rnn.py 62.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Feiyu Chan 已提交
15 16 17 18 19 20 21 22 23
import copy
import collections
import itertools
import six
import math
import sys
import warnings
from functools import partial, reduce

24
import numpy as np
F
Feiyu Chan 已提交
25
import paddle
26
import paddle.fluid as fluid
F
Feiyu Chan 已提交
27
from paddle import framework
28
from paddle.device import get_device, get_cudnn_version
F
Feiyu Chan 已提交
29 30
from paddle.nn import functional as F
from paddle.nn import initializer as I
Z
zhiboniu 已提交
31
from paddle.nn import Layer, LayerList
F
Feiyu Chan 已提交
32 33 34
from paddle.fluid.layers import utils
from paddle.fluid.layers.utils import map_structure, flatten, pack_sequence_as
from paddle.fluid.data_feeder import convert_dtype
W
wanghuancoder 已提交
35
from paddle import _C_ops
Z
zhiboniu 已提交
36 37 38 39 40
from paddle import in_dynamic_mode
from paddle.framework import core
from paddle.static import default_startup_program
from paddle.static import program_guard

41 42
__all__ = []

F
Feiyu Chan 已提交
43 44 45 46 47 48

def split_states(states, bidirectional=False, state_components=1):
    r"""
    Split states of RNN network into possibly nested list or tuple of
    states of each RNN cells of the RNN network.

49
    Parameters:
F
Feiyu Chan 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        states (Tensor|tuple|list): the concatenated states for RNN network.
            When `state_components` is 1, states in a Tensor with shape
            `(L*D, N, C)` where `L` is the number of layers of the RNN 
            network, `D` is the number of directions of the RNN network(1 
            for unidirectional RNNs and 2 for bidirectional RNNs), `N` is 
            the batch size of the input to the RNN network, `C` is the 
            hidden size of the RNN network. 

            When `state_components` is larger than 1, `states` is a tuple of 
            `state_components` Tensors that meet the requirements described 
            above. 
            
            For SimpleRNNs and GRUs, `state_components` is 1, and for LSTMs, 
            `state_components` is 2.
        bidirectional (bool): whether the state is of a bidirectional RNN 
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
    
    Returns:
        A nested list or tuple of RNN cell states. 
        If `bidirectional` is True, it can be indexed twice to get an RNN 
        cell state. The first index indicates the layer, the second index 
        indicates the direction.
        If `bidirectional` is False, it can be indexed once to get an RNN
        cell state. The index indicates the layer.
        Note that if `state_components` is larger than 1, an RNN cell state
        can be indexed one more time to get a tensor of shape(N, C), where 
        `N` is the batch size of the input to the RNN cell, and `C` is the
        hidden size of the RNN cell.
    """
    if state_components == 1:
        states = paddle.unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([paddle.unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    r"""
    Concatenate a possibly nested list or tuple of RNN cell states into a 
    compact form.

102
    Parameters:
F
Feiyu Chan 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        states (list|tuple): a possibly nested list or tuple of RNN cell 
            states. 
            If `bidirectional` is True, it can be indexed twice to get an 
            RNN cell state. The first index indicates the layer, the second 
            index indicates the direction.
            If `bidirectional` is False, it can be indexed once to get an RNN
            cell state. The index indicates the layer.
            Note that if `state_components` is larger than 1, an RNN cell 
            state can be indexed one more time to get a tensor of shape(N, C), 
            where `N` is the batch size of the input to the RNN cell, and 
            `C` is the hidden size of the RNN cell. 
        bidirectional (bool): whether the state is of a bidirectional RNN 
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
    
    Returns:
        Concatenated states for RNN network.
        When `state_components` is 1, states in a Tensor with shape
        `(L\*D, N, C)` where `L` is the number of layers of the RNN 
        network, `D` is the number of directions of the RNN network(1 for 
        unidirectional RNNs and 2 for bidirectional RNNs), `N` is the batch 
        size of the input to the RNN network, `C` is the hidden size of the 
        RNN network.
        
    """
    if state_components == 1:
        return paddle.stack(flatten(states))
    else:
        states = flatten(states)
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
136
        return tuple([paddle.stack(item) for item in componnets])
F
Feiyu Chan 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154


class RNNCellBase(Layer):
    r"""
    RNNCellBase is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

    def get_initial_states(self,
                           batch_ref,
                           shape=None,
                           dtype=None,
                           init_value=0.,
                           batch_dim_idx=0):
        r"""
        Generate initialized states according to provided shape, data type and
        value.
155 156

        Parameters:
F
Feiyu Chan 已提交
157 158 159 160 161
            batch_ref (Tensor): A tensor, which shape would be used to 
                determine the batch size, which is used to generate initial 
                states. For `batch_ref`'s shape d, `d[batch_dim_idx]` is 
                treated as batch size.
            shape (list|tuple, optional): A (possibly nested structure of) shape[s], 
162
                where a shape is a list/tuple of integer. `-1` (for batch size) 
F
Feiyu Chan 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175
                will be automatically prepended if a shape does not starts with 
                it. If None, property `state_shape` will be used. Defaults to 
                None.
            dtype (str|list|tuple, optional): A (possibly nested structure of) 
                data type[s]. The structure must be same as that of `shape`, 
                except when all tensors' in states has the same data type, a 
                single data type can be used. If None and property `cell.state_shape` 
                is not available, current default floating type of paddle is 
                used. Defaults to None.
            init_value (float, optional): A float value used to initialize states. 
                Defaults to 0.
            batch_dim_idx (int, optional): An integer indicating which 
                dimension of the of `batch_ref` represents batch. Defaults to 0.
176
                
