rnn.py 76.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Feiyu Chan 已提交
15
import math
16
from collections.abc import Sequence
17
from functools import partial, reduce
F
Feiyu Chan 已提交
18

19
import numpy as np
20

F
Feiyu Chan 已提交
21
import paddle
22
from paddle import _C_ops, _legacy_C_ops, framework, in_dynamic_mode
23 24 25
from paddle.fluid.data_feeder import check_type, check_variable_and_dtype
from paddle.fluid.framework import _non_static_mode, in_dygraph_mode
from paddle.fluid.layers import control_flow, sequence_lod, utils
26
from paddle.fluid.layers.utils import flatten, map_structure
Z
zhiboniu 已提交
27
from paddle.framework import core
28 29 30
from paddle.nn import Layer
from paddle.nn import functional as F
from paddle.nn import initializer as I
31
from paddle.static import Variable, default_startup_program, program_guard
32

33
from .container import LayerList
Z
zhiboniu 已提交
34

35 36
__all__ = []

F
Feiyu Chan 已提交
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
def rnn(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
    r"""
    rnn creates a recurrent neural network specified by RNNCell `cell`,
    which performs :code:`cell.call()` (for dygraph mode :code:`cell.forward`)
    repeatedly until reaches to the maximum length of `inputs`.

    Parameters:
        cell(RNNCellBase): An instance of `RNNCellBase`.
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
        initial_states(Tensor|tuple|list, optional): the initial state of the
            rnn cell. Tensor or a possibly nested structure of tensors. If not
            provided, `cell.get_initial_states` would be called to produce
            the initial state. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
            index are not less than the valid length are treated as paddings.
        time_major (bool, optional): Whether the first dimension of the input means the
            time steps. Defaults to False.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        **kwargs: Additional keyword arguments to pass to `forward` of the cell.

    Returns:
        outputs (Tensor|list|tuple): the output sequence. Tensor or nested
            structure of Tensors.
            If `time_major` is True, the shape of each tensor in outpus is
            `[time_steps, batch_size, hidden_size]`, else
            `[batch_size, time_steps, hidden_size]`.
        final_states (Tensor|list|tuple): final states. A (possibly nested structure of)
            tensor[s], representing the final state for RNN. It has the same
            structure of intial state. Each tensor in final states has the same
            shape and dtype as the corresponding tensor in initial states.

    Examples:

        .. code-block:: python

            import paddle
            paddle.disable_static()

            cell = paddle.nn.SimpleRNNCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))
            outputs, final_states = paddle.nn.layer.rnn(cell, inputs, prev_h)

    """

    if _non_static_mode():
        return _rnn_dynamic_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
            **kwargs
        )
    else:
        return _rnn_static_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
            **kwargs
        )


class ArrayWrapper:
    def __init__(self, x):
        self.array = [x]

    def append(self, x):
        self.array.append(x)
        return self

    def __getitem__(self, item):
        return self.array.__getitem__(item)


def _maybe_copy(state, new_state, step_mask):
    """update rnn state or just pass the old state through"""
    new_state = paddle.tensor.math._multiply_with_axis(
        new_state, step_mask, axis=0
    ) + paddle.tensor.math._multiply_with_axis(state, (1 - step_mask), axis=0)
    return new_state


def _transpose_batch_time(x):
    perm = [1, 0] + list(range(2, len(x.shape)))
    return paddle.transpose(x, perm)


def _rnn_dynamic_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
    time_step_index = 0 if time_major else 1
    flat_inputs = flatten(inputs)
    time_steps = flat_inputs[0].shape[time_step_index]

    if initial_states is None:
        initial_states = cell.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )

    if not time_major:
        inputs = map_structure(_transpose_batch_time, inputs)

    if sequence_length is not None:
        mask = sequence_lod.sequence_mask(
            sequence_length, maxlen=time_steps, dtype=inputs.dtype
        )
        mask = paddle.transpose(mask, [1, 0])

    if is_reverse:
        inputs = map_structure(lambda x: paddle.reverse(x, axis=[0]), inputs)
        mask = (
            paddle.reverse(mask, axis=[0])
            if sequence_length is not None
            else None
        )

    states = initial_states
    outputs = []
    for i in range(time_steps):
        step_inputs = map_structure(lambda x: x[i], inputs)
        step_outputs, new_states = cell(step_inputs, states, **kwargs)
        if sequence_length is not None:
            new_states = map_structure(
                partial(_maybe_copy, step_mask=mask[i]), states, new_states
            )
        states = new_states
        outputs = (
            map_structure(lambda x: ArrayWrapper(x), step_outputs)
            if i == 0
            else map_structure(
                lambda x, x_array: x_array.append(x), step_outputs, outputs
            )
        )

    final_outputs = map_structure(
        lambda x: paddle.stack(x.array, axis=time_step_index), outputs
    )

    if is_reverse:
        final_outputs = map_structure(
            lambda x: paddle.reverse(x, axis=time_step_index), final_outputs
        )

    final_states = new_states
    return final_outputs, final_states


def _rnn_static_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
    check_type(inputs, 'inputs', (Variable, list, tuple), 'rnn')
    if isinstance(inputs, (list, tuple)):
        for i, input_x in enumerate(inputs):
            check_variable_and_dtype(
                input_x, 'inputs[' + str(i) + ']', ['float32', 'float64'], 'rnn'
            )
    check_type(
        initial_states,
        'initial_states',
        (Variable, list, tuple, type(None)),
        'rnn',
    )

    check_type(
        sequence_length, 'sequence_length', (Variable, type(None)), 'rnn'
    )

    def _switch_grad(x, stop=False):
        x.stop_gradient = stop
        return x

    if initial_states is None:
        initial_states = cell.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
    initial_states = map_structure(_switch_grad, initial_states)

    if not time_major:
        inputs = map_structure(_transpose_batch_time, inputs)

    if sequence_length:
        max_seq_len = paddle.shape(flatten(inputs)[0])[0]
        mask = sequence_lod.sequence_mask(
            sequence_length,
            maxlen=max_seq_len,
            dtype=flatten(initial_states)[0].dtype,
        )
        mask = paddle.transpose(mask, [1, 0])
    if is_reverse:
        inputs = map_structure(lambda x: paddle.reverse(x, axis=[0]), inputs)
        mask = paddle.reverse(mask, axis=[0]) if sequence_length else None

