidirectional=False, state_components=1):
    r"""
    Split states of RNN network into possibly nested list or tuple of
    states of each RNN cells of the RNN network.

45
    Parameters:
F
Feiyu Chan 已提交
46 47
        states (Tensor|tuple|list): the concatenated states for RNN network.
            When `state_components` is 1, states in a Tensor with shape
48 49 50 51 52 53 54 55 56 57 58
            `(L*D, N, C)` where `L` is the number of layers of the RNN
            network, `D` is the number of directions of the RNN network(1
            for unidirectional RNNs and 2 for bidirectional RNNs), `N` is
            the batch size of the input to the RNN network, `C` is the
            hidden size of the RNN network.

            When `state_components` is larger than 1, `states` is a tuple of
            `state_components` Tensors that meet the requirements described
            above.

            For SimpleRNNs and GRUs, `state_components` is 1, and for LSTMs,
F
Feiyu Chan 已提交
59
            `state_components` is 2.
60
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
61 62 63
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
64

F
Feiyu Chan 已提交
65
    Returns:
66 67 68
        A nested list or tuple of RNN cell states.
        If `bidirectional` is True, it can be indexed twice to get an RNN
        cell state. The first index indicates the layer, the second index
F
Feiyu Chan 已提交
69 70 71 72
        indicates the direction.
        If `bidirectional` is False, it can be indexed once to get an RNN
        cell state. The index indicates the layer.
        Note that if `state_components` is larger than 1, an RNN cell state
73
        can be indexed one more time to get a tensor of shape(N, C), where
F
Feiyu Chan 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        `N` is the batch size of the input to the RNN cell, and `C` is the
        hidden size of the RNN cell.
    """
    if state_components == 1:
        states = paddle.unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([paddle.unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    r"""
95
    Concatenate a possibly nested list or tuple of RNN cell states into a
F
Feiyu Chan 已提交
96 97
    compact form.

98
    Parameters:
99 100 101 102
        states (list|tuple): a possibly nested list or tuple of RNN cell
            states.
            If `bidirectional` is True, it can be indexed twice to get an
            RNN cell state. The first index indicates the layer, the second
F
Feiyu Chan 已提交
103 104 105
            index indicates the direction.
            If `bidirectional` is False, it can be indexed once to get an RNN
            cell state. The index indicates the layer.
106 107 108 109 110
            Note that if `state_components` is larger than 1, an RNN cell
            state can be indexed one more time to get a tensor of shape(N, C),
            where `N` is the batch size of the input to the RNN cell, and
            `C` is the hidden size of the RNN cell.
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
111 112 113
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
114

F
Feiyu Chan 已提交
115 116 117
    Returns:
        Concatenated states for RNN network.
        When `state_components` is 1, states in a Tensor with shape
118 119 120 121
        `(L\*D, N, C)` where `L` is the number of layers of the RNN
        network, `D` is the number of directions of the RNN network(1 for
        unidirectional RNNs and 2 for bidirectional RNNs), `N` is the batch
        size of the input to the RNN network, `C` is the hidden size of the
F
Feiyu Chan 已提交
122
        RNN network.
123

F
Feiyu Chan 已提交
124 125 126 127 128 129 130 131
    """
    if state_components == 1:
        return paddle.stack(flatten(states))
    else:
        states = flatten(states)
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
132
        return tuple([paddle.stack(item) for item in componnets])
F
Feiyu Chan 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150


class RNNCellBase(Layer):
    r"""
    RNNCellBase is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

    def get_initial_states(self,
                           batch_ref,
                           shape=None,
                           dtype=None,
                           init_value=0.,
                           batch_dim_idx=0):
        r"""
        Generate initialized states according to provided shape, data type and
        value.
151 152

        Parameters:
153 154 155
            batch_ref (Tensor): A tensor, which shape would be used to
                determine the batch size, which is used to generate initial
                states. For `batch_ref`'s shape d, `d[batch_dim_idx]` is
F
Feiyu Chan 已提交
156
                treated as batch size.
157 158 159 160
            shape (list|tuple, optional): A (possibly nested structure of) shape[s],
                where a shape is a list/tuple of integer. `-1` (for batch size)
                will be automatically prepended if a shape does not starts with
                it. If None, property `state_shape` will be used. Defaults to
F
Feiyu Chan 已提交
161
                None.
162 163 164 165 166
            dtype (str|list|tuple, optional): A (possibly nested structure of)
                data type[s]. The structure must be same as that of `shape`,
                except when all tensors' in states has the same data type, a
                single data type can be used. If None and property `cell.state_shape`
                is not available, current default floating type of paddle is
F
Feiyu Chan 已提交
167
                used. Defaults to None.
168
            init_value (float, optional): A float value used to initialize states.
F
Feiyu Chan 已提交
169
                Defaults to 0.
170
            batch_dim_idx (int, optional): An integer indicating which
F
Feiyu Chan 已提交
171
                dimension of the of `batch_ref` represents batch. Defaults to 0.
172