F
Feiyu Chan 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        Returns:
            init_states (Tensor|tuple|list): tensor of the provided shape and 
                dtype, or list of tensors that each satisfies the requirements,
                packed in the same structure as `shape` and `type` does.
        """
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
            if sys.version_info < (3, ):
                integer_types = (
                    int,
                    long, )
            else:
                integer_types = (int, )
            """For shape, list/tuple of integer is the finest-grained objection"""
            if (isinstance(seq, list) or isinstance(seq, tuple)):
                if reduce(lambda flag, x: isinstance(x, integer_types) and flag,
                          seq, True):
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
            return (isinstance(seq, collections.Sequence) and
                    not isinstance(seq, six.string_types))

        class Shape(object):
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:
            states_dtypes = framework.get_default_dtype()
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
            lambda shape, dtype: paddle.fluid.layers.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
                value=init_value,
                input_dim_idx=batch_dim_idx), states_shapes, states_dtypes)
        return init_states

    @property
    def state_shape(self):
        r"""
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) shape[s], where a shape is a 
        list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it).
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
            "Please add implementaion for `state_shape` in the used cell.")

    @property
    def state_dtype(self):
        r"""
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) data types[s]. The structure must be
        same as that of `shape`, except when all tensors' in states has the same
        data type, a signle data type can be used.
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
            "Please add implementaion for `state_dtype` in the used cell.")


class SimpleRNNCell(RNNCellBase):
    r"""
    Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it 
    computes the outputs and updates states.

    The formula used is as follows:

    .. math::
271
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
272

F
Feiyu Chan 已提交
273
        y_{t} & = h_{t}
274
    
275
    where :math:`act` is for :attr:`activation`.
F
Feiyu Chan 已提交
276 277 278 279

    Please refer to `Finding Structure in Time 
    <https://crl.ucsd.edu/~elman/Papers/fsit.pdf>`_ for more details.
    
280
    Parameters:
F
Feiyu Chan 已提交
281 282 283 284 285
        input_size (int): The input size.
        hidden_size (int): The hidden size.
        activation (str, optional): The activation in the SimpleRNN cell. 
            It can be `tanh` or `relu`. Defaults to `tanh`.
        weight_ih_attr (ParamAttr, optional): The parameter attribute for 
286
            :math:`weight_ih`. Default: None.
F
Feiyu Chan 已提交
287
        weight_hh_attr(ParamAttr, optional): The parameter attribute for 
288
            :math:`weight_hh`. Default: None.
F
Feiyu Chan 已提交
289
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the 
290
            :math:`bias_ih`. Default: None.
291
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the 
292
            :math:`bias_hh`. Default: None.
F
Feiyu Chan 已提交
293 294 295
        name (str, optional): Name for the operation (optional, default is 
            None). For more information, please refer to :ref:`api_guide_Name`.

296 297 298 299 300
    Variables:
        - **weight_ih** (Parameter): shape (hidden_size, input_size), input to hidden weight, corresponding to :math:`W_{ih}` in the formula.
        - **weight_hh** (Parameter): shape (hidden_size, hidden_size), hidden to hidden weight, corresponding to :math:`W_{hh}` in the formula.
        - **bias_ih** (Parameter): shape (hidden_size, ), input to hidden bias, corresponding to :math:`b_{ih}` in the formula.
        - **bias_hh** (Parameter): shape (hidden_size, ), hidden to hidden bias, corresponding to :math:`b_{hh}` in the formula.
F
Feiyu Chan 已提交
301 302
    
    Inputs:
303 304
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_{t}` in the formula.
        - **states** (Tensor, optional): shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
305 306

    Returns:
307 308
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
F
Feiyu Chan 已提交
309 310
    
    Notes:
311
        All the weights and bias are initialized with `Uniform(-std, std)` by default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
312 313 314 315 316 317 318 319 320 321 322 323

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            y, h = cell(x, prev_h)
324 325 326
            print(y.shape)

            #[4,32]
F
Feiyu Chan 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339

    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 activation="tanh",
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
        super(SimpleRNNCell, self).__init__()
340 341 342 343
        if hidden_size <= 0:
            raise ValueError(
                "hidden_size of {} must be greater than 0, but now equals to {}".
                format(self.__class__.__name__, hidden_size))
F
Feiyu Chan 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (hidden_size, input_size),
            weight_ih_attr,
            default_initializer=I.Uniform(-std, std))
        self.weight_hh = self.create_parameter(
            (hidden_size, hidden_size),
            weight_hh_attr,
            default_initializer=I.Uniform(-std, std))
        self.bias_ih = self.create_parameter(
            (hidden_size, ),
            bias_ih_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))
        self.bias_hh = self.create_parameter(
            (hidden_size, ),
            bias_hh_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))

        self.input_size = input_size
        self.hidden_size = hidden_size
        if activation not in ["tanh", "relu"]:
            raise ValueError(
                "activation for SimpleRNNCell should be tanh or relu, "
                "but get {}".format(activation))
        self.activation = activation
        self._activation_fn = paddle.tanh \
            if activation == "tanh" \
            else F.relu

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_h = states
        i2h = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            i2h += self.bias_ih
        h2h = paddle.matmul(pre_h, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h2h += self.bias_hh
        h = self._activation_fn(i2h + h2h)
        return h, h

    @property
    def state_shape(self):
        return (self.hidden_size, )

392 393 394 395 396 397
    def extra_repr(self):
        s = '{input_size}, {hidden_size}'
        if self.activation is not "tanh":
            s += ', activation={activation}'
        return s.format(**self.__dict__)

F
Feiyu Chan 已提交
398 399 400 401 402 403 404 405 406 407

class LSTMCell(RNNCellBase):
    r"""
    Long-Short Term Memory(LSTM) RNN cell. Given the inputs and previous states, 
    it computes the outputs and updates states.