    # StaticRNN
    rnn = control_flow.StaticRNN()
    with rnn.step():
        inputs = map_structure(rnn.step_input, inputs)
        states = map_structure(rnn.memory, initial_states)
        copy_states = map_structure(lambda x: x, states)
        outputs, new_states = cell(inputs, copy_states, **kwargs)
        utils.assert_same_structure(states, new_states)
        if sequence_length:
            step_mask = rnn.step_input(mask)
            new_states = map_structure(
                partial(_maybe_copy, step_mask=step_mask), states, new_states
            )

        map_structure(rnn.update_memory, states, new_states)
        flat_outputs = flatten(outputs)
        map_structure(rnn.step_output, outputs)
        map_structure(rnn.step_output, new_states)

    rnn_out = rnn()
    final_outputs = rnn_out[: len(flat_outputs)]
    final_outputs = utils.pack_sequence_as(outputs, final_outputs)
    final_states = map_structure(lambda x: x[-1], rnn_out[len(flat_outputs) :])
    final_states = utils.pack_sequence_as(new_states, final_states)

    if is_reverse:
        final_outputs = map_structure(
            lambda x: paddle.reverse(x, axis=[0]), final_outputs
        )

    if not time_major:
        final_outputs = map_structure(_transpose_batch_time, final_outputs)

    return (final_outputs, final_states)


def birnn(
    cell_fw,
    cell_bw,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    **kwargs
):
    r"""
    birnn creates a bidirectional recurrent neural network specified by
    RNNCell `cell_fw` and `cell_bw`, which performs :code:`cell.call()`
    (for dygraph mode :code:`cell.forward`) repeatedly until reaches to
    the maximum length of `inputs` and then concat the outputs for both RNNs
    along the last axis.

    Parameters:
        cell_fw(RNNCellBase): An instance of `RNNCellBase`.
        cell_bw(RNNCellBase): An instance of `RNNCellBase`.
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
        initial_states(tuple, optional): A tuple of initial states of
            `cell_fw` and `cell_bw`.
            If not provided, `cell.get_initial_states` would be called to
            produce initial state for each cell. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
            index are not less than the valid length are treated as paddings.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.
        **kwargs: Additional keyword arguments to pass to `forward` of each cell.

    Returns:
        outputs (Tensor): the outputs of the bidirectional RNN. It is the
            concatenation of the outputs from the forward RNN and backward
            RNN along the last axis.
            If time major is True, the shape is `[time_steps, batch_size, size]`,
            else the shape is `[batch_size, time_steps, size]`, where size is
            `cell_fw.hidden_size + cell_bw.hidden_size`.
        final_states (tuple): A tuple of the final states of the forward
            cell and backward cell.

    Examples:

        .. code-block:: python

            import paddle
            paddle.disable_static()

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            hf, cf = paddle.rand((4, 32)), paddle.rand((4, 32))
            hb, cb = paddle.rand((4, 32)), paddle.rand((4, 32))
            initial_states = ((hf, cf), (hb, cb))
            outputs, final_states = paddle.nn.layer.birnn(
                cell_fw, cell_bw, inputs, initial_states)

    """

    if initial_states is None:
        states_fw = cell_fw.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
        states_bw = cell_fw.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
    else:
        states_fw, states_bw = initial_states
    outputs_fw, states_fw = rnn(
        cell_fw,
        inputs,
        states_fw,
        sequence_length,
        time_major=time_major,
        **kwargs
    )

    outputs_bw, states_bw = rnn(
        cell_bw,
        inputs,
        states_bw,
        sequence_length,
        time_major=time_major,
        is_reverse=True,
        **kwargs
    )

    outputs = map_structure(
        lambda x, y: paddle.concat([x, y], -1), outputs_fw, outputs_bw
    )

    final_states = (states_fw, states_bw)
    return outputs, final_states


F
Feiyu Chan 已提交
400 401 402 403 404
def split_states(states, bidirectional=False, state_components=1):
    r"""
    Split states of RNN network into possibly nested list or tuple of
    states of each RNN cells of the RNN network.

405
    Parameters:
F
Feiyu Chan 已提交
406 407
        states (Tensor|tuple|list): the concatenated states for RNN network.
            When `state_components` is 1, states in a Tensor with shape
408 409 410 411 412 413 414 415 416 417 418
            `(L*D, N, C)` where `L` is the number of layers of the RNN
            network, `D` is the number of directions of the RNN network(1
            for unidirectional RNNs and 2 for bidirectional RNNs), `N` is
            the batch size of the input to the RNN network, `C` is the
            hidden size of the RNN network.

            When `state_components` is larger than 1, `states` is a tuple of
            `state_components` Tensors that meet the requirements described
            above.

            For SimpleRNNs and GRUs, `state_components` is 1, and for LSTMs,
F
Feiyu Chan 已提交
419
            `state_components` is 2.
420
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
421 422 423
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
424

F
Feiyu Chan 已提交
425
    Returns:
426 427 428
        A nested list or tuple of RNN cell states.
        If `bidirectional` is True, it can be indexed twice to get an RNN
        cell state. The first index indicates the layer, the second index
F
Feiyu Chan 已提交
429 430 431 432
        indicates the direction.
        If `bidirectional` is False, it can be indexed once to get an RNN
        cell state. The index indicates the layer.
        Note that if `state_components` is larger than 1, an RNN cell state
433
        can be indexed one more time to get a tensor of shape(N, C), where
F
Feiyu Chan 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
        `N` is the batch size of the input to the RNN cell, and `C` is the
        hidden size of the RNN cell.
    """
    if state_components == 1:
        states = paddle.unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([paddle.unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    r"""
455
    Concatenate a possibly nested list or tuple of RNN cell states into a
F
Feiyu Chan 已提交
456 457
    compact form.