F
Feiyu Chan 已提交
173
        Returns:
174
            init_states (Tensor|tuple|list): tensor of the provided shape and
F
Feiyu Chan 已提交
175 176 177 178 179 180 181 182 183
                dtype, or list of tensors that each satisfies the requirements,
                packed in the same structure as `shape` and `type` does.
        """
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
            """For shape, list/tuple of integer is the finest-grained objection"""
            if (isinstance(seq, list) or isinstance(seq, tuple)):
184 185
                if reduce(lambda flag, x: isinstance(x, int) and flag, seq,
                          True):
F
Feiyu Chan 已提交
186 187 188 189
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
190
            return (isinstance(seq, Sequence) and not isinstance(seq, str))
F
Feiyu Chan 已提交
191 192

        class Shape(object):
193

F
Feiyu Chan 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:
            states_dtypes = framework.get_default_dtype()
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
214 215 216 217 218 219 220
            lambda shape, dtype: paddle.fluid.layers.
            fill_constant_batch_size_like(input=batch_ref,
                                          shape=shape.shape,
                                          dtype=dtype,
                                          value=init_value,
                                          input_dim_idx=batch_dim_idx),
            states_shapes, states_dtypes)
F
Feiyu Chan 已提交
221 222 223 224 225 226 227
        return init_states

    @property
    def state_shape(self):
        r"""
        Abstract method (property).
        Used to initialize states.
228
        A (possiblely nested structure of) shape[s], where a shape is a
F
Feiyu Chan 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it).
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
            "Please add implementaion for `state_shape` in the used cell.")

    @property
    def state_dtype(self):
        r"""
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) data types[s]. The structure must be
        same as that of `shape`, except when all tensors' in states has the same
        data type, a signle data type can be used.
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
            "Please add implementaion for `state_dtype` in the used cell.")


class SimpleRNNCell(RNNCellBase):
    r"""
256
    Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it
F
Feiyu Chan 已提交
257 258 259 260 261
    computes the outputs and updates states.

    The formula used is as follows:

    .. math::
262
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
263

F
Feiyu Chan 已提交
264
        y_{t} & = h_{t}
265

266
    where :math:`act` is for :attr:`activation`.
F
Feiyu Chan 已提交
267

268
    Please refer to `Finding Structure in Time
F
Feiyu Chan 已提交
269
    <https://crl.ucsd.edu/~elman/Papers/fsit.pdf>`_ for more details.
270

271
    Parameters:
F
Feiyu Chan 已提交
272 273
        input_size (int): The input size.
        hidden_size (int): The hidden size.
274
        activation (str, optional): The activation in the SimpleRNN cell.
F
Feiyu Chan 已提交
275
            It can be `tanh` or `relu`. Defaults to `tanh`.
276
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
277
            :math:`weight_ih`. Default: None.
278
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
279
            :math:`weight_hh`. Default: None.
280
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
281
            :math:`bias_ih`. Default: None.
282
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
283
            :math:`bias_hh`. Default: None.
284
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
285 286
            None). For more information, please refer to :ref:`api_guide_Name`.

287 288 289 290 291
    Variables:
        - **weight_ih** (Parameter): shape (hidden_size, input_size), input to hidden weight, corresponding to :math:`W_{ih}` in the formula.
        - **weight_hh** (Parameter): shape (hidden_size, hidden_size), hidden to hidden weight, corresponding to :math:`W_{hh}` in the formula.
        - **bias_ih** (Parameter): shape (hidden_size, ), input to hidden bias, corresponding to :math:`b_{ih}` in the formula.
        - **bias_hh** (Parameter): shape (hidden_size, ), hidden to hidden bias, corresponding to :math:`b_{hh}` in the formula.
292

F
Feiyu Chan 已提交
293
    Inputs:
294 295
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_{t}` in the formula.
        - **states** (Tensor, optional): shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
296 297

    Returns:
298 299
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
300

F
Feiyu Chan 已提交
301
    Notes:
302
        All the weights and bias are initialized with `Uniform(-std, std)` by default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
303 304 305 306 307 308 309 310 311 312 313 314

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            y, h = cell(x, prev_h)
315 316 317
            print(y.shape)

            #[4,32]
F
Feiyu Chan 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330

    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 activation="tanh",
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
        super(SimpleRNNCell, self).__init__()
331 332
        if hidden_size <= 0:
            raise ValueError(
333 334
                "hidden_size of {} must be greater than 0, but now equals to {}"
                .format(self.__class__.__name__, hidden_size))
F
Feiyu Chan 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (hidden_size, input_size),
            weight_ih_attr,
            default_initializer=I.Uniform(-std, std))
        self.weight_hh = self.create_parameter(
            (hidden_size, hidden_size),
            weight_hh_attr,
            default_initializer=I.Uniform(-std, std))
        self.bias_ih = self.create_parameter(
            (hidden_size, ),
            bias_ih_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))
        self.bias_hh = self.create_parameter(
            (hidden_size, ),
            bias_hh_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))

        self.input_size = input_size
        self.hidden_size = hidden_size
        if activation not in ["tanh", "relu"]:
            raise ValueError(
                "activation for SimpleRNNCell should be tanh or relu, "
                "but get {}".format(activation))
        self.activation = activation
        self._activation_fn = paddle.tanh \
            if activation == "tanh" \
            else F.relu

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_h = states
        i2h = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            i2h += self.bias_ih
        h2h = paddle.matmul(pre_h, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h2h += self.bias_hh
        h = self._activation_fn(i2h + h2h)
        return h, h

    @property
    def state_shape(self):
        return (self.hidden_size, )

383 384
    def extra_repr(self):
        s = '{input_size}, {hidden_size}'
385
        if self.activation != "tanh":
386 387 388
            s += ', activation={activation}'
        return s.format(**self.__dict__)

F
Feiyu Chan 已提交
389 390 391

class LSTMCell(RNNCellBase):
    r"""
392
    Long-Short Term Memory(LSTM) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
393 394 395 396 397 398
    it computes the outputs and updates states.