    The formula used is as follows:

    .. math::
        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
408

F
Feiyu Chan 已提交
409
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
410

F
Feiyu Chan 已提交
411
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
412 413 414 415 416 417 418

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
419 420
        y_{t} & = h_{t}

421
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise 
F
Feiyu Chan 已提交
422 423 424 425 426
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

427
    Parameters:
F
Feiyu Chan 已提交
428 429 430 431 432 433 434 435
        input_size (int): The input size.
        hidden_size (int): The hidden size.
        weight_ih_attr(ParamAttr, optional): The parameter attribute for 
            `weight_ih`. Default: None.
        weight_hh_attr(ParamAttr, optional): The parameter attribute for 
            `weight_hh`. Default: None.
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the 
            `bias_ih`. Default: None.
436
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the 
F
Feiyu Chan 已提交
437 438 439 440
            `bias_hh`. Default: None.
        name (str, optional): Name for the operation (optional, default is 
            None). For more information, please refer to :ref:`api_guide_Name`.

441 442 443 444 445
    Variables:
        - **weight_ih** (Parameter): shape (4 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ii}, W_{if}, W_{ig}, W_{io}` in the formula.
        - **weight_hh** (Parameter): shape (4 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hi}, W_{hf}, W_{hg}, W_{ho}` in the formula.
        - **bias_ih** (Parameter): shape (4 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ii}, b_{if}, b_{ig}, b_{io}` in the formula.
        - **bias_hh** (Parameter): shape (4 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hi}, b_{hf}, b_{hg}, b_{ho}` in the formula.
F
Feiyu Chan 已提交
446 447

    Inputs:
448
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_t` in the formula.
449
        - **states** (list|tuple, optional): a list/tuple of two tensors, each of shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}, c_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
450 451

    Returns:
452 453
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (tuple): a tuple of two tensors, each of shape `[batch_size, hidden_size]`, the new hidden states, corresponding to :math:`h_{t}, c_{t}` in the formula.
F
Feiyu Chan 已提交
454 455 456

    Notes:
        All the weights and bias are initialized with `Uniform(-std, std)` by 
457 458
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more 
        information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))
            prev_c = paddle.randn((4, 32))

            cell = paddle.nn.LSTMCell(16, 32)
            y, (h, c) = cell(x, (prev_h, prev_c))

473 474 475 476 477 478 479 480
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,32]
            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
481 482 483 484 485 486 487 488 489 490 491
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
        super(LSTMCell, self).__init__()
492 493 494 495
        if hidden_size <= 0:
            raise ValueError(
                "hidden_size of {} must be greater than 0, but now equals to {}".
                format(self.__class__.__name__, hidden_size))
F
Feiyu Chan 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (4 * hidden_size, input_size),
            weight_ih_attr,
            default_initializer=I.Uniform(-std, std))
        self.weight_hh = self.create_parameter(
            (4 * hidden_size, hidden_size),
            weight_hh_attr,
            default_initializer=I.Uniform(-std, std))
        self.bias_ih = self.create_parameter(
            (4 * hidden_size, ),
            bias_ih_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))
        self.bias_hh = self.create_parameter(
            (4 * hidden_size, ),
            bias_hh_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_hidden, pre_cell = states
        gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = paddle.split(gates, num_or_sections=4, axis=-1)

        i = self._gate_activation(chunked_gates[0])
        f = self._gate_activation(chunked_gates[1])
        o = self._gate_activation(chunked_gates[3])
        c = f * pre_cell + i * self._activation(chunked_gates[2])
        h = o * self._activation(c)

        return h, (h, c)

    @property
    def state_shape(self):
        r"""
        The `state_shape` of LSTMCell is a tuple with two shapes: 
        `((hidden_size, ), (hidden_size,))`. (-1 for batch size would be 
        automatically inserted into shape). These two shapes correspond 
        to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
        return ((self.hidden_size, ), (self.hidden_size, ))

552 553 554
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
555 556 557 558 559 560 561 562

class GRUCell(RNNCellBase):
    r"""
    Gated Recurrent Unit (GRU) RNN cell. Given the inputs and previous states, 
    it computes the outputs and updates states.

    The formula for GRU used is as follows:

563
    ..  math::
F
Feiyu Chan 已提交
564

565
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
566

567
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
568

569
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
570 571 572

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
573 574
        y_{t} & = h_{t}
    
575
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise 
F
Feiyu Chan 已提交
576 577 578 579 580 581
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

    Parameters:
582
        input_size (int): The input size.
F
Feiyu Chan 已提交
583 584 585 586 587 588 589
        hidden_size (int): The hidden size.
        weight_ih_attr(ParamAttr, optional): The parameter attribute for 
            `weight_ih`. Default: None.
        weight_hh_attr(ParamAttr, optional): The parameter attribute for 
            `weight_hh`. Default: None.
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the 
            `bias_ih`. Default: None.
590
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the 
F
Feiyu Chan 已提交
591 592 593 594
            `bias_hh`. Default: None.
        name (str, optional): Name for the operation (optional, default is 
            None). For more information, please refer to :ref:`api_guide_Name`.