458
    Parameters:
459 460 461 462
        states (list|tuple): a possibly nested list or tuple of RNN cell
            states.
            If `bidirectional` is True, it can be indexed twice to get an
            RNN cell state. The first index indicates the layer, the second
F
Feiyu Chan 已提交
463 464 465
            index indicates the direction.
            If `bidirectional` is False, it can be indexed once to get an RNN
            cell state. The index indicates the layer.
466 467 468 469 470
            Note that if `state_components` is larger than 1, an RNN cell
            state can be indexed one more time to get a tensor of shape(N, C),
            where `N` is the batch size of the input to the RNN cell, and
            `C` is the hidden size of the RNN cell.
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
471 472 473
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
474

F
Feiyu Chan 已提交
475 476 477
    Returns:
        Concatenated states for RNN network.
        When `state_components` is 1, states in a Tensor with shape
478 479 480 481
        `(L\*D, N, C)` where `L` is the number of layers of the RNN
        network, `D` is the number of directions of the RNN network(1 for
        unidirectional RNNs and 2 for bidirectional RNNs), `N` is the batch
        size of the input to the RNN network, `C` is the hidden size of the
F
Feiyu Chan 已提交
482
        RNN network.
483

F
Feiyu Chan 已提交
484 485 486 487 488 489 490 491
    """
    if state_components == 1:
        return paddle.stack(flatten(states))
    else:
        states = flatten(states)
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
492
        return tuple([paddle.stack(item) for item in componnets])
F
Feiyu Chan 已提交
493 494 495 496 497 498 499 500 501


class RNNCellBase(Layer):
    r"""
    RNNCellBase is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

502 503 504
    def get_initial_states(
        self, batch_ref, shape=None, dtype=None, init_value=0.0, batch_dim_idx=0
    ):
F
Feiyu Chan 已提交
505 506 507
        r"""
        Generate initialized states according to provided shape, data type and
        value.
508 509

        Parameters:
510 511 512
            batch_ref (Tensor): A tensor, which shape would be used to
                determine the batch size, which is used to generate initial
                states. For `batch_ref`'s shape d, `d[batch_dim_idx]` is
F
Feiyu Chan 已提交
513
                treated as batch size.
514 515 516 517
            shape (list|tuple, optional): A (possibly nested structure of) shape[s],
                where a shape is a list/tuple of integer. `-1` (for batch size)
                will be automatically prepended if a shape does not starts with
                it. If None, property `state_shape` will be used. Defaults to
F
Feiyu Chan 已提交
518
                None.
519 520 521 522 523
            dtype (str|list|tuple, optional): A (possibly nested structure of)
                data type[s]. The structure must be same as that of `shape`,
                except when all tensors' in states has the same data type, a
                single data type can be used. If None and property `cell.state_shape`
                is not available, current default floating type of paddle is
F
Feiyu Chan 已提交
524
                used. Defaults to None.
525
            init_value (float, optional): A float value used to initialize states.
F
Feiyu Chan 已提交
526
                Defaults to 0.
527
            batch_dim_idx (int, optional): An integer indicating which
F
Feiyu Chan 已提交
528
                dimension of the of `batch_ref` represents batch. Defaults to 0.
529

F
Feiyu Chan 已提交
530
        Returns:
531
            init_states (Tensor|tuple|list): tensor of the provided shape and
F
Feiyu Chan 已提交
532 533 534 535 536 537 538 539
                dtype, or list of tensors that each satisfies the requirements,
                packed in the same structure as `shape` and `type` does.
        """
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
            """For shape, list/tuple of integer is the finest-grained objection"""
540 541 542 543
            if isinstance(seq, list) or isinstance(seq, tuple):
                if reduce(
                    lambda flag, x: isinstance(x, int) and flag, seq, True
                ):
F
Feiyu Chan 已提交
544 545 546 547
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
548
            return isinstance(seq, Sequence) and not isinstance(seq, str)
F
Feiyu Chan 已提交
549

550
        class Shape:
F
Feiyu Chan 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:
            states_dtypes = framework.get_default_dtype()
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
571 572 573 574 575 576 577 578 579 580
            lambda shape, dtype: paddle.fluid.layers.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
                value=init_value,
                input_dim_idx=batch_dim_idx,
            ),
            states_shapes,
            states_dtypes,
        )
F
Feiyu Chan 已提交
581 582 583 584 585 586 587
        return init_states

    @property
    def state_shape(self):
        r"""
        Abstract method (property).
        Used to initialize states.
588
        A (possiblely nested structure of) shape[s], where a shape is a
F
Feiyu Chan 已提交
589 590 591 592 593 594 595
        list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it).
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
596 597
            "Please add implementaion for `state_shape` in the used cell."
        )
F
Feiyu Chan 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611

    @property
    def state_dtype(self):
        r"""
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) data types[s]. The structure must be
        same as that of `shape`, except when all tensors' in states has the same
        data type, a signle data type can be used.
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
612 613
            "Please add implementaion for `state_dtype` in the used cell."
        )
F
Feiyu Chan 已提交
614 615 616 617


class SimpleRNNCell(RNNCellBase):
    r"""
618
    Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it
F
Feiyu Chan 已提交
619 620 621 622 623
    computes the outputs and updates states.

    The formula used is as follows:

    .. math::
624
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
625

F
Feiyu Chan 已提交
626
        y_{t} & = h_{t}
627

628
    where :math:`act` is for :attr:`activation`.
F
Feiyu Chan 已提交
629

630
    Please refer to `Finding Structure in Time
F
Feiyu Chan 已提交
631
    <https://crl.ucsd.edu/~elman/Papers/fsit.pdf>`_ for more details.
632

633
    Parameters:
F
Feiyu Chan 已提交
634 635
        input_size (int): The input size.
        hidden_size (int): The hidden size.
636
        activation (str, optional): The activation in the SimpleRNN cell.
F
Feiyu Chan 已提交
637
            It can be `tanh` or `relu`. Defaults to `tanh`.
638
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
639
            :math:`weight_ih`. Default: None.
640
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
641
            :math:`weight_hh`. Default: None.
642
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
643
            :math:`bias_ih`. Default: None.
644
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
645
            :math:`bias_hh`. Default: None.
646
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
647 648
            None). For more information, please refer to :ref:`api_guide_Name`.