    The formula used is as follows:

    .. math::
        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
399

F
Feiyu Chan 已提交
400
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
401

F
Feiyu Chan 已提交
402
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
403 404 405 406 407 408 409

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
410 411
        y_{t} & = h_{t}

412
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
413 414 415 416 417
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

418
    Parameters:
F
Feiyu Chan 已提交
419 420
        input_size (int): The input size.
        hidden_size (int): The hidden size.
421
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
422
            `weight_ih`. Default: None.
423
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
424
            `weight_hh`. Default: None.
425
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
426
            `bias_ih`. Default: None.
427
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
428
            `bias_hh`. Default: None.
429
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
430 431
            None). For more information, please refer to :ref:`api_guide_Name`.

432 433 434 435 436
    Variables:
        - **weight_ih** (Parameter): shape (4 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ii}, W_{if}, W_{ig}, W_{io}` in the formula.
        - **weight_hh** (Parameter): shape (4 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hi}, W_{hf}, W_{hg}, W_{ho}` in the formula.
        - **bias_ih** (Parameter): shape (4 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ii}, b_{if}, b_{ig}, b_{io}` in the formula.
        - **bias_hh** (Parameter): shape (4 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hi}, b_{hf}, b_{hg}, b_{ho}` in the formula.
F
Feiyu Chan 已提交
437 438

    Inputs:
439
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_t` in the formula.
440
        - **states** (list|tuple, optional): a list/tuple of two tensors, each of shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}, c_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
441 442

    Returns:
443 444
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (tuple): a tuple of two tensors, each of shape `[batch_size, hidden_size]`, the new hidden states, corresponding to :math:`h_{t}, c_{t}` in the formula.
F
Feiyu Chan 已提交
445 446

    Notes:
447 448
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
449
        information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))
            prev_c = paddle.randn((4, 32))

            cell = paddle.nn.LSTMCell(16, 32)
            y, (h, c) = cell(x, (prev_h, prev_c))

464 465 466 467 468 469 470 471
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,32]
            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
472 473 474 475 476 477 478 479 480 481 482
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
        super(LSTMCell, self).__init__()
483 484
        if hidden_size <= 0:
            raise ValueError(
485 486
                "hidden_size of {} must be greater than 0, but now equals to {}"
                .format(self.__class__.__name__, hidden_size))
F
Feiyu Chan 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (4 * hidden_size, input_size),
            weight_ih_attr,
            default_initializer=I.Uniform(-std, std))
        self.weight_hh = self.create_parameter(
            (4 * hidden_size, hidden_size),
            weight_hh_attr,
            default_initializer=I.Uniform(-std, std))
        self.bias_ih = self.create_parameter(
            (4 * hidden_size, ),
            bias_ih_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))
        self.bias_hh = self.create_parameter(
            (4 * hidden_size, ),
            bias_hh_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_hidden, pre_cell = states
        gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = paddle.split(gates, num_or_sections=4, axis=-1)

        i = self._gate_activation(chunked_gates[0])
        f = self._gate_activation(chunked_gates[1])
        o = self._gate_activation(chunked_gates[3])
        c = f * pre_cell + i * self._activation(chunked_gates[2])
        h = o * self._activation(c)

        return h, (h, c)

    @property
    def state_shape(self):
        r"""
536 537 538
        The `state_shape` of LSTMCell is a tuple with two shapes:
        `((hidden_size, ), (hidden_size,))`. (-1 for batch size would be
        automatically inserted into shape). These two shapes correspond
F
Feiyu Chan 已提交
539 540 541 542
        to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
        return ((self.hidden_size, ), (self.hidden_size, ))

543 544 545
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
546 547 548

class GRUCell(RNNCellBase):
    r"""
549
    Gated Recurrent Unit (GRU) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
550 551 552 553
    it computes the outputs and updates states.

    The formula for GRU used is as follows:

554
    ..  math::
F
Feiyu Chan 已提交
555

556
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
557

558
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
559

560
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
561 562 563

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
564
        y_{t} & = h_{t}
565 566

    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
567 568 569 570 571 572
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

    Parameters:
573
        input_size (int): The input size.
F
Feiyu Chan 已提交
574
        hidden_size (int): The hidden size.
575
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
576
            `weight_ih`. Default: None.
577
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
578
            `weight_hh`. Default: None.
579
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
580
            `bias_ih`. Default: None.
581
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
582
            `bias_hh`. Default: None.
583
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
584 585
            None). For more information, please refer to :ref:`api_guide_Name`.