595 596 597 598 599
    Variables:
        - **weight_ih** (Parameter): shape (3 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ir}, W_{iz}, W_{ic}` in the formula.
        - **weight_hh** (Parameter): shape (3 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hr}, W_{hz}, W_{hc}` in the formula.
        - **bias_ih** (Parameter): shape (3 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ir}, b_{iz}, b_{ic}` in the formula.
        - **bias_hh** (Parameter): shape (3 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hr}, b_{hz}, b_{hc}` in the formula.
F
Feiyu Chan 已提交
600 601

    Inputs:
602 603
        - **inputs** (Tensor): A tensor with shape `[batch_size, input_size]`, corresponding to :math:`x_t` in the formula.
        - **states** (Tensor): A tensor with shape `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}` in the formula.
F
Feiyu Chan 已提交
604 605

    Returns:
606 607
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
F
Feiyu Chan 已提交
608 609 610
    
    Notes:
        All the weights and bias are initialized with `Uniform(-std, std)` by 
611 612
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more 
        information about parameter initialization, please refer to s:ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.GRUCell(16, 32)
            y, h = cell(x, prev_h)

626 627 628 629 630 631
            print(y.shape)
            print(h.shape)

            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
632 633 634 635 636 637 638 639 640 641 642
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
        super(GRUCell, self).__init__()
643 644 645 646
        if hidden_size <= 0:
            raise ValueError(
                "hidden_size of {} must be greater than 0, but now equals to {}".
                format(self.__class__.__name__, hidden_size))
F
Feiyu Chan 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (3 * hidden_size, input_size),
            weight_ih_attr,
            default_initializer=I.Uniform(-std, std))
        self.weight_hh = self.create_parameter(
            (3 * hidden_size, hidden_size),
            weight_hh_attr,
            default_initializer=I.Uniform(-std, std))
        self.bias_ih = self.create_parameter(
            (3 * hidden_size, ),
            bias_ih_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))
        self.bias_hh = self.create_parameter(
            (3 * hidden_size, ),
            bias_hh_attr,
            is_bias=True,
            default_initializer=I.Uniform(-std, std))

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)

        pre_hidden = states
        x_gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            x_gates = x_gates + self.bias_ih
        h_gates = paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h_gates = h_gates + self.bias_hh

        x_r, x_z, x_c = paddle.split(x_gates, num_or_sections=3, axis=1)
        h_r, h_z, h_c = paddle.split(h_gates, num_or_sections=3, axis=1)

        r = self._gate_activation(x_r + h_r)
        z = self._gate_activation(x_z + h_z)
        c = self._activation(x_c + r * h_c)  # apply reset gate after mm
        h = (pre_hidden - c) * z + c

        return h, h

    @property
    def state_shape(self):
        r"""
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to the shape of :math:`h_{t-1}`.
        """
        return (self.hidden_size, )

703 704 705
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
706 707 708 709 710 711 712

class RNN(Layer):
    r"""
    Wrapper for RNN, which creates a recurrent neural network with an RNN cell. 
    It performs :code:`cell.forward()` repeatedly until reaches to the maximum 
    length of `inputs`.

713
    Parameters:
F
Feiyu Chan 已提交
714 715 716 717 718 719 720
        cell(RNNCellBase): An instance of `RNNCellBase`.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
721 722 723 724
        - **inputs** (Tensor): A (possibly nested structure of) tensor[s]. The input sequences. If time major is False, the shape is `[batch_size, time_steps, input_size]`. If time major is True, the shape is `[time_steps, batch_size, input_size]` where `input_size` is the input size of the cell.
        - **initial_states** (Tensor|list|tuple, optional): Tensor of a possibly nested structure of tensors, representing the initial state for the rnn cell. If not provided, `cell.get_initial_states` would be called to produce the initial states. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None.If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
        - **kwargs**: Additional keyword arguments to pass to `forward` of the cell. 
F
Feiyu Chan 已提交
725 726

    Returns:
727 728
        - **outputs** (Tensor|list|tuple): the output sequences. If `time_major` is True, the shape is `[time_steps, batch_size, hidden_size]`, else `[batch_size, time_steps, hidden_size]`.
        - **final_states** (Tensor|list|tuple): final states of the cell. Tensor or a possibly nested structure of tensors which has the same structure with intial state. Each tensor in final states has the same shape and dtype as the corresponding tensor in initial states.
F
Feiyu Chan 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    
    Notes:
        This class is a low level API for wrapping rnn cell into a RNN network.
        Users should take care of the state of the cell. If `initial_states` is 
        passed to the `forward` method, make sure that it satisfies the 
        requirements of the cell.

    Examples:

        .. code-block:: python

            import paddle

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            rnn = paddle.nn.RNN(cell)
            outputs, final_states = rnn(inputs, prev_h)

749 750 751 752 753 754
            print(outputs.shape)
            print(final_states.shape)

            #[4,23,32]
            #[4,32]

F
Feiyu Chan 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
    """

    def __init__(self, cell, is_reverse=False, time_major=False):
        super(RNN, self).__init__()
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

    def forward(self,
                inputs,
                initial_states=None,
                sequence_length=None,
                **kwargs):
771 772 773 774 775 776 777 778
        final_outputs, final_states = paddle.fluid.layers.rnn(
            self.cell,
            inputs,
            initial_states=initial_states,
            sequence_length=sequence_length,
            time_major=self.time_major,
            is_reverse=self.is_reverse,
            **kwargs)
F
Feiyu Chan 已提交
779 780 781 782 783 784 785 786 787 788
        return final_outputs, final_states


class BiRNN(Layer):
    r"""
    Wrapper for bidirectional RNN, which builds a bidiretional RNN given the 
    forward rnn cell and backward rnn cell. A BiRNN applies forward RNN and 
    backward RNN with coresponding cells separately and concats the outputs 
    along the last axis.