649 650 651 652 653
    Variables:
        - **weight_ih** (Parameter): shape (hidden_size, input_size), input to hidden weight, corresponding to :math:`W_{ih}` in the formula.
        - **weight_hh** (Parameter): shape (hidden_size, hidden_size), hidden to hidden weight, corresponding to :math:`W_{hh}` in the formula.
        - **bias_ih** (Parameter): shape (hidden_size, ), input to hidden bias, corresponding to :math:`b_{ih}` in the formula.
        - **bias_hh** (Parameter): shape (hidden_size, ), hidden to hidden bias, corresponding to :math:`b_{hh}` in the formula.
654

F
Feiyu Chan 已提交
655
    Inputs:
656 657
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_{t}` in the formula.
        - **states** (Tensor, optional): shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
658 659

    Returns:
660 661
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
662

F
Feiyu Chan 已提交
663
    Notes:
664
        All the weights and bias are initialized with `Uniform(-std, std)` by default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
665 666 667 668 669 670 671 672 673 674 675 676

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            y, h = cell(x, prev_h)
677 678 679
            print(y.shape)

            #[4,32]
F
Feiyu Chan 已提交
680 681 682

    """

683 684 685 686 687 688 689 690 691 692 693
    def __init__(
        self,
        input_size,
        hidden_size,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
694
        super().__init__()
695 696
        if hidden_size <= 0:
            raise ValueError(
697 698 699 700
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
701 702 703 704
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (hidden_size, input_size),
            weight_ih_attr,
705 706
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
707 708 709
        self.weight_hh = self.create_parameter(
            (hidden_size, hidden_size),
            weight_hh_attr,
710 711
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
712
        self.bias_ih = self.create_parameter(
713
            (hidden_size,),
F
Feiyu Chan 已提交
714 715
            bias_ih_attr,
            is_bias=True,
716 717
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
718
        self.bias_hh = self.create_parameter(
719
            (hidden_size,),
F
Feiyu Chan 已提交
720 721
            bias_hh_attr,
            is_bias=True,
722 723
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
724 725 726 727 728 729

        self.input_size = input_size
        self.hidden_size = hidden_size
        if activation not in ["tanh", "relu"]:
            raise ValueError(
                "activation for SimpleRNNCell should be tanh or relu, "
730 731
                "but get {}".format(activation)
            )
F
Feiyu Chan 已提交
732
        self.activation = activation
733
        self._activation_fn = paddle.tanh if activation == "tanh" else F.relu
F
Feiyu Chan 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_h = states
        i2h = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            i2h += self.bias_ih
        h2h = paddle.matmul(pre_h, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h2h += self.bias_hh
        h = self._activation_fn(i2h + h2h)
        return h, h

    @property
    def state_shape(self):
750
        return (self.hidden_size,)
F
Feiyu Chan 已提交
751

752 753
    def extra_repr(self):
        s = '{input_size}, {hidden_size}'
754
        if self.activation != "tanh":
755 756 757
            s += ', activation={activation}'
        return s.format(**self.__dict__)

F
Feiyu Chan 已提交
758 759 760

class LSTMCell(RNNCellBase):
    r"""
761
    Long-Short Term Memory(LSTM) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
762 763 764 765 766 767
    it computes the outputs and updates states.

    The formula used is as follows:

    .. math::
        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
768

F
Feiyu Chan 已提交
769
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
770

F
Feiyu Chan 已提交
771
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
772 773 774 775 776 777 778

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
779 780
        y_{t} & = h_{t}

781
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
782 783 784 785 786
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

787
    Parameters:
F
Feiyu Chan 已提交
788 789
        input_size (int): The input size.
        hidden_size (int): The hidden size.
790
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
791
            `weight_ih`. Default: None.
792
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
793
            `weight_hh`. Default: None.
794
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
795
            `bias_ih`. Default: None.
796
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
797
            `bias_hh`. Default: None.
798
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
799 800
            None). For more information, please refer to :ref:`api_guide_Name`.

801 802 803 804 805
    Variables:
        - **weight_ih** (Parameter): shape (4 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ii}, W_{if}, W_{ig}, W_{io}` in the formula.
        - **weight_hh** (Parameter): shape (4 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hi}, W_{hf}, W_{hg}, W_{ho}` in the formula.
        - **bias_ih** (Parameter): shape (4 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ii}, b_{if}, b_{ig}, b_{io}` in the formula.
        - **bias_hh** (Parameter): shape (4 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hi}, b_{hf}, b_{hg}, b_{ho}` in the formula.
F
Feiyu Chan 已提交
806 807

    Inputs:
808
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_t` in the formula.
809
        - **states** (list|tuple, optional): a list/tuple of two tensors, each of shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}, c_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
810 811

    Returns:
812 813
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (tuple): a tuple of two tensors, each of shape `[batch_size, hidden_size]`, the new hidden states, corresponding to :math:`h_{t}, c_{t}` in the formula.
F
Feiyu Chan 已提交
814 815

    Notes:
816 817
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
818
        information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))
            prev_c = paddle.randn((4, 32))

            cell = paddle.nn.LSTMCell(16, 32)
            y, (h, c) = cell(x, (prev_h, prev_c))

833 834 835 836 837 838 839 840
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,32]
            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
841 842
    """

843 844 845 846 847 848 849 850 851 852
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
853
        super().__init__()
854 855
        if hidden_size <= 0:
            raise ValueError(
856 857 858 859
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
860 861 862 863
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (4 * hidden_size, input_size),
            weight_ih_attr,
864 865
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
866 867 868
        self.weight_hh = self.create_parameter(
            (4 * hidden_size, hidden_size),
            weight_hh_attr,
869 870
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
871
        self.bias_ih = self.create_parameter(
872
            (4 * hidden_size,),
F
Feiyu Chan 已提交
873 874
            bias_ih_attr,
            is_bias=True,
875 876
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
877
        self.bias_hh = self.create_parameter(
878
            (4 * hidden_size,),
F
Feiyu Chan 已提交
879 880
            bias_hh_attr,
            is_bias=True,
881 882
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_hidden, pre_cell = states
        gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = paddle.split(gates, num_or_sections=4, axis=-1)

        i = self._gate_activation(chunked_gates[0])
        f = self._gate_activation(chunked_gates[1])
        o = self._gate_activation(chunked_gates[3])
        c = f * pre_cell + i * self._activation(chunked_gates[2])
        h = o * self._activation(c)

        return h, (h, c)

    @property
    def state_shape(self):
        r"""
913 914 915
        The `state_shape` of LSTMCell is a tuple with two shapes:
        `((hidden_size, ), (hidden_size,))`. (-1 for batch size would be
        automatically inserted into shape). These two shapes correspond
F
Feiyu Chan 已提交
916 917
        to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
918
        return ((self.hidden_size,), (self.hidden_size,))
F
Feiyu Chan 已提交
919

920 921 922
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
923 924 925

class GRUCell(RNNCellBase):
    r"""
926
    Gated Recurrent Unit (GRU) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
927 928 929 930
    it computes the outputs and updates states.

    The formula for GRU used is as follows:

931
    ..  math::
F
Feiyu Chan 已提交
932

933
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
934

935
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
936

937
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
938 939 940

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
941
        y_{t} & = h_{t}
942 943

    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
944 945 946 947 948 949
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

    Parameters:
950
        input_size (int): The input size.
F
Feiyu Chan 已提交
951
        hidden_size (int): The hidden size.
952
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
953
            `weight_ih`. Default: None.
954
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
955
            `weight_hh`. Default: None.
956
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
957
            `bias_ih`. Default: None.
958
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
959
            `bias_hh`. Default: None.
960
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
961 962
            None). For more information, please refer to :ref:`api_guide_Name`.