586 587 588 589 590
    Variables:
        - **weight_ih** (Parameter): shape (3 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ir}, W_{iz}, W_{ic}` in the formula.
        - **weight_hh** (Parameter): shape (3 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hr}, W_{hz}, W_{hc}` in the formula.
        - **bias_ih** (Parameter): shape (3 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ir}, b_{iz}, b_{ic}` in the formula.
        - **bias_hh** (Parameter): shape (3 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hr}, b_{hz}, b_{hc}` in the formula.
F
Feiyu Chan 已提交
591 592

    Inputs:
593 594
        - **inputs** (Tensor): A tensor with shape `[batch_size, input_size]`, corresponding to :math:`x_t` in the formula.
        - **states** (Tensor): A tensor with shape `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}` in the formula.
F
Feiyu Chan 已提交
595 596

    Returns:
597 598
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
599

F
Feiyu Chan 已提交
600
    Notes:
601 602
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
603
        information about parameter initialization, please refer to s:ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.GRUCell(16, 32)
            y, h = cell(x, prev_h)

617 618 619 620 621 622
            print(y.shape)
            print(h.shape)

            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
623 624 625 626 627 628 629 630 631 632 633
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
        super(GRUCell, self).__init__()
634 635
        if hidden_size <= 0:
            raise ValueError(
636 637
                "hidden_size of {} must be greater than 0, but now equals to {}"
                .format(self.__class__.__name__, hidden_size))
F
Feiyu Chan 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (3 * hidden_size, input_size),
            weight_ih_attr,
            default_initializer=I.Uniform(-std, std))
        self.weight_hh = self.create_parameter(
            (3 * hidden_size, hidden_size),
            weight_hh_attr,
            default_initializer=I.Uniform(-std, std))
        self.bias_ih = self.create_parameter(
            (3 * hidden_size, ),
            bias_ih_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))
        self.bias_hh = self.create_parameter(
            (3 * hidden_size, ),
            bias_hh_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)

        pre_hidden = states
        x_gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            x_gates = x_gates + self.bias_ih
        h_gates = paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h_gates = h_gates + self.bias_hh

        x_r, x_z, x_c = paddle.split(x_gates, num_or_sections=3, axis=1)
        h_r, h_z, h_c = paddle.split(h_gates, num_or_sections=3, axis=1)

        r = self._gate_activation(x_r + h_r)
        z = self._gate_activation(x_z + h_z)
        c = self._activation(x_c + r * h_c)  # apply reset gate after mm
        h = (pre_hidden - c) * z + c

        return h, h

    @property
    def state_shape(self):
        r"""
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to the shape of :math:`h_{t-1}`.
        """
        return (self.hidden_size, )

694 695 696
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
697 698 699

class RNN(Layer):
    r"""
700 701
    Wrapper for RNN, which creates a recurrent neural network with an RNN cell.
    It performs :code:`cell.forward()` repeatedly until reaches to the maximum
F
Feiyu Chan 已提交
702 703
    length of `inputs`.

704
    Parameters:
F
Feiyu Chan 已提交
705 706 707 708 709 710 711
        cell(RNNCellBase): An instance of `RNNCellBase`.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
712 713 714
        - **inputs** (Tensor): A (possibly nested structure of) tensor[s]. The input sequences. If time major is False, the shape is `[batch_size, time_steps, input_size]`. If time major is True, the shape is `[time_steps, batch_size, input_size]` where `input_size` is the input size of the cell.
        - **initial_states** (Tensor|list|tuple, optional): Tensor of a possibly nested structure of tensors, representing the initial state for the rnn cell. If not provided, `cell.get_initial_states` would be called to produce the initial states. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None.If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
715
        - **kwargs**: Additional keyword arguments to pass to `forward` of the cell.
F
Feiyu Chan 已提交
716 717

    Returns:
718 719
        - **outputs** (Tensor|list|tuple): the output sequences. If `time_major` is True, the shape is `[time_steps, batch_size, hidden_size]`, else `[batch_size, time_steps, hidden_size]`.
        - **final_states** (Tensor|list|tuple): final states of the cell. Tensor or a possibly nested structure of tensors which has the same structure with intial state. Each tensor in final states has the same shape and dtype as the corresponding tensor in initial states.
720

F
Feiyu Chan 已提交
721 722
    Notes:
        This class is a low level API for wrapping rnn cell into a RNN network.
723 724
        Users should take care of the state of the cell. If `initial_states` is
        passed to the `forward` method, make sure that it satisfies the
F
Feiyu Chan 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
        requirements of the cell.

    Examples:

        .. code-block:: python

            import paddle

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            rnn = paddle.nn.RNN(cell)
            outputs, final_states = rnn(inputs, prev_h)

740 741 742 743 744 745
            print(outputs.shape)
            print(final_states.shape)

            #[4,23,32]
            #[4,32]

F
Feiyu Chan 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
    """

    def __init__(self, cell, is_reverse=False, time_major=False):
        super(RNN, self).__init__()
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

    def forward(self,
                inputs,
                initial_states=None,
                sequence_length=None,
                **kwargs):
762 763 764 765 766 767 768 769
        final_outputs, final_states = paddle.fluid.layers.rnn(
            self.cell,
            inputs,
            initial_states=initial_states,
            sequence_length=sequence_length,
            time_major=self.time_major,
            is_reverse=self.is_reverse,
            **kwargs)
F
Feiyu Chan 已提交
770 771 772 773 774
        return final_outputs, final_states


class BiRNN(Layer):
    r"""
775 776 777
    Wrapper for bidirectional RNN, which builds a bidiretional RNN given the
    forward rnn cell and backward rnn cell. A BiRNN applies forward RNN and
    backward RNN with coresponding cells separately and concats the outputs
F
Feiyu Chan 已提交
778 779
    along the last axis.

780
    Parameters:
F
Feiyu Chan 已提交
781 782 783 784 785 786
        cell_fw (RNNCellBase): A RNNCellBase instance used for forward RNN.
        cell_bw (RNNCellBase): A RNNCellBase instance used for backward RNN.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
787 788 789 790
        - **inputs** (Tensor): the input sequences of both RNN. If time_major is True, the shape of is `[time_steps, batch_size, input_size]`, else the shape is `[batch_size, time_steps, input_size]`, where input_size is the input size of both cells.
        - **initial_states** (list|tuple, optional): A tuple/list of the initial states of the forward cell and backward cell. Defaults to None. If not provided, `cell.get_initial_states` would be called to produce the initial states for each cell. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
        - **kwargs**: Additional keyword arguments. Arguments passed to `forward` for each cell.
F
Feiyu Chan 已提交
791 792

    Outputs:
793
        - **outputs** (Tensor): the outputs of the bidirectional RNN. It is the concatenation of the outputs from the forward RNN and backward RNN along the last axis. If time major is True, the shape is `[time_steps, batch_size, size]`, else the shape is `[batch_size, time_steps, size]`, where size is `cell_fw.hidden_size + cell_bw.hidden_size`.
794
        - **final_states** (tuple): A tuple of the final states of the forward cell and backward cell.
F
Feiyu Chan 已提交
795 796

    Notes:
797 798 799
        This class is a low level API for wrapping rnn cells into a BiRNN
        network. Users should take care of the states of the cells.
        If `initial_states` is passed to the `forward` method, make sure that
F
Feiyu Chan 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
        it satisfies the requirements of the cells.

    Examples:

        .. code-block:: python

            import paddle

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)
            rnn = paddle.nn.BiRNN(cell_fw, cell_bw)

            inputs = paddle.rand((2, 23, 16))
            outputs, final_states = rnn(inputs)

815 816 817 818 819 820
            print(outputs.shape)
            print(final_states[0][0].shape,len(final_states),len(final_states[0]))

            #[4,23,64]
            #[2,32] 2 2

F
Feiyu Chan 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
    """

    def __init__(self, cell_fw, cell_bw, time_major=False):
        super(BiRNN, self).__init__()
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        if cell_fw.input_size != cell_bw.input_size:
            raise ValueError("input size of forward cell({}) does not equals"
                             "that of backward cell({})".format(
                                 cell_fw.input_size, cell_bw.input_size))
        for cell in [self.cell_fw, self.cell_bw]:
            if not hasattr(cell, "call"):
                # for non-dygraph mode, `rnn` api uses cell.call
                cell.call = cell.forward
        self.time_major = time_major

    def forward(self,
                inputs,
                initial_states=None,
                sequence_length=None,
                **kwargs):
        if isinstance(initial_states, (list, tuple)):
            assert len(initial_states) == 2, \
                "length of initial_states should be 2 when it is a list/tuple"

846 847 848
        outputs, final_states = paddle.fluid.layers.birnn(
            self.cell_fw, self.cell_bw, inputs, initial_states, sequence_length,
            self.time_major, **kwargs)
F
Feiyu Chan 已提交
849 850 851
        return outputs, final_states


852
class RNNBase(LayerList):
F
Feiyu Chan 已提交
853
    r"""
854 855
    RNNBase class for RNN networks. It provides `forward`, `flatten_parameters`
    and other common methods for SimpleRNN, LSTM and GRU.
F
Feiyu Chan 已提交
856 857
    """

858 859 860 861 862 863 864 865 866 867 868 869 870
    def __init__(self,
                 mode,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
                 dropout=0.,
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None):
        super(RNNBase, self).__init__()
871
        bidirectional_list = ["bidirectional", "bidirect"]
872 873 874 875
        self.mode = mode
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
876
        self.num_directions = 2 if direction in bidirectional_list else 1
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2 if mode == "LSTM" else 1

        kwargs = {
            "weight_ih_attr": weight_ih_attr,
            "weight_hh_attr": weight_hh_attr,
            "bias_ih_attr": bias_ih_attr,
            "bias_hh_attr": bias_hh_attr
        }

        if mode == "LSTM":
            rnn_cls = LSTMCell
        elif mode == "GRU":
            rnn_cls = GRUCell
        else:
            rnn_cls = SimpleRNNCell
            kwargs["activation"] = self.activation

896 897
        if direction in ["forward"]:
            is_reverse = False
898 899 900 901 902
            cell = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = rnn_cls(hidden_size, hidden_size, **kwargs)
                self.append(RNN(cell, is_reverse, time_major))
903
        elif direction in bidirectional_list:
904 905 906 907 908 909 910 911 912
            cell_fw = rnn_cls(input_size, hidden_size, **kwargs)
            cell_bw = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                cell_bw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
913
                "direction should be forward or bidirect (or bidirectional), "
914 915
                "received direction = {}".format(direction))

916
        self.could_use_cudnn = True
917
        self.could_use_cudnn &= len(self.parameters()) == num_layers * 4 * (
918
            2 if direction in bidirectional_list else 1)
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

        # Expose params as RNN's attribute, which can make it compatible when
        # replacing small ops composed rnn with cpp rnn kernel.
        # Moreover, `jit.to_static` assumes params are added by current layer
        # and wouldn't include sublayer's params in current layer, which also
        # requires these params are added to current layer for `jit.save`.
        param_names = []
        for layer in range(self.num_layers):
            for direction in range(self.num_directions):
                suffix = '_reverse' if direction == 1 else ''
                param_names.extend(['weight_ih_l{}{}', 'weight_hh_l{}{}'])
                if bias_ih_attr != False: param_names.append('bias_ih_l{}{}')
                if bias_hh_attr != False: param_names.append('bias_hh_l{}{}')
                param_names = [x.format(layer, suffix) for x in param_names]
        for name, param in zip(param_names, self.parameters()):
            setattr(self, name, param)

        self.flatten_parameters()

    def flatten_parameters(self):
        """
        Resets parameter data pointer to address in continuous memory block for
        cudnn usage.
        """
        if self.could_use_cudnn:
            # layer.parameters() is depth first and ordered
            # for i in layer: for j in direct: w_ih, w_hh, b_ih, b_hh
            # need to reorganize to cudnn param layout:
            # all bias following all weights
            params = self.parameters(include_sublayers=False)
            shape = [np.prod(param.shape) for param in params]
            self._all_weights = [None] * len(params)
            for i, param in enumerate(params):
                offset = 0 if i % 4 < 2 else (2 * self.num_layers *
                                              self.num_directions)
                layer_idx = i // 4
                self._all_weights[offset + layer_idx * 2 + i % 2] = param
            # Wrap using a list to avoid registed into params and saving, maybe
            # need a better way to handle this later. Use `create_parameter` to
            # add both to main_program and startup_program for static-graph.
            # Use Constant initializer to avoid make effect on random generator.
            self._flat_weight = [
961 962 963
                self.create_parameter(shape=[np.sum(shape)],
                                      dtype=params[0].dtype,
                                      default_initializer=I.Constant(0.0))
964 965 966 967
            ]
            # dropout state may also can be hided and avoid saving
            # should dropout state be persistable for static-graph
            self._dropout_state = self.create_variable(
Z
zhiboniu 已提交
968 969
                dtype=core.VarDesc.VarType.UINT8)
            if in_dynamic_mode():
970
                with paddle.no_grad():
971 972 973 974 975 976
                    _legacy_C_ops.coalesce_tensor(self._all_weights,
                                                  self._all_weights,
                                                  self._flat_weight[0],
                                                  "copy_data", True,
                                                  "use_align", False, "dtype",
                                                  params[0].dtype)
977
                    return
978
            # for static-graph, append coalesce_tensor into startup program
Z
zhiboniu 已提交
979 980
            with program_guard(default_startup_program(),
                               default_startup_program()):
Z
zhiboniu 已提交
981
                with paddle.no_grad():
982 983 984 985 986 987 988 989 990 991 992
                    self._helper.append_op(type="coalesce_tensor",
                                           inputs={"Input": self._all_weights},
                                           outputs={
                                               "Output": self._all_weights,
                                               "FusedOutput": self._flat_weight
                                           },
                                           attrs={
                                               "copy_data": True,
                                               "use_align": False,
                                               "dtype": params[0].dtype
                                           })
993 994 995 996 997

    def _cudnn_impl(self, inputs, initial_states, sequence_length):
        if not self.time_major:
            inputs = paddle.tensor.transpose(inputs, [1, 0, 2])

Y
YuanRisheng 已提交
998 999 1000 1001 1002 1003 1004
        if in_dygraph_mode():
            out, _, state = _C_ops.rnn(
                inputs, initial_states, self._all_weights, sequence_length,
                self._dropout_state, self.dropout, self.num_directions == 2,
                self.input_size, self.hidden_size, self.num_layers, self.mode,
                0, not self.training)
        elif in_dynamic_mode():
1005
            _, _, out, state = _legacy_C_ops.rnn(
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
                inputs, initial_states, self._all_weights, sequence_length,
                self._dropout_state, self.state_components, 'dropout_prob',
                self.dropout, 'is_bidirec', self.num_directions == 2,
                'input_size', self.input_size, 'hidden_size', self.hidden_size,
                'num_layers', self.num_layers, 'mode', self.mode, 'is_test',
                not self.training)
        else:
            out = self._helper.create_variable_for_type_inference(inputs.dtype)
            state = [
                self._helper.create_variable_for_type_inference(inputs.dtype)
                for i in range(self.state_components)
            ]
            reserve = self._helper.create_variable_for_type_inference(
Z
zhiboniu 已提交
1019
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

            inputs = {
                'Input': inputs,
                'WeightList': self._all_weights,
                'PreState': initial_states,
                'SequenceLength': sequence_length
            }
            attrs = {
                'dropout_prob': self.dropout,
                'is_bidirec': self.num_directions == 2,
                'input_size': self.input_size,
                'hidden_size': self.hidden_size,
                'num_layers': self.num_layers,
                'mode': self.mode,
                'is_test': not self.training
            }

            outputs = {
                'Out': out,
                'State': state,
                'Reserve': reserve,
                'DropoutState': self._dropout_state,
            }

1044 1045 1046 1047
            self._helper.append_op(type="rnn",
                                   inputs=inputs,
                                   outputs=outputs,
                                   attrs=attrs)
1048 1049 1050

        out = paddle.tensor.transpose(out,
                                      [1, 0, 2]) if not self.time_major else out
G
Guo Sheng 已提交
1051
        return out, tuple(state) if len(state) > 1 else state[0]
1052

F
Feiyu Chan 已提交
1053 1054 1055 1056 1057 1058
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        dtype = inputs.dtype
        if initial_states is None:
            state_shape = (self.num_layers * self.num_directions, -1,
                           self.hidden_size)
1059 1060
            initial_states = tuple([
                paddle.fluid.layers.fill_constant_batch_size_like(
F
Feiyu Chan 已提交
1061
                    inputs, state_shape, dtype, 0, batch_index, 1)
1062 1063 1064 1065
                for _ in range(self.state_components)
            ])
        else:
            initial_states = [initial_states] if isinstance(
Z
zhiboniu 已提交
1066
                initial_states, paddle.static.Variable) else initial_states
F
Feiyu Chan 已提交
1067

1068 1069
        if self.could_use_cudnn and (not paddle.device.is_compiled_with_rocm()
                                     or sequence_length is None):
1070 1071 1072
            # Add CPU kernel and dispatch in backend later
            return self._cudnn_impl(inputs, initial_states, sequence_length)

F
Feiyu Chan 已提交
1073 1074 1075 1076 1077 1078
        states = split_states(initial_states, self.num_directions == 2,
                              self.state_components)
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
1079 1080 1081 1082
                inputs = F.dropout(inputs,
                                   self.dropout,
                                   training=self.training,
                                   mode="upscale_in_train")
F
Feiyu Chan 已提交
1083 1084 1085 1086 1087 1088 1089 1090
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

        final_states = concat_states(final_states, self.num_directions == 2,
                                     self.state_components)
        return outputs, final_states

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
    def extra_repr(self):
        main_str = '{input_size}, {hidden_size}'
        if self.num_layers != 1:
            main_str += ', num_layers={num_layers}'
        if self.time_major != False:
            main_str += ', time_major={time_major}'
        if self.dropout != 0:
            main_str += ', dropout={dropout}'
        return main_str.format(**self.__dict__)

F
Feiyu Chan 已提交
1101

1102
class SimpleRNN(RNNBase):
F
Feiyu Chan 已提交
1103
    r"""
1104
    Multilayer Elman network(SimpleRNN). It takes input sequences and initial
F
Feiyu Chan 已提交
1105 1106
    states as inputs, and returns the output sequences and the final states.

1107 1108 1109
    Each layer inside the SimpleRNN maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
F
Feiyu Chan 已提交
1110 1111 1112 1113 1114
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
    and new states(:math:`h_{t}`).

    .. math::

1115
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
1116

F
Feiyu Chan 已提交
1117
        y_{t} & = h_{t}
1118

1119
    where :math:`act` is for :attr:`activation`.
1120 1121

    Using key word arguments to construct is recommended.
F
Feiyu Chan 已提交
1122

1123
    Parameters:
1124 1125 1126
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1127 1128
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1129
            outputs of forward and backward is concatenating. Defaults to "forward".
1130 1131
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1132 1133
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1134 1135
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1136
            dropout from 0 to 1. Defaults to 0.
1137
        activation (str, optional): The activation in each SimpleRNN cell. It can be
1138
            `tanh` or `relu`. Defaults to `tanh`.
1139
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1140
            `weight_ih` of each cell. Defaults to None.
1141
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1142
            `weight_hh` of each cell. Defaults to None.
1143
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1144
            `bias_ih` of each cells. Defaults to None.
1145
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1146
            `bias_hh` of each cells. Defaults to None.
1147
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1148 1149
            None). For more information, please refer to :ref:`api_guide_Name`.