789
    Parameters:
F
Feiyu Chan 已提交
790 791 792 793 794 795
        cell_fw (RNNCellBase): A RNNCellBase instance used for forward RNN.
        cell_bw (RNNCellBase): A RNNCellBase instance used for backward RNN.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
796 797 798 799
        - **inputs** (Tensor): the input sequences of both RNN. If time_major is True, the shape of is `[time_steps, batch_size, input_size]`, else the shape is `[batch_size, time_steps, input_size]`, where input_size is the input size of both cells.
        - **initial_states** (list|tuple, optional): A tuple/list of the initial states of the forward cell and backward cell. Defaults to None. If not provided, `cell.get_initial_states` would be called to produce the initial states for each cell. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
        - **kwargs**: Additional keyword arguments. Arguments passed to `forward` for each cell.
F
Feiyu Chan 已提交
800 801

    Outputs:
802 803
        - **outputs** (Tensor): the outputs of the bidirectional RNN. It is the concatenation of the outputs from the forward RNN and backward RNN along the last axis. If time major is True, the shape is `[time_steps, batch_size, size]`, else the shape is `[batch_size, time_steps, size]`, where size is `cell_fw.hidden_size + cell_bw.hidden_size`.
        - **final_states** (tuple): A tuple of the final states of the forward cell and backward cell. 
F
Feiyu Chan 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

    Notes:
        This class is a low level API for wrapping rnn cells into a BiRNN 
        network. Users should take care of the states of the cells. 
        If `initial_states` is passed to the `forward` method, make sure that 
        it satisfies the requirements of the cells.

    Examples:

        .. code-block:: python

            import paddle

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)
            rnn = paddle.nn.BiRNN(cell_fw, cell_bw)

            inputs = paddle.rand((2, 23, 16))
            outputs, final_states = rnn(inputs)

824 825 826 827 828 829
            print(outputs.shape)
            print(final_states[0][0].shape,len(final_states),len(final_states[0]))

            #[4,23,64]
            #[2,32] 2 2

F
Feiyu Chan 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
    """

    def __init__(self, cell_fw, cell_bw, time_major=False):
        super(BiRNN, self).__init__()
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        if cell_fw.input_size != cell_bw.input_size:
            raise ValueError("input size of forward cell({}) does not equals"
                             "that of backward cell({})".format(
                                 cell_fw.input_size, cell_bw.input_size))
        for cell in [self.cell_fw, self.cell_bw]:
            if not hasattr(cell, "call"):
                # for non-dygraph mode, `rnn` api uses cell.call
                cell.call = cell.forward
        self.time_major = time_major

    def forward(self,
                inputs,
                initial_states=None,
                sequence_length=None,
                **kwargs):
        if isinstance(initial_states, (list, tuple)):
            assert len(initial_states) == 2, \
                "length of initial_states should be 2 when it is a list/tuple"

855 856 857
        outputs, final_states = paddle.fluid.layers.birnn(
            self.cell_fw, self.cell_bw, inputs, initial_states, sequence_length,
            self.time_major, **kwargs)
F
Feiyu Chan 已提交
858 859 860
        return outputs, final_states


861
class RNNBase(LayerList):
F
Feiyu Chan 已提交
862
    r"""
863 864
    RNNBase class for RNN networks. It provides `forward`, `flatten_parameters`
    and other common methods for SimpleRNN, LSTM and GRU.
F
Feiyu Chan 已提交
865 866
    """

867 868 869 870 871 872 873 874 875 876 877 878 879
    def __init__(self,
                 mode,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
                 dropout=0.,
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None):
        super(RNNBase, self).__init__()
880
        bidirectional_list = ["bidirectional", "bidirect"]
881 882 883 884
        self.mode = mode
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
885
        self.num_directions = 2 if direction in bidirectional_list else 1
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2 if mode == "LSTM" else 1

        kwargs = {
            "weight_ih_attr": weight_ih_attr,
            "weight_hh_attr": weight_hh_attr,
            "bias_ih_attr": bias_ih_attr,
            "bias_hh_attr": bias_hh_attr
        }

        if mode == "LSTM":
            rnn_cls = LSTMCell
        elif mode == "GRU":
            rnn_cls = GRUCell
        else:
            rnn_cls = SimpleRNNCell
            kwargs["activation"] = self.activation

905 906
        if direction in ["forward"]:
            is_reverse = False
907 908 909 910 911
            cell = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = rnn_cls(hidden_size, hidden_size, **kwargs)
                self.append(RNN(cell, is_reverse, time_major))
912
        elif direction in bidirectional_list:
913 914 915 916 917 918 919 920 921
            cell_fw = rnn_cls(input_size, hidden_size, **kwargs)
            cell_bw = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                cell_bw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
922
                "direction should be forward or bidirect (or bidirectional), "
923 924
                "received direction = {}".format(direction))

925
        self.could_use_cudnn = True
926
        self.could_use_cudnn &= len(self.parameters()) == num_layers * 4 * (
927
            2 if direction in bidirectional_list else 1)
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977

        # Expose params as RNN's attribute, which can make it compatible when
        # replacing small ops composed rnn with cpp rnn kernel.
        # Moreover, `jit.to_static` assumes params are added by current layer
        # and wouldn't include sublayer's params in current layer, which also
        # requires these params are added to current layer for `jit.save`.
        param_names = []
        for layer in range(self.num_layers):
            for direction in range(self.num_directions):
                suffix = '_reverse' if direction == 1 else ''
                param_names.extend(['weight_ih_l{}{}', 'weight_hh_l{}{}'])
                if bias_ih_attr != False: param_names.append('bias_ih_l{}{}')
                if bias_hh_attr != False: param_names.append('bias_hh_l{}{}')
                param_names = [x.format(layer, suffix) for x in param_names]
        for name, param in zip(param_names, self.parameters()):
            setattr(self, name, param)

        self.flatten_parameters()

    def flatten_parameters(self):
        """
        Resets parameter data pointer to address in continuous memory block for
        cudnn usage.
        """
        if self.could_use_cudnn:
            # layer.parameters() is depth first and ordered
            # for i in layer: for j in direct: w_ih, w_hh, b_ih, b_hh
            # need to reorganize to cudnn param layout:
            # all bias following all weights
            params = self.parameters(include_sublayers=False)
            shape = [np.prod(param.shape) for param in params]
            self._all_weights = [None] * len(params)
            for i, param in enumerate(params):
                offset = 0 if i % 4 < 2 else (2 * self.num_layers *
                                              self.num_directions)
                layer_idx = i // 4
                self._all_weights[offset + layer_idx * 2 + i % 2] = param
            # Wrap using a list to avoid registed into params and saving, maybe
            # need a better way to handle this later. Use `create_parameter` to
            # add both to main_program and startup_program for static-graph.
            # Use Constant initializer to avoid make effect on random generator.
            self._flat_weight = [
                self.create_parameter(
                    shape=[np.sum(shape)],
                    dtype=params[0].dtype,
                    default_initializer=I.Constant(0.0))
            ]
            # dropout state may also can be hided and avoid saving
            # should dropout state be persistable for static-graph
            self._dropout_state = self.create_variable(
Z
zhiboniu 已提交
978 979
                dtype=core.VarDesc.VarType.UINT8)
            if in_dynamic_mode():
980 981 982 983 984 985
                with paddle.no_grad():
                    _C_ops.coalesce_tensor(self._all_weights, self._all_weights,
                                           self._flat_weight[0], "copy_data",
                                           True, "use_align", False, "dtype",
                                           params[0].dtype)
                    return
986
            # for static-graph, append coalesce_tensor into startup program
Z
zhiboniu 已提交
987 988
            with program_guard(default_startup_program(),
                               default_startup_program()):
Z
zhiboniu 已提交
989
                with paddle.no_grad():
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
                    self._helper.append_op(
                        type="coalesce_tensor",
                        inputs={"Input": self._all_weights},
                        outputs={
                            "Output": self._all_weights,
                            "FusedOutput": self._flat_weight
                        },
                        attrs={
                            "copy_data": True,
                            "use_align": False,
                            "dtype": params[0].dtype
                        })

    def _cudnn_impl(self, inputs, initial_states, sequence_length):
        if not self.time_major:
            inputs = paddle.tensor.transpose(inputs, [1, 0, 2])

Z
zhiboniu 已提交
1007
        if in_dynamic_mode():
W
wanghuancoder 已提交
1008
            _, _, out, state = _C_ops.rnn(
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
                inputs, initial_states, self._all_weights, sequence_length,
                self._dropout_state, self.state_components, 'dropout_prob',
                self.dropout, 'is_bidirec', self.num_directions == 2,
                'input_size', self.input_size, 'hidden_size', self.hidden_size,
                'num_layers', self.num_layers, 'mode', self.mode, 'is_test',
                not self.training)
        else:
            out = self._helper.create_variable_for_type_inference(inputs.dtype)
            state = [
                self._helper.create_variable_for_type_inference(inputs.dtype)
                for i in range(self.state_components)
            ]
            reserve = self._helper.create_variable_for_type_inference(
Z
zhiboniu 已提交
1022
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

            inputs = {
                'Input': inputs,
                'WeightList': self._all_weights,
                'PreState': initial_states,
                'SequenceLength': sequence_length
            }
            attrs = {
                'dropout_prob': self.dropout,
                'is_bidirec': self.num_directions == 2,
                'input_size': self.input_size,
                'hidden_size': self.hidden_size,
                'num_layers': self.num_layers,
                'mode': self.mode,
                'is_test': not self.training
            }

            outputs = {
                'Out': out,
                'State': state,
                'Reserve': reserve,
                'DropoutState': self._dropout_state,
            }

            self._helper.append_op(
                type="rnn", inputs=inputs, outputs=outputs, attrs=attrs)
1049 1050 1051

        out = paddle.tensor.transpose(out,
                                      [1, 0, 2]) if not self.time_major else out
G
Guo Sheng 已提交
1052
        return out, tuple(state) if len(state) > 1 else state[0]
1053

F
Feiyu Chan 已提交
1054 1055 1056 1057 1058 1059
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        dtype = inputs.dtype
        if initial_states is None:
            state_shape = (self.num_layers * self.num_directions, -1,
                           self.hidden_size)
1060 1061
            initial_states = tuple([
                paddle.fluid.layers.fill_constant_batch_size_like(
F
Feiyu Chan 已提交
1062
                    inputs, state_shape, dtype, 0, batch_index, 1)
1063 1064 1065 1066
                for _ in range(self.state_components)
            ])
        else:
            initial_states = [initial_states] if isinstance(
Z
zhiboniu 已提交
1067
                initial_states, paddle.static.Variable) else initial_states
F
Feiyu Chan 已提交
1068

Z
zhiboniu 已提交
1069 1070 1071
        if self.could_use_cudnn and (
                not paddle.device.is_compiled_with_rocm() or
                sequence_length is None):
1072 1073 1074
            # Add CPU kernel and dispatch in backend later
            return self._cudnn_impl(inputs, initial_states, sequence_length)

F
Feiyu Chan 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        states = split_states(initial_states, self.num_directions == 2,
                              self.state_components)
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
                inputs = F.dropout(
                    inputs,
                    self.dropout,
                    training=self.training,
                    mode="upscale_in_train")
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

        final_states = concat_states(final_states, self.num_directions == 2,
                                     self.state_components)
        return outputs, final_states

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    def extra_repr(self):
        main_str = '{input_size}, {hidden_size}'
        if self.num_layers != 1:
            main_str += ', num_layers={num_layers}'
        if self.time_major != False:
            main_str += ', time_major={time_major}'
        if self.dropout != 0:
            main_str += ', dropout={dropout}'
        return main_str.format(**self.__dict__)

F
Feiyu Chan 已提交
1104

1105
class SimpleRNN(RNNBase):
F
Feiyu Chan 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    r"""
    Multilayer Elman network(SimpleRNN). It takes input sequences and initial 
    states as inputs, and returns the output sequences and the final states.

    Each layer inside the SimpleRNN maps the input sequences and initial states 
    to the output sequences and final states in the following manner: at each 
    step, it takes step inputs(:math:`x_{t}`) and previous 
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
    and new states(:math:`h_{t}`).

    .. math::

1118
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
1119

F
Feiyu Chan 已提交
1120
        y_{t} & = h_{t}
1121
    
1122
    where :math:`act` is for :attr:`activation`.
1123 1124

    Using key word arguments to construct is recommended.
F
Feiyu Chan 已提交
1125

1126
    Parameters:
F
Feiyu Chan 已提交
1127 1128 1129
        input_size (int): The input size for the first layer's cell.
        hidden_size (int): The hidden size for each layer's cell.
        num_layers (int, optional): Number of layers. Defaults to 1.
1130 1131
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1132
            outputs of forward and backward is concatenating. Defaults to "forward".
F
Feiyu Chan 已提交
1133 1134
        time_major (bool, optional): Whether the first dimension of the input means the
            time steps. Defaults to False.
1135 1136 1137 1138
        dropout (float, optional): The droput probability. Dropout is applied to the 
            input of each layer except for the first layer. Defaults to 0.
        activation (str, optional): The activation in each SimpleRNN cell. It can be 
            `tanh` or `relu`. Defaults to `tanh`.
F
Feiyu Chan 已提交
1139 1140 1141 1142 1143 1144
        weight_ih_attr (ParamAttr, optional): The parameter attribute for 
            `weight_ih` of each cell. Defaults to None.
        weight_hh_attr (ParamAttr, optional): The parameter attribute for 
            `weight_hh` of each cell. Defaults to None.
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the 
            `bias_ih` of each cells. Defaults to None.
1145
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the 
F
Feiyu Chan 已提交
1146 1147 1148 1149
            `bias_hh` of each cells. Defaults to None.
        name (str, optional): Name for the operation (optional, default is 
            None). For more information, please refer to :ref:`api_guide_Name`.

1150
    Inputs:
1151 1152 1153
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, hidden_size]`.
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1154 1155

    Returns:
1156

1157
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1.
1158 1159
        
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1160 1161 1162 1163 1164 1165

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1166

F
Feiyu Chan 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.SimpleRNN(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1179 1180 1181 1182 1183 1184
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1185 1186 1187 1188 1189 1190 1191 1192
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
1193 1194
                 dropout=0.,
                 activation="tanh",
F
Feiyu Chan 已提交
1195 1196 1197 1198 1199
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
1200 1201 1202 1203
        if activation == "tanh":
            mode = "RNN_TANH"
        elif activation == "relu":
            mode = "RNN_RELU"
F
Feiyu Chan 已提交
1204
        else:
1205 1206 1207 1208 1209
            raise ValueError("Unknown activation '{}'".format(activation))
        self.activation = activation
        super(SimpleRNN, self).__init__(
            mode, input_size, hidden_size, num_layers, direction, time_major,
            dropout, weight_ih_attr, weight_hh_attr, bias_ih_attr, bias_hh_attr)
F
Feiyu Chan 已提交
1210 1211


1212
class LSTM(RNNBase):
F
Feiyu Chan 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
    r"""
    Multilayer LSTM. It takes a sequence and an initial state as inputs, and 
    returns the output sequences and the final states.

    Each layer inside the LSTM maps the input sequences and initial states 
    to the output sequences and final states in the following manner: at each 
    step, it takes step inputs(:math:`x_{t}`) and previous 
    states(:math:`h_{t-1}, c_{t-1}`) as inputs, and returns step 
    outputs(:math:`y_{t}`) and new states(:math:`h_{t}, c_{t}`).

    .. math::

        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
1226

F
Feiyu Chan 已提交
1227
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
1228

F
Feiyu Chan 已提交
1229
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
1230 1231 1232 1233 1234 1235 1236

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
1237 1238
        y_{t} & = h_{t}

1239
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise 
F
Feiyu Chan 已提交
1240 1241
    multiplication operator.

1242 1243
    Using key word arguments to construct is recommended.

1244
    Parameters:
F
Feiyu Chan 已提交
1245 1246 1247
        input_size (int): The input size for the first layer's cell.
        hidden_size (int): The hidden size for each layer's cell.
        num_layers (int, optional): Number of layers. Defaults to 1.
1248 1249
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1250
            outputs of forward and backward is concatenating. Defaults to "forward".
F
Feiyu Chan 已提交
1251 1252
        time_major (bool, optional): Whether the first dimension of the input 
            means the time steps. Defaults to False.
1253 1254
        dropout (float, optional): The droput probability. Dropout is applied 
            to the input of each layer except for the first layer. Defaults to 0.
F
Feiyu Chan 已提交
1255 1256 1257 1258 1259 1260
        weight_ih_attr (ParamAttr, optional): The parameter attribute for 
            `weight_ih` of each cell. Default: None.
        weight_hh_attr (ParamAttr, optional): The parameter attribute for 
            `weight_hh` of each cell. Default: None.
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the 
            `bias_ih` of each cells. Default: None.
1261
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the 
F
Feiyu Chan 已提交
1262 1263 1264 1265 1266
            `bias_hh` of each cells. Default: None.
        name (str, optional): Name for the operation (optional, default is 
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1267
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, hidden_size]`.
1268
        - **initial_states** (list|tuple, optional): the initial state, a list/tuple of (h, c), the shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
1269
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1270 1271

    Returns:
1272 1273 1274 1275

        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, If `time_major` is False, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1.
        
        - **final_states** (tuple): the final state, a tuple of two tensors, h and c. The shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1276 1277 1278 1279 1280 1281

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, swith shape `[hidden_size]`.
1282

F
Feiyu Chan 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
    Examples:
    
        .. code-block:: python

            import paddle

            rnn = paddle.nn.LSTM(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            prev_c = paddle.randn((2, 4, 32))
            y, (h, c) = rnn(x, (prev_h, prev_c))

1296 1297 1298 1299 1300 1301 1302 1303
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,23,32]
            #[2,4,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1304 1305 1306 1307 1308 1309 1310 1311
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
1312
                 dropout=0.,
F
Feiyu Chan 已提交
1313 1314 1315 1316 1317
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
1318 1319 1320
        super(LSTM, self).__init__(
            "LSTM", input_size, hidden_size, num_layers, direction, time_major,
            dropout, weight_ih_attr, weight_hh_attr, bias_ih_attr, bias_hh_attr)
F
Feiyu Chan 已提交
1321 1322


1323
class GRU(RNNBase):
F
Feiyu Chan 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
    r"""
    Multilayer GRU. It takes input sequencse and initial states as inputs, and 
    returns the output sequences and the final states.

    Each layer inside the GRU maps the input sequences and initial states 
    to the output sequences and final states in the following manner: at each 
    step, it takes step inputs(:math:`x_{t}`) and previous 
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`) 
    and new states(:math:`h_{t}`).

    .. math::

1336
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
1337

1338
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
1339

1340
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
1341 1342 1343

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
1344 1345
        y_{t} & = h_{t}

1346
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise 
F
Feiyu Chan 已提交
1347 1348
    multiplication operator.

1349 1350
    Using key word arguments to construct is recommended.

1351
    Parameters:
F
Feiyu Chan 已提交
1352 1353 1354
        input_size (int): The input size for the first layer's cell.
        hidden_size (int): The hidden size for each layer's cell.
        num_layers (int, optional): Number of layers. Defaults to 1.
1355 1356
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1357
            outputs of forward and backward is concatenating. Defaults to "forward".
F
Feiyu Chan 已提交
1358 1359
        time_major (bool, optional): Whether the first dimension of the input 
            means the time steps. Defaults to False.
1360 1361
        dropout (float, optional): The droput probability. Dropout is applied 
            to the input of each layer except for the first layer. Defaults to 0.
F
Feiyu Chan 已提交
1362 1363 1364 1365 1366 1367
        weight_ih_attr (ParamAttr, optional): The parameter attribute for 
            `weight_ih` of each cell. Default: None.
        weight_hh_attr (ParamAttr, optional): The parameter attribute for 
            `weight_hh` of each cell. Default: None.
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the 
            `bias_ih` of each cells. Default: None.
1368
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the 
F
Feiyu Chan 已提交
1369 1370 1371 1372 1373
            `bias_hh` of each cells. Default: None.
        name (str, optional): Name for the operation (optional, default is 
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1374 1375 1376
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, hidden_size]`.
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1377 1378

    Returns:
1379

1380
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1.
1381 1382
        
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1383 1384 1385 1386 1387 1388

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1389

F
Feiyu Chan 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.GRU(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1402 1403 1404 1405 1406 1407
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1408 1409 1410 1411 1412 1413 1414 1415
    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 time_major=False,
1416
                 dropout=0.,
F
Feiyu Chan 已提交
1417 1418 1419 1420 1421
                 weight_ih_attr=None,
                 weight_hh_attr=None,
                 bias_ih_attr=None,
                 bias_hh_attr=None,
                 name=None):
1422 1423 1424
        super(GRU, self).__init__(
            "GRU", input_size, hidden_size, num_layers, direction, time_major,
            dropout, weight_ih_attr, weight_hh_attr, bias_ih_attr, bias_hh_attr)