963 964 965 966 967
    Variables:
        - **weight_ih** (Parameter): shape (3 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ir}, W_{iz}, W_{ic}` in the formula.
        - **weight_hh** (Parameter): shape (3 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hr}, W_{hz}, W_{hc}` in the formula.
        - **bias_ih** (Parameter): shape (3 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ir}, b_{iz}, b_{ic}` in the formula.
        - **bias_hh** (Parameter): shape (3 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hr}, b_{hz}, b_{hc}` in the formula.
F
Feiyu Chan 已提交
968 969

    Inputs:
970 971
        - **inputs** (Tensor): A tensor with shape `[batch_size, input_size]`, corresponding to :math:`x_t` in the formula.
        - **states** (Tensor): A tensor with shape `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}` in the formula.
F
Feiyu Chan 已提交
972 973

    Returns:
974 975
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
976

F
Feiyu Chan 已提交
977
    Notes:
978 979
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
980
        information about parameter initialization, please refer to s:ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.GRUCell(16, 32)
            y, h = cell(x, prev_h)

994 995 996 997 998 999
            print(y.shape)
            print(h.shape)

            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
1000 1001
    """

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1012
        super().__init__()
1013 1014
        if hidden_size <= 0:
            raise ValueError(
1015 1016 1017 1018
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
1019 1020 1021 1022
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (3 * hidden_size, input_size),
            weight_ih_attr,
1023 1024
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1025 1026 1027
        self.weight_hh = self.create_parameter(
            (3 * hidden_size, hidden_size),
            weight_hh_attr,
1028 1029
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1030
        self.bias_ih = self.create_parameter(
1031
            (3 * hidden_size,),
F
Feiyu Chan 已提交
1032 1033
            bias_ih_attr,
            is_bias=True,
1034 1035
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1036
        self.bias_hh = self.create_parameter(
1037
            (3 * hidden_size,),
F
Feiyu Chan 已提交
1038 1039
            bias_hh_attr,
            is_bias=True,
1040 1041
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)

        pre_hidden = states
        x_gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            x_gates = x_gates + self.bias_ih
        h_gates = paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h_gates = h_gates + self.bias_hh

        x_r, x_z, x_c = paddle.split(x_gates, num_or_sections=3, axis=1)
        h_r, h_z, h_c = paddle.split(h_gates, num_or_sections=3, axis=1)

        r = self._gate_activation(x_r + h_r)
        z = self._gate_activation(x_z + h_z)
        c = self._activation(x_c + r * h_c)  # apply reset gate after mm
        h = (pre_hidden - c) * z + c

        return h, h

    @property
    def state_shape(self):
        r"""
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to the shape of :math:`h_{t-1}`.
        """
1077
        return (self.hidden_size,)
F
Feiyu Chan 已提交
1078

1079 1080 1081
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
1082 1083 1084

class RNN(Layer):
    r"""
1085 1086
    Wrapper for RNN, which creates a recurrent neural network with an RNN cell.
    It performs :code:`cell.forward()` repeatedly until reaches to the maximum
F
Feiyu Chan 已提交
1087 1088
    length of `inputs`.

1089
    Parameters:
F
Feiyu Chan 已提交
1090 1091 1092 1093 1094 1095 1096
        cell(RNNCellBase): An instance of `RNNCellBase`.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
1097 1098 1099
        - **inputs** (Tensor): A (possibly nested structure of) tensor[s]. The input sequences. If time major is False, the shape is `[batch_size, time_steps, input_size]`. If time major is True, the shape is `[time_steps, batch_size, input_size]` where `input_size` is the input size of the cell.
        - **initial_states** (Tensor|list|tuple, optional): Tensor of a possibly nested structure of tensors, representing the initial state for the rnn cell. If not provided, `cell.get_initial_states` would be called to produce the initial states. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None.If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
1100
        - **kwargs**: Additional keyword arguments to pass to `forward` of the cell.
F
Feiyu Chan 已提交
1101 1102

    Returns:
1103 1104
        - **outputs** (Tensor|list|tuple): the output sequences. If `time_major` is True, the shape is `[time_steps, batch_size, hidden_size]`, else `[batch_size, time_steps, hidden_size]`.
        - **final_states** (Tensor|list|tuple): final states of the cell. Tensor or a possibly nested structure of tensors which has the same structure with intial state. Each tensor in final states has the same shape and dtype as the corresponding tensor in initial states.
1105

F
Feiyu Chan 已提交
1106 1107
    Notes:
        This class is a low level API for wrapping rnn cell into a RNN network.
1108 1109
        Users should take care of the state of the cell. If `initial_states` is
        passed to the `forward` method, make sure that it satisfies the
F
Feiyu Chan 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
        requirements of the cell.

    Examples:

        .. code-block:: python

            import paddle

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            rnn = paddle.nn.RNN(cell)
            outputs, final_states = rnn(inputs, prev_h)

1125 1126 1127 1128 1129 1130
            print(outputs.shape)
            print(final_states.shape)

            #[4,23,32]
            #[4,32]

F
Feiyu Chan 已提交
1131 1132 1133
    """

    def __init__(self, cell, is_reverse=False, time_major=False):
1134
        super().__init__()
F
Feiyu Chan 已提交
1135 1136 1137 1138 1139 1140 1141
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

1142 1143 1144
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
1145
        final_outputs, final_states = rnn(
1146 1147 1148 1149 1150 1151
            self.cell,
            inputs,
            initial_states=initial_states,
            sequence_length=sequence_length,
            time_major=self.time_major,
            is_reverse=self.is_reverse,
1152 1153
            **kwargs
        )
F
Feiyu Chan 已提交
1154 1155 1156 1157 1158
        return final_outputs, final_states


class BiRNN(Layer):
    r"""
1159 1160 1161
    Wrapper for bidirectional RNN, which builds a bidiretional RNN given the
    forward rnn cell and backward rnn cell. A BiRNN applies forward RNN and
    backward RNN with coresponding cells separately and concats the outputs
F
Feiyu Chan 已提交
1162 1163
    along the last axis.