1150
    Inputs:
1151
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1152 1153
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1154 1155

    Returns:
1156

1157
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1158

1159
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1160 1161 1162 1163 1164 1165

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1166

F
Feiyu Chan 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.SimpleRNN(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1179 1180 1181 1182 1183 1184
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1185 1186 1187 1188 1189 1190 1191 1192
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
1193 1194
                 dropout=0.,
                 activation="tanh",
F
Feiyu Chan 已提交
1195 1196 1197 1198 1199
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
1200 1201 1202 1203
        if activation == "tanh":
            mode = "RNN_TANH"
        elif activation == "relu":
            mode = "RNN_RELU"
F
Feiyu Chan 已提交
1204
        else:
1205 1206
            raise ValueError("Unknown activation '{}'".format(activation))
        self.activation = activation
1207 1208 1209 1210
        super(SimpleRNN,
              self).__init__(mode, input_size, hidden_size, num_layers,
                             direction, time_major, dropout, weight_ih_attr,
                             weight_hh_attr, bias_ih_attr, bias_hh_attr)
F
Feiyu Chan 已提交
1211 1212


1213
class LSTM(RNNBase):
F
Feiyu Chan 已提交
1214
    r"""
1215
    Multilayer LSTM. It takes a sequence and an initial state as inputs, and
F
Feiyu Chan 已提交
1216 1217
    returns the output sequences and the final states.

1218 1219 1220 1221
    Each layer inside the LSTM maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}, c_{t-1}`) as inputs, and returns step
F
Feiyu Chan 已提交
1222 1223 1224 1225 1226
    outputs(:math:`y_{t}`) and new states(:math:`h_{t}, c_{t}`).

    .. math::

        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
1227

F
Feiyu Chan 已提交
1228
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
1229

F
Feiyu Chan 已提交
1230
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
1231 1232 1233 1234 1235 1236 1237

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
1238 1239
        y_{t} & = h_{t}

1240
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1241 1242
    multiplication operator.

1243 1244
    Using key word arguments to construct is recommended.

1245
    Parameters:
1246 1247 1248
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1249 1250
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1251
            outputs of forward and backward is concatenating. Defaults to "forward".
1252 1253
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1254 1255
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1256 1257
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1258
            dropout from 0 to 1. Defaults to 0.
1259
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1260
            `weight_ih` of each cell. Default: None.
1261
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1262
            `weight_hh` of each cell. Default: None.
1263
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1264
            `bias_ih` of each cells. Default: None.
1265
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1266
            `bias_hh` of each cells. Default: None.
1267
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1268 1269 1270
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1271
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1272
        - **initial_states** (list|tuple, optional): the initial state, a list/tuple of (h, c), the shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
1273
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1274 1275

    Returns:
1276

1277
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, If `time_major` is False, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1278

1279
        - **final_states** (tuple): the final state, a tuple of two tensors, h and c. The shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1280 1281 1282 1283 1284 1285

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, swith shape `[hidden_size]`.
1286

F
Feiyu Chan 已提交
1287
    Examples:
1288

F
Feiyu Chan 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
        .. code-block:: python

            import paddle

            rnn = paddle.nn.LSTM(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            prev_c = paddle.randn((2, 4, 32))
            y, (h, c) = rnn(x, (prev_h, prev_c))

1300 1301 1302 1303 1304 1305 1306 1307
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,23,32]
            #[2,4,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1308 1309 1310 1311 1312 1313 1314 1315
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
1316
                 dropout=0.,
F
Feiyu Chan 已提交
1317 1318 1319 1320 1321
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
1322 1323 1324 1325
        super(LSTM,
              self).__init__("LSTM", input_size, hidden_size, num_layers,
                             direction, time_major, dropout, weight_ih_attr,
                             weight_hh_attr, bias_ih_attr, bias_hh_attr)
F
Feiyu Chan 已提交
1326 1327


1328
class GRU(RNNBase):
F
Feiyu Chan 已提交
1329
    r"""
1330
    Multilayer GRU. It takes input sequencse and initial states as inputs, and
F
Feiyu Chan 已提交
1331 1332
    returns the output sequences and the final states.

1333 1334 1335 1336
    Each layer inside the GRU maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
F
Feiyu Chan 已提交
1337 1338 1339 1340
    and new states(:math:`h_{t}`).

    .. math::

1341
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
1342

1343
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
1344

1345
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
1346 1347 1348

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
1349 1350
        y_{t} & = h_{t}

1351
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1352 1353
    multiplication operator.

1354 1355
    Using key word arguments to construct is recommended.

1356
    Parameters:
1357 1358 1359
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1360 1361
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1362
            outputs of forward and backward is concatenating. Defaults to "forward".
1363 1364
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1365 1366
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1367 1368
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1369
            dropout from 0 to 1. Defaults to 0.
1370
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1371
            `weight_ih` of each cell. Default: None.
1372
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1373
            `weight_hh` of each cell. Default: None.
1374
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1375
            `bias_ih` of each cells. Default: None.
1376
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1377
            `bias_hh` of each cells. Default: None.
1378
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1379 1380 1381
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1382
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1383 1384
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1385 1386

    Returns:
1387

1388
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1389

1390
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1391 1392 1393 1394 1395 1396

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1397

F
Feiyu Chan 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.GRU(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1410 1411 1412 1413 1414 1415
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1416 1417 1418 1419 1420 1421 1422 1423
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
1424
                 dropout=0.,
F
Feiyu Chan 已提交
1425 1426 1427 1428 1429
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
1430 1431 1432 1433
        super(GRU,
              self).__init__("GRU", input_size, hidden_size, num_layers,
                             direction, time_major, dropout, weight_ih_attr,
                             weight_hh_attr, bias_ih_attr, bias_hh_attr)