1164
    Parameters:
F
Feiyu Chan 已提交
1165 1166 1167 1168 1169 1170
        cell_fw (RNNCellBase): A RNNCellBase instance used for forward RNN.
        cell_bw (RNNCellBase): A RNNCellBase instance used for backward RNN.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
1171 1172 1173 1174
        - **inputs** (Tensor): the input sequences of both RNN. If time_major is True, the shape of is `[time_steps, batch_size, input_size]`, else the shape is `[batch_size, time_steps, input_size]`, where input_size is the input size of both cells.
        - **initial_states** (list|tuple, optional): A tuple/list of the initial states of the forward cell and backward cell. Defaults to None. If not provided, `cell.get_initial_states` would be called to produce the initial states for each cell. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
        - **kwargs**: Additional keyword arguments. Arguments passed to `forward` for each cell.
F
Feiyu Chan 已提交
1175 1176

    Outputs:
1177
        - **outputs** (Tensor): the outputs of the bidirectional RNN. It is the concatenation of the outputs from the forward RNN and backward RNN along the last axis. If time major is True, the shape is `[time_steps, batch_size, size]`, else the shape is `[batch_size, time_steps, size]`, where size is `cell_fw.hidden_size + cell_bw.hidden_size`.
1178
        - **final_states** (tuple): A tuple of the final states of the forward cell and backward cell.
F
Feiyu Chan 已提交
1179 1180

    Notes:
1181 1182 1183
        This class is a low level API for wrapping rnn cells into a BiRNN
        network. Users should take care of the states of the cells.
        If `initial_states` is passed to the `forward` method, make sure that
F
Feiyu Chan 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        it satisfies the requirements of the cells.

    Examples:

        .. code-block:: python

            import paddle

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)
            rnn = paddle.nn.BiRNN(cell_fw, cell_bw)

            inputs = paddle.rand((2, 23, 16))
            outputs, final_states = rnn(inputs)

1199 1200 1201 1202 1203 1204
            print(outputs.shape)
            print(final_states[0][0].shape,len(final_states),len(final_states[0]))

            #[4,23,64]
            #[2,32] 2 2

F
Feiyu Chan 已提交
1205 1206 1207
    """

    def __init__(self, cell_fw, cell_bw, time_major=False):
1208
        super().__init__()
F
Feiyu Chan 已提交
1209 1210 1211
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        if cell_fw.input_size != cell_bw.input_size:
1212 1213 1214 1215 1216 1217
            raise ValueError(
                "input size of forward cell({}) does not equals"
                "that of backward cell({})".format(
                    cell_fw.input_size, cell_bw.input_size
                )
            )
F
Feiyu Chan 已提交
1218 1219 1220 1221 1222 1223
        for cell in [self.cell_fw, self.cell_bw]:
            if not hasattr(cell, "call"):
                # for non-dygraph mode, `rnn` api uses cell.call
                cell.call = cell.forward
        self.time_major = time_major

1224 1225 1226
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
F
Feiyu Chan 已提交
1227
        if isinstance(initial_states, (list, tuple)):
1228 1229 1230
            assert (
                len(initial_states) == 2
            ), "length of initial_states should be 2 when it is a list/tuple"
F
Feiyu Chan 已提交
1231

1232
        outputs, final_states = birnn(
1233 1234 1235 1236 1237 1238 1239 1240
            self.cell_fw,
            self.cell_bw,
            inputs,
            initial_states,
            sequence_length,
            self.time_major,
            **kwargs
        )
F
Feiyu Chan 已提交
1241 1242 1243
        return outputs, final_states


1244
class RNNBase(LayerList):
F
Feiyu Chan 已提交
1245
    r"""
1246 1247
    RNNBase class for RNN networks. It provides `forward`, `flatten_parameters`
    and other common methods for SimpleRNN, LSTM and GRU.
F
Feiyu Chan 已提交
1248 1249
    """

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    def __init__(
        self,
        mode,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
    ):
1264
        super().__init__()
1265
        bidirectional_list = ["bidirectional", "bidirect"]
1266 1267 1268 1269
        self.mode = mode
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
1270
        self.num_directions = 2 if direction in bidirectional_list else 1
1271 1272 1273 1274 1275 1276 1277 1278
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2 if mode == "LSTM" else 1

        kwargs = {
            "weight_ih_attr": weight_ih_attr,
            "weight_hh_attr": weight_hh_attr,
            "bias_ih_attr": bias_ih_attr,
1279
            "bias_hh_attr": bias_hh_attr,
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
        }

        if mode == "LSTM":
            rnn_cls = LSTMCell
        elif mode == "GRU":
            rnn_cls = GRUCell
        else:
            rnn_cls = SimpleRNNCell
            kwargs["activation"] = self.activation

1290 1291
        if direction in ["forward"]:
            is_reverse = False
1292 1293 1294 1295 1296
            cell = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = rnn_cls(hidden_size, hidden_size, **kwargs)
                self.append(RNN(cell, is_reverse, time_major))
1297
        elif direction in bidirectional_list:
1298 1299 1300 1301 1302 1303 1304 1305 1306
            cell_fw = rnn_cls(input_size, hidden_size, **kwargs)
            cell_bw = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                cell_bw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
1307
                "direction should be forward or bidirect (or bidirectional), "
1308 1309
                "received direction = {}".format(direction)
            )
1310

1311
        self.could_use_cudnn = True
1312
        self.could_use_cudnn &= len(self.parameters()) == num_layers * 4 * (
1313 1314
            2 if direction in bidirectional_list else 1
        )
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

        # Expose params as RNN's attribute, which can make it compatible when
        # replacing small ops composed rnn with cpp rnn kernel.
        # Moreover, `jit.to_static` assumes params are added by current layer
        # and wouldn't include sublayer's params in current layer, which also
        # requires these params are added to current layer for `jit.save`.
        param_names = []
        for layer in range(self.num_layers):
            for direction in range(self.num_directions):
                suffix = '_reverse' if direction == 1 else ''
                param_names.extend(['weight_ih_l{}{}', 'weight_hh_l{}{}'])
1326
                if bias_ih_attr is not False:
1327
                    param_names.append('bias_ih_l{}{}')
1328
                if bias_hh_attr is not False:
1329
                    param_names.append('bias_hh_l{}{}')
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
                param_names = [x.format(layer, suffix) for x in param_names]
        for name, param in zip(param_names, self.parameters()):
            setattr(self, name, param)

        self.flatten_parameters()

    def flatten_parameters(self):
        """
        Resets parameter data pointer to address in continuous memory block for
        cudnn usage.
        """
        if self.could_use_cudnn:
            # layer.parameters() is depth first and ordered
            # for i in layer: for j in direct: w_ih, w_hh, b_ih, b_hh
            # need to reorganize to cudnn param layout:
            # all bias following all weights
            params = self.parameters(include_sublayers=False)
            shape = [np.prod(param.shape) for param in params]
            self._all_weights = [None] * len(params)
            for i, param in enumerate(params):
1350 1351 1352 1353 1354
                offset = (
                    0
                    if i % 4 < 2
                    else (2 * self.num_layers * self.num_directions)
                )
1355 1356 1357 1358 1359 1360 1361
                layer_idx = i // 4
                self._all_weights[offset + layer_idx * 2 + i % 2] = param
            # Wrap using a list to avoid registed into params and saving, maybe
            # need a better way to handle this later. Use `create_parameter` to
            # add both to main_program and startup_program for static-graph.
            # Use Constant initializer to avoid make effect on random generator.
            self._flat_weight = [
1362 1363 1364 1365 1366
                self.create_parameter(
                    shape=[np.sum(shape)],
                    dtype=params[0].dtype,
                    default_initializer=I.Constant(0.0),
                )
1367 1368 1369 1370
            ]
            # dropout state may also can be hided and avoid saving
            # should dropout state be persistable for static-graph
            self._dropout_state = self.create_variable(
1371 1372
                dtype=core.VarDesc.VarType.UINT8
            )
Z
zhiboniu 已提交
1373
            if in_dynamic_mode():
1374
                with paddle.no_grad():
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
                    _legacy_C_ops.coalesce_tensor(
                        self._all_weights,
                        self._all_weights,
                        self._flat_weight[0],
                        "copy_data",
                        True,
                        "use_align",
                        False,
                        "dtype",
                        params[0].dtype,
                    )
1386
                    return
1387
            # for static-graph, append coalesce_tensor into startup program
1388 1389 1390
            with program_guard(
                default_startup_program(), default_startup_program()
            ):
Z
zhiboniu 已提交
1391
                with paddle.no_grad():
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
                    self._helper.append_op(
                        type="coalesce_tensor",
                        inputs={"Input": self._all_weights},
                        outputs={
                            "Output": self._all_weights,
                            "FusedOutput": self._flat_weight,
                        },
                        attrs={
                            "copy_data": True,
                            "use_align": False,
                            "dtype": params[0].dtype,
                        },
                    )
1405 1406 1407 1408 1409

    def _cudnn_impl(self, inputs, initial_states, sequence_length):
        if not self.time_major:
            inputs = paddle.tensor.transpose(inputs, [1, 0, 2])

Y
YuanRisheng 已提交
1410 1411
        if in_dygraph_mode():
            out, _, state = _C_ops.rnn(
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.dropout,
                self.num_directions == 2,
                self.input_size,
                self.hidden_size,
                self.num_layers,
                self.mode,
                0,
                not self.training,
            )
Y
YuanRisheng 已提交
1426
        elif in_dynamic_mode():
1427
            _, _, out, state = _legacy_C_ops.rnn(
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.state_components,
                'dropout_prob',
                self.dropout,
                'is_bidirec',
                self.num_directions == 2,
                'input_size',
                self.input_size,
                'hidden_size',
                self.hidden_size,
                'num_layers',
                self.num_layers,
                'mode',
                self.mode,
                'is_test',
                not self.training,
            )
1449 1450 1451 1452 1453 1454 1455
        else:
            out = self._helper.create_variable_for_type_inference(inputs.dtype)
            state = [
                self._helper.create_variable_for_type_inference(inputs.dtype)
                for i in range(self.state_components)
            ]
            reserve = self._helper.create_variable_for_type_inference(
1456 1457
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
            )
1458 1459 1460 1461 1462

            inputs = {
                'Input': inputs,
                'WeightList': self._all_weights,
                'PreState': initial_states,
1463
                'SequenceLength': sequence_length,
1464 1465 1466 1467 1468 1469 1470 1471
            }
            attrs = {
                'dropout_prob': self.dropout,
                'is_bidirec': self.num_directions == 2,
                'input_size': self.input_size,
                'hidden_size': self.hidden_size,
                'num_layers': self.num_layers,
                'mode': self.mode,
1472
                'is_test': not self.training,
1473 1474 1475 1476 1477 1478 1479 1480 1481
            }

            outputs = {
                'Out': out,
                'State': state,
                'Reserve': reserve,
                'DropoutState': self._dropout_state,
            }

1482 1483 1484
            self._helper.append_op(
                type="rnn", inputs=inputs, outputs=outputs, attrs=attrs
            )
1485

1486 1487 1488 1489 1490
        out = (
            paddle.tensor.transpose(out, [1, 0, 2])
            if not self.time_major
            else out
        )
G
Guo Sheng 已提交
1491
        return out, tuple(state) if len(state) > 1 else state[0]
1492

F
Feiyu Chan 已提交
1493 1494 1495 1496
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        dtype = inputs.dtype
        if initial_states is None:
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
            state_shape = (
                self.num_layers * self.num_directions,
                -1,
                self.hidden_size,
            )
            initial_states = tuple(
                [
                    paddle.fluid.layers.fill_constant_batch_size_like(
                        inputs, state_shape, dtype, 0, batch_index, 1
                    )
                    for _ in range(self.state_components)
                ]
            )
1510
        else:
1511 1512 1513 1514 1515 1516 1517 1518 1519
            initial_states = (
                [initial_states]
                if isinstance(initial_states, paddle.static.Variable)
                else initial_states
            )

        if self.could_use_cudnn and (
            not paddle.device.is_compiled_with_rocm() or sequence_length is None
        ):
1520 1521 1522
            # Add CPU kernel and dispatch in backend later
            return self._cudnn_impl(inputs, initial_states, sequence_length)

1523 1524 1525
        states = split_states(
            initial_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1526 1527 1528 1529
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
1530 1531 1532 1533 1534 1535
                inputs = F.dropout(
                    inputs,
                    self.dropout,
                    training=self.training,
                    mode="upscale_in_train",
                )
F
Feiyu Chan 已提交
1536 1537 1538 1539
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

1540 1541 1542
        final_states = concat_states(
            final_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1543 1544
        return outputs, final_states

1545 1546 1547 1548
    def extra_repr(self):
        main_str = '{input_size}, {hidden_size}'
        if self.num_layers != 1:
            main_str += ', num_layers={num_layers}'
1549
        if self.time_major is not False:
1550 1551 1552 1553 1554
            main_str += ', time_major={time_major}'
        if self.dropout != 0:
            main_str += ', dropout={dropout}'
        return main_str.format(**self.__dict__)

F
Feiyu Chan 已提交
1555

1556
class SimpleRNN(RNNBase):
F
Feiyu Chan 已提交
1557
    r"""
1558
    Multilayer Elman network(SimpleRNN). It takes input sequences and initial
F
Feiyu Chan 已提交
1559 1560
    states as inputs, and returns the output sequences and the final states.

1561 1562 1563
    Each layer inside the SimpleRNN maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
F
Feiyu Chan 已提交
1564 1565 1566 1567 1568
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
    and new states(:math:`h_{t}`).

    .. math::

1569
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
1570

F
Feiyu Chan 已提交
1571
        y_{t} & = h_{t}
1572

1573
    where :math:`act` is for :attr:`activation`.
1574 1575

    Using key word arguments to construct is recommended.
F
Feiyu Chan 已提交
1576

1577
    Parameters:
1578 1579 1580
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1581 1582
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1583
            outputs of forward and backward is concatenating. Defaults to "forward".
1584 1585
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1586 1587
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1588 1589
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1590
            dropout from 0 to 1. Defaults to 0.
1591
        activation (str, optional): The activation in each SimpleRNN cell. It can be
1592
            `tanh` or `relu`. Defaults to `tanh`.
1593
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1594
            `weight_ih` of each cell. Defaults to None.
1595
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1596
            `weight_hh` of each cell. Defaults to None.
1597
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1598
            `bias_ih` of each cells. Defaults to None.
1599
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1600
            `bias_hh` of each cells. Defaults to None.
1601
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1602 1603
            None). For more information, please refer to :ref:`api_guide_Name`.

1604
    Inputs:
1605
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1606 1607
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1608 1609

    Returns:
1610

1611
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1612

1613
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1614 1615 1616 1617 1618 1619

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1620

F
Feiyu Chan 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.SimpleRNN(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1633 1634 1635 1636 1637 1638
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1639 1640
    """

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1656 1657 1658 1659
        if activation == "tanh":
            mode = "RNN_TANH"
        elif activation == "relu":
            mode = "RNN_RELU"
F
Feiyu Chan 已提交
1660
        else:
1661 1662
            raise ValueError("Unknown activation '{}'".format(activation))
        self.activation = activation
1663
        super().__init__(
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
            mode,
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1676 1677


1678
class LSTM(RNNBase):
F
Feiyu Chan 已提交
1679
    r"""
1680
    Multilayer LSTM. It takes a sequence and an initial state as inputs, and
F
Feiyu Chan 已提交
1681 1682
    returns the output sequences and the final states.

1683 1684 1685 1686
    Each layer inside the LSTM maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}, c_{t-1}`) as inputs, and returns step
F
Feiyu Chan 已提交
1687 1688 1689 1690 1691
    outputs(:math:`y_{t}`) and new states(:math:`h_{t}, c_{t}`).

    .. math::

        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
1692

F
Feiyu Chan 已提交
1693
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
1694

F
Feiyu Chan 已提交
1695
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
1696 1697 1698 1699 1700 1701 1702

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
1703 1704
        y_{t} & = h_{t}

1705
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1706 1707
    multiplication operator.

1708 1709
    Using key word arguments to construct is recommended.

1710
    Parameters:
1711 1712 1713
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1714 1715
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1716
            outputs of forward and backward is concatenating. Defaults to "forward".
1717 1718
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1719 1720
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1721 1722
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1723
            dropout from 0 to 1. Defaults to 0.
1724
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1725
            `weight_ih` of each cell. Default: None.
1726
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1727
            `weight_hh` of each cell. Default: None.
1728
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1729
            `bias_ih` of each cells. Default: None.
1730
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1731
            `bias_hh` of each cells. Default: None.
1732
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1733 1734 1735
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1736
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1737
        - **initial_states** (list|tuple, optional): the initial state, a list/tuple of (h, c), the shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
1738
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1739 1740

    Returns:
1741

1742
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, If `time_major` is False, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1743

1744
        - **final_states** (tuple): the final state, a tuple of two tensors, h and c. The shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1745 1746 1747 1748 1749 1750

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, swith shape `[hidden_size]`.
1751

F
Feiyu Chan 已提交
1752
    Examples:
1753

F
Feiyu Chan 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
        .. code-block:: python

            import paddle

            rnn = paddle.nn.LSTM(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            prev_c = paddle.randn((2, 4, 32))
            y, (h, c) = rnn(x, (prev_h, prev_c))

1765 1766 1767 1768 1769 1770 1771 1772
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,23,32]
            #[2,4,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1773 1774
    """

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1789
        super().__init__(
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
            "LSTM",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1802 1803


1804
class GRU(RNNBase):
F
Feiyu Chan 已提交
1805
    r"""
1806
    Multilayer GRU. It takes input sequencse and initial states as inputs, and
F
Feiyu Chan 已提交
1807 1808
    returns the output sequences and the final states.

1809 1810 1811 1812
    Each layer inside the GRU maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
F
Feiyu Chan 已提交
1813 1814 1815 1816
    and new states(:math:`h_{t}`).

    .. math::

1817
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
1818

1819
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
1820

1821
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
1822 1823 1824

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
1825 1826
        y_{t} & = h_{t}

1827
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1828 1829
    multiplication operator.

1830 1831
    Using key word arguments to construct is recommended.

1832
    Parameters:
1833 1834 1835
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1836 1837
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1838
            outputs of forward and backward is concatenating. Defaults to "forward".
1839 1840
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1841 1842
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1843 1844
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1845
            dropout from 0 to 1. Defaults to 0.
1846
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1847
            `weight_ih` of each cell. Default: None.
1848
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1849
            `weight_hh` of each cell. Default: None.
1850
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1851
            `bias_ih` of each cells. Default: None.
1852
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1853
            `bias_hh` of each cells. Default: None.
1854
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1855 1856 1857
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1858
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1859 1860
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1861 1862

    Returns:
1863

1864
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1865

1866
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1867 1868 1869 1870 1871 1872

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1873

F
Feiyu Chan 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.GRU(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1886 1887 1888 1889 1890 1891
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1892 1893
    """

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1908
        super().__init__(
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
            "GRU",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )