pass_tester_helper.h 38.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#include <sstream>
#include <string>
20
#include <unordered_set>
21
#include <vector>
22

23
#include "paddle/fluid/framework/ir/graph.h"
24
#include "paddle/fluid/framework/op_proto_maker.h"
25 26
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
27 28 29 30 31 32 33 34 35

namespace paddle {
namespace framework {
namespace ir {

struct Layers {
 public:
  const ProgramDesc& main_program() { return program_; }

36 37
  BlockDesc* Block() { return program_.MutableBlock(0); }

38 39
  VarDesc* data(std::string name,
                std::vector<int64_t> shape = {},
40 41 42
                bool is_persistable = false,
                proto::VarType::Type data_type = proto::VarType::FP32) {
    return lod_tensor(name, shape, is_persistable, data_type);
43
  }
44

45 46 47 48 49
  VarDesc* conv2d(VarDesc* input,
                  VarDesc* filter,
                  VarDesc* bias,
                  int groups = 1,
                  std::vector<int> strides = {1, 1},
W
Wangzheee 已提交
50 51 52
                  std::vector<int> paddings = {0, 0},
                  std::string padding_algorithm = "EXPLICIT",
                  std::vector<int> dilations = {1, 1},
53 54
                  std::string data_format = "NCHW",
                  bool use_cudnn = false) {
55 56 57 58 59 60
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("conv2d");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
W
Wangzheee 已提交
61
    op->SetOutput("Output", {out->Name()});
62
    op->SetAttr("use_cudnn", use_cudnn);
W
Wangzheee 已提交
63 64 65 66 67 68
    op->SetAttr("groups", groups);
    op->SetAttr("strides", strides);
    op->SetAttr("paddings", paddings);
    op->SetAttr("padding_algorithm", padding_algorithm);
    op->SetAttr("dilations", dilations);
    op->SetAttr("data_format", data_format);
69 70 71 72 73
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

74 75 76 77 78
  VarDesc* conv2d_transpose(VarDesc* input,
                            VarDesc* filter,
                            VarDesc* bias,
                            int groups = 1,
                            std::vector<int> strides = {1, 1},
W
Wangzheee 已提交
79 80 81 82
                            std::vector<int> paddings = {0, 0},
                            std::string padding_algorithm = "EXPLICIT",
                            std::vector<int> dilations = {1, 1},
                            std::string data_format = "NCHW") {
83 84 85 86 87 88
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("conv2d_transpose");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
W
Wangzheee 已提交
89 90 91 92 93 94 95
    op->SetOutput("Output", {out->Name()});
    op->SetAttr("groups", groups);
    op->SetAttr("strides", strides);
    op->SetAttr("paddings", paddings);
    op->SetAttr("padding_algorithm", padding_algorithm);
    op->SetAttr("dilations", dilations);
    op->SetAttr("data_format", data_format);
96 97 98 99 100
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

101 102 103
  VarDesc* depthwise_conv2d(VarDesc* input,
                            VarDesc* filter,
                            VarDesc* bias,
104 105 106 107 108 109 110 111 112 113 114 115 116 117
                            bool use_cudnn) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("depthwise_conv2d");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

118 119
  VarDesc* pool2d(VarDesc* x,
                  bool use_cudnn,
120
                  const AttributeMap* attrs = nullptr) {
121 122 123 124 125 126
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("pool2d");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
127 128 129 130 131
    if (attrs) {
      for (auto& iter : *attrs) {
        op->SetAttr(iter.first, iter.second);
      }
    }
132 133 134 135 136
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  VarDesc* squeeze2(VarDesc* x,
                    const std::vector<int> axes = {-1},
                    bool with_xshape = false) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("squeeze2");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axes", axes);
    if (with_xshape) {
      VarDesc* xshape = lod_tensor(unique_name());
      op->SetOutput("XShape", {xshape->Name()});
    }
    return out;
  }

153
  VarDesc* unsqueeze2(VarDesc* x, const std::vector<int> axes = {-1}) {
154 155 156 157 158 159 160 161 162
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("unsqueeze2");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axes", axes);
    return out;
  }

163 164 165 166
  VarDesc* relu(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("relu", x, out);
  }

167 168 169 170 171 172
  VarDesc* gelu(VarDesc* x, VarDesc* out = nullptr, bool approximate = true) {
    AttributeMap attrs;
    attrs["approximate"] = approximate;
    return unary_op("gelu", x, out, &attrs);
  }

173 174 175 176 177 178 179 180
  VarDesc* sigmoid(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("sigmoid", x, out);
  }

  VarDesc* tanh(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("tanh", x, out);
  }

181 182 183 184 185 186 187 188 189 190 191 192 193 194
  VarDesc* c_identity(VarDesc* x, VarDesc* out = nullptr, int ring_id = -1) {
    AttributeMap attrs;
    attrs["ring_id"] = ring_id;
    return unary_op("c_identity", x, out, &attrs);
  }

  VarDesc* c_allreduce_sum(VarDesc* x,
                           VarDesc* out = nullptr,
                           int ring_id = -1) {
    AttributeMap attrs;
    attrs["ring_id"] = ring_id;
    return unary_op("c_allreduce_sum", x, out, &attrs);
  }

195 196 197 198 199
  VarDesc* fc(VarDesc* input,
              VarDesc* w,
              VarDesc* bias,
              int in_num_col_dims = 1,
              std::string activation_type = "") {
200 201 202 203 204 205 206 207 208 209 210 211 212 213
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("fc");
    op->SetInput("Input", {input->Name()});
    op->SetInput("W", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("in_num_col_dims", in_num_col_dims);
    op->SetAttr("activation_type", activation_type);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

214 215 216 217 218 219 220 221 222 223 224
  void lstm(VarDesc* input,
            VarDesc* w,
            VarDesc* bias,
            VarDesc* cell,
            VarDesc* batch_gate,
            VarDesc* hidden,
            VarDesc* batch_cell_pre_act,
            VarDesc* h0 = nullptr,
            VarDesc* c0 = nullptr,
            bool use_peepholes = true,
            bool is_reverse = false,
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
            std::string gate_activation = "sigmoid",
            std::string cell_activation = "tanh",
            std::string candidate_activation = "tanh") {
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("lstm");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Weight", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    if (h0) {
      op->SetInput("H0", {h0->Name()});
    }
    if (c0) {
      op->SetInput("C0", {c0->Name()});
    }
    op->SetOutput("Hidden", {hidden->Name()});
    op->SetOutput("Cell", {cell->Name()});
    op->SetOutput("BatchGate", {batch_gate->Name()});
    op->SetOutput("BatchCellPreAct", {batch_cell_pre_act->Name()});
    op->SetAttr("use_peepholes", use_peepholes);
    op->SetAttr("is_reverse", is_reverse);
    op->SetAttr("gate_activation", gate_activation);
    op->SetAttr("cell_activation", cell_activation);
    op->SetAttr("candidate_activation", candidate_activation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
  }

252 253 254 255 256 257 258 259 260 261 262
  void gru(VarDesc* input,
           VarDesc* w,
           VarDesc* bias,
           VarDesc* batch_gate,
           VarDesc* batch_reset_hidden_prev,
           VarDesc* batch_hidden,
           VarDesc* hidden,
           VarDesc* h0 = nullptr,
           bool origin_mode = false,
           bool is_reverse = false,
           std::string activation = "tanh",
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
           std::string gate_activation = "sigmoid") {
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("gru");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Weight", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    if (h0) {
      op->SetInput("H0", {h0->Name()});
    }
    op->SetOutput("BatchGate", {batch_gate->Name()});
    op->SetOutput("BatchResetHiddenPrev", {batch_reset_hidden_prev->Name()});
    op->SetOutput("BatchHidden", {batch_hidden->Name()});
    op->SetOutput("Hidden", {hidden->Name()});
    op->SetAttr("origin_mode", origin_mode);
    op->SetAttr("is_reverse", is_reverse);
    op->SetAttr("activation", activation);
    op->SetAttr("gate_activation", gate_activation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
  }

284 285 286 287 288
  VarDesc* mul(VarDesc* x,
               VarDesc* y,
               VarDesc* out = nullptr,
               int x_num_col_dims = 1,
               int y_num_col_dims = 1,
289
               bool use_mkldnn = false) {
290
    AttributeMap attrs;
291 292
    attrs["x_num_col_dims"] = x_num_col_dims;
    attrs["y_num_col_dims"] = y_num_col_dims;
293
    attrs["use_mkldnn"] = use_mkldnn;
294
    return binary_op("mul", x, y, out, &attrs);
295 296
  }

297 298 299 300 301
  VarDesc* elementwise_add(VarDesc* x,
                           VarDesc* y,
                           VarDesc* out = nullptr,
                           int axis = -1,
                           bool use_mkldnn = false) {
302 303
    AttributeMap attrs;
    attrs["axis"] = axis;
304
    attrs["use_mkldnn"] = use_mkldnn;
305
    return binary_op("elementwise_add", x, y, out, &attrs);
306 307
  }

308 309 310
  VarDesc* elementwise_mul(VarDesc* x,
                           VarDesc* y,
                           VarDesc* out = nullptr,
311 312
                           const AttributeMap* attrs = nullptr) {
    return binary_op("elementwise_mul", x, y, out, attrs);
313 314
  }

315 316 317 318 319 320 321
  VarDesc* elementwise_div(VarDesc* x,
                           VarDesc* y,
                           VarDesc* out = nullptr,
                           const AttributeMap* attrs = nullptr) {
    return binary_op("elementwise_div", x, y, out, attrs);
  }

322 323
  VarDesc* dropout(VarDesc* x,
                   float dropout_prob,
324 325 326 327 328 329 330 331 332 333 334 335 336 337
                   std::string dropout_implementation) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("dropout");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("is_test", true);
    op->SetAttr("dropout_prob", dropout_prob);
    op->SetAttr("dropout_implementation", dropout_implementation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  VarDesc* concat(std::vector<VarDesc*> inputs, int axis = -1) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("concat");
    std::vector<std::string> input_names(inputs.size());
    for (size_t i = 0; i < inputs.size(); ++i) {
      input_names[i] = inputs[i]->Name();
    }
    op->SetInput("X", input_names);
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axis", axis);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

354 355
  std::vector<VarDesc*> layer_norm(VarDesc* x,
                                   VarDesc* scale = nullptr,
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
                                   VarDesc* bias = nullptr) {
    VarDesc* y = lod_tensor(unique_name());
    VarDesc* mean = lod_tensor(unique_name());
    VarDesc* variance = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("layer_norm");
    op->SetInput("X", {x->Name()});
    if (scale) {
      op->SetInput("Scale", {scale->Name()});
    }
    if (bias) {
      op->SetInput("Bias", {bias->Name()});
    }
    op->SetOutput("Y", {y->Name()});
    op->SetOutput("Mean", {mean->Name()});
    op->SetOutput("Variance", {variance->Name()});
    op->SetAttr("epsilon", static_cast<float>(1E-05));
    op->SetAttr("begin_norm_axis", static_cast<int>(1));
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    std::vector<VarDesc*> outs = {y, mean, variance};
    return outs;
  }

380 381 382 383 384 385 386 387 388 389
  std::vector<VarDesc*> split(VarDesc* x,
                              int num_or_section = 0,
                              int axis = 0,
                              std::vector<int> sections = {-1}) {
    int out_num = num_or_section;
    if (num_or_section == 0) {
      out_num = sections.size();
    }
    std::vector<VarDesc*> outs(out_num);
    for (int i = 0; i < out_num; i++) {
390 391
      outs[i] = lod_tensor(unique_name());
    }
392 393
    std::vector<std::string> out_names(out_num);
    for (int i = 0; i < out_num; i++) {
394 395 396 397 398 399
      out_names[i] = outs[i]->Name();
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("split");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", out_names);
400 401 402 403 404
    if (num_or_section == 0) {
      op->SetAttr("sections", sections);
    } else {
      op->SetAttr("num_or_section", num_or_section);
    }
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    op->SetAttr("axis", axis);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return outs;
  }

  VarDesc* assign(VarDesc* x) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("assign");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

422 423 424 425 426
  VarDesc* matmul(VarDesc* x,
                  VarDesc* y,
                  VarDesc* alpha = nullptr,
                  bool transpose_x = false,
                  bool transpose_y = false) {
427 428 429 430 431 432
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("matmul");
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
433 434 435
    op->SetAttr("transpose_X", transpose_x);
    op->SetAttr("transpose_Y", transpose_y);
    op->SetAttr("alpha", 1.0f);
436 437 438
    return out;
  }

439 440 441 442 443 444 445 446 447 448 449
  VarDesc* clip(VarDesc* x, VarDesc* min, VarDesc* max) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("clip");
    op->SetInput("X", {x->Name()});
    op->SetInput("Min", {min->Name()});
    op->SetInput("Max", {max->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

450 451 452 453 454
  VarDesc* matmul_v2(VarDesc* x,
                     VarDesc* y,
                     VarDesc* alpha = nullptr,
                     bool trans_x = false,
                     bool trans_y = false) {
455 456 457 458 459 460 461 462 463 464 465
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("matmul_v2");
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("trans_x", trans_x);
    op->SetAttr("trans_y", trans_y);
    return out;
  }

466 467
  VarDesc* transpose2(VarDesc* x,
                      std::vector<int> axis,
468
                      bool with_xshape = false) {
469 470 471 472 473 474
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("transpose2");
    op->SetInput("X", {x->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
475 476 477 478
    if (with_xshape) {
      VarDesc* xshape = lod_tensor(unique_name());
      op->SetOutput("XShape", {xshape->Name()});
    }
479 480 481
    return out;
  }

482 483
  VarDesc* reshape2(VarDesc* x,
                    std::vector<int> shape,
484
                    bool with_xshape = false) {
485 486 487 488 489 490
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("reshape2");
    op->SetInput("X", {x->Name()});
    op->SetAttr("shape", shape);
    op->SetOutput("Out", {out->Name()});
491 492 493 494
    if (with_xshape) {
      VarDesc* xshape = lod_tensor(unique_name());
      op->SetOutput("XShape", {xshape->Name()});
    }
495 496 497 498 499 500 501 502 503 504 505 506 507
    return out;
  }

  VarDesc* softmax(VarDesc* x, int axis) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("softmax");
    op->SetInput("X", {x->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

508 509 510 511
  VarDesc* scale(VarDesc* x,
                 float scale = 1.,
                 float bias = 0.,
                 bool bias_after = true) {
512 513 514 515 516 517 518 519 520 521 522
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("scale");
    op->SetInput("X", {x->Name()});
    op->SetAttr("scale", scale);
    op->SetAttr("bias", bias);
    op->SetAttr("bias_after_scale", bias_after);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

523 524 525 526 527
  std::vector<VarDesc*> batch_norm(VarDesc* x,
                                   VarDesc* scale,
                                   VarDesc* bias,
                                   VarDesc* mean,
                                   VarDesc* variance) {
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    VarDesc* y = lod_tensor(unique_name());
    VarDesc* mean_out = lod_tensor(unique_name());
    VarDesc* variance_out = lod_tensor(unique_name());
    VarDesc* saved_mean = lod_tensor(unique_name());
    VarDesc* saved_variance = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("batch_norm");
    op->SetInput("X", {x->Name()});
    op->SetInput("Scale", {scale->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetInput("Mean", {mean->Name()});
    op->SetInput("Variance", {variance->Name()});
    op->SetOutput("Y", {y->Name()});
    op->SetOutput("MeanOut", {mean_out->Name()});
    op->SetOutput("VarianceOut", {variance_out->Name()});
    op->SetOutput("SavedMean", {saved_mean->Name()});
    op->SetOutput("SavedVariance", {saved_variance->Name()});
    op->SetAttr("epsilon", static_cast<float>(1e-5));
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
548 549
    std::vector<VarDesc*> outs = {
        y, mean_out, variance_out, saved_mean, saved_variance};
550 551 552
    return outs;
  }

553 554 555 556 557 558 559 560 561 562
  VarDesc* embedding(VarDesc* x, VarDesc* weights) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("lookup_table");
    op->SetInput("Ids", {x->Name()});
    op->SetInput("W", {weights->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
  VarDesc* while_loop(std::vector<VarDesc*> xs, VarDesc* cond = nullptr) {
    VarDesc* out = lod_tensor(unique_name());
    VarDesc* step_scopes = lod_tensor(unique_name());
    if (cond == nullptr) cond = lod_tensor(unique_name());

    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("while");
    std::vector<std::string> xs_names;
    for (auto& x : xs) xs_names.emplace_back(x->Name());
    op->SetInput("X", xs_names);
    op->SetInput("Condition", {cond->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetOutput("StepScopes", {step_scopes->Name()});
    op->SetAttr("sub_block", {program_.MutableBlock(0)});
    op->SetAttr("is_test", true);
    return out;
  }

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
  VarDesc* shape(VarDesc* input) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("shape");
    op->SetInput("Input", {input->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* slice(VarDesc* input,
                 std::vector<int> axes,
                 std::vector<int> starts,
                 std::vector<int> ends) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("slice");
    op->SetInput("Input", {input->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axes", axes);
    op->SetAttr("starts", starts);
    op->SetAttr("ends", ends);
    return out;
  }

  VarDesc* fill_constant_batch_size_like(VarDesc* x,
                                         int dtype,
                                         int input_dim_idx,
                                         int output_dim_idx,
                                         std::vector<int> shape,
                                         float value) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("fill_constant_batch_size_like");
    op->SetInput("Input", {x->Name()});
    op->SetAttr("dtype", dtype);
    op->SetAttr("input_dim_idx", input_dim_idx);
    op->SetAttr("output_dim_idx", output_dim_idx);
    op->SetAttr("shape", shape);
    op->SetAttr("value", value);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
  std::vector<VarDesc*> fused_multi_transformer(
      VarDesc* x,
      VarDesc* cache_kv,
      VarDesc* src_mask,
      VarDesc* qkv_w,
      VarDesc* qkv_bias,
      VarDesc* out_linear_w,
      VarDesc* out_linear_bias,
      VarDesc* ffn1_w,
      VarDesc* ffn1_bias,
      VarDesc* ffn2_w,
      VarDesc* ffn2_bias,
      VarDesc* ln_scale,
      VarDesc* ln_bias,
      VarDesc* ffn_ln_scale,
      VarDesc* ffn_ln_bias,
      float epsilon,
      float dropout_rate,
      VarDesc* time_stamp = nullptr,
      VarDesc* qkv_out_scale = nullptr,
      VarDesc* out_linear_out_scale = nullptr,
      VarDesc* ffn1_out_scale = nullptr,
      VarDesc* ffn2_out_scale = nullptr,
      std::vector<float> qkv_in_scale = {},
      std::vector<float> out_linear_in_scale = {},
      std::vector<float> ffn1_in_scale = {},
      std::vector<float> ffn2_in_scale = {}) {
651
    VarDesc* out = lod_tensor(unique_name());
652
    VarDesc* cache_kv_out = lod_tensor(unique_name());
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    std::string op_type = qkv_out_scale ? "fused_multi_transformer_int8"
                                        : "fused_multi_transformer";
    op->SetType(op_type);
    op->SetInput("X", {x->Name()});
    op->SetInput("CacheKV", {cache_kv->Name()});
    op->SetInput("SrcMask", {src_mask->Name()});
    op->SetInput("QKVW", {qkv_w->Name()});
    op->SetInput("QKVBias", {qkv_bias->Name()});
    op->SetInput("OutLinearW", {out_linear_w->Name()});
    op->SetInput("OutLinearBias", {out_linear_bias->Name()});
    op->SetInput("FFN1Weight", {ffn1_w->Name()});
    op->SetInput("FFN1Bias", {ffn1_bias->Name()});
    op->SetInput("FFN2Weight", {ffn2_w->Name()});
    op->SetInput("FFN2Bias", {ffn2_bias->Name()});
    op->SetInput("LnScale", {ln_scale->Name()});
    op->SetInput("LnBias", {ln_bias->Name()});
    op->SetInput("FFNLnScale", {ffn_ln_scale->Name()});
    op->SetInput("FFNLnBias", {ffn_ln_bias->Name()});
    op->SetAttr("pre_layer_norm", true);
    op->SetAttr("is_test", true);
    op->SetAttr("dropout_implementation", "upscale_in_train");
    op->SetAttr("dropout_rate", dropout_rate);
    op->SetAttr("epsilon", epsilon);
    op->SetOutput("Out", {out->Name()});
678
    op->SetOutput("CacheKVOut", {cache_kv_out->Name()});
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

    if (time_stamp) {
      op->SetInput("TimeStep", {time_stamp->Name()});
    }

    if (qkv_out_scale) {
      op->SetInput("QKVOutScale", {qkv_out_scale->Name()});
      op->SetInput("OutLinearOutScale", {out_linear_out_scale->Name()});
      op->SetInput("FFN1OutScale", {ffn1_out_scale->Name()});
      op->SetInput("FFN2OutScale", {ffn2_out_scale->Name()});
      op->SetAttr("qkv_in_scale", qkv_in_scale);
      op->SetAttr("out_linear_in_scale", out_linear_in_scale);
      op->SetAttr("ffn1_in_scale", ffn1_in_scale);
      op->SetAttr("ffn2_in_scale", ffn2_in_scale);
    }
694 695
    std::vector<VarDesc*> outs = {out, cache_kv_out};
    return outs;
696 697
  }

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
  VarDesc* dequantize_linear(VarDesc* x,
                             VarDesc* scale,
                             VarDesc* zero_point,
                             int bit_length = 8,
                             int quant_axis = -1) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("dequantize_linear");
    op->SetInput("X", {x->Name()});
    op->SetInput("Scale", {scale->Name()});
    op->SetInput("ZeroPoint", {zero_point->Name()});
    op->SetAttr("bit_length", bit_length);
    op->SetAttr("quant_axis", quant_axis);
    op->SetOutput("Y", {out->Name()});
    return out;
  }

715 716 717
  void backward(std::vector<VarDesc*> targets) {
    // This function is designed to simulate the structure of training program,
    //  but is constructed differently as the actual program.
718 719
    BlockDesc* block = program_.MutableBlock(0);
    std::vector<OpDesc*> forward_ops = block->AllOps();
720 721 722 723 724 725 726 727
    for (auto* var : targets) {
      OpDesc* none_op = block->AppendOp();
      none_op->SetType("none");
      none_op->SetInput("X", {var->Name()});
      VarDesc* grad_var =
          lod_tensor(GradVarName(var->Name()), var->GetShape(), false);
      none_op->SetOutput("Out", {grad_var->Name()});
    }
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
    for (int i = forward_ops.size() - 1; i >= 0; --i) {
      OpDesc* op = forward_ops[i];
      OpDesc* grad_op = block->AppendOp();
      grad_op->SetType(op->Type() + "_grad");
      // All op's inputs are grad_op's input.
      for (auto name : op->InputNames()) {
        grad_op->SetInput(name, op->Input(name));
      }
      // All op's outputs are grad_op's input.
      for (auto name : op->OutputNames()) {
        grad_op->SetInput(name, op->Output(name));
      }
      // All op's outputs grad are grad_op's input.
      for (auto name : op->OutputNames()) {
        std::vector<std::string> grad_var_names;
        for (auto var_name : op->Output(name)) {
          VarDesc* var = block->FindVar(var_name);
          VarDesc* grad_var =
              lod_tensor(GradVarName(var_name), var->GetShape(), false);
          grad_var_names.push_back(grad_var->Name());
        }
        grad_op->SetInput(GradVarName(name), grad_var_names);
      }
      // All op's inputs grad are grad_op's output.
      for (auto name : op->InputNames()) {
        std::vector<std::string> grad_var_names;
        for (auto var_name : op->Input(name)) {
          VarDesc* var = block->FindVar(var_name);
          VarDesc* grad_var =
              lod_tensor(GradVarName(var_name), var->GetShape(), false);
          grad_var_names.push_back(grad_var->Name());
        }
        grad_op->SetOutput(GradVarName(name), grad_var_names);
      }
      // TODO(liuyiqun): attrs
    }
  }

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
  VarDesc* cast(VarDesc* input, int in_dtype = 5, int out_dtype = 5) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("cast");
    op->SetInput("X", {input->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("in_dtype", in_dtype);
    op->SetAttr("out_dtype", out_dtype);
    return out;
  }

  VarDesc* range(VarDesc* start, VarDesc* end, VarDesc* step) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("range");
    op->SetInput("Start", {start->Name()});
    op->SetInput("End", {end->Name()});
    op->SetInput("Step", {step->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* flatten_contiguous_range(VarDesc* input) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("flatten_contiguous_range");
    op->SetInput("X", {input->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  std::vector<VarDesc*> beam_search(VarDesc* ids,
                                    VarDesc* scores,
                                    VarDesc* pre_ids,
                                    VarDesc* pre_scores,
                                    int beam_size = 1) {
    VarDesc* parent_idx = lod_tensor(unique_name());
    VarDesc* selected_ids = lod_tensor(unique_name());
    VarDesc* selected_scores = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("beam_search");
    op->SetInput("ids", {ids->Name()});
    op->SetInput("scores", {scores->Name()});
    op->SetInput("pre_ids", {pre_ids->Name()});
    op->SetInput("pre_scores", {pre_scores->Name()});
    op->SetOutput("parent_idx", {parent_idx->Name()});
    op->SetOutput("selected_ids", {selected_ids->Name()});
    op->SetOutput("selected_scores", {selected_scores->Name()});
    op->SetAttr("beam_size", 1);
    return {parent_idx, selected_ids, selected_scores};
  }

  VarDesc* lod_reset(VarDesc* x, VarDesc* y) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("lod_reset");
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

828
  VarDesc* write_to_array(VarDesc* x, VarDesc* i) {
829 830 831
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("write_to_array");
832 833 834 835 836 837 838 839 840 841 842
    op->SetInput("X", {x->Name()});
    op->SetInput("I", {i->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* read_from_array(VarDesc* x, VarDesc* i) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("read_from_array");
    op->SetInput("X", {x->Name()});
843 844 845 846 847
    op->SetInput("I", {i->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

848 849 850 851 852 853 854 855 856 857 858
  VarDesc* gather(VarDesc* x, VarDesc* index, int axis) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("gather");
    op->SetInput("X", {x->Name()});
    op->SetInput("Index", {index->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

859 860 861 862 863 864
  VarDesc* is_empty(VarDesc* input) { return unary_op("is_empty", input); }

  VarDesc* logical_not(VarDesc* input) {
    return unary_op("logical_not", input);
  }

865 866 867 868 869 870 871 872 873 874 875
  VarDesc* not_equal(VarDesc* x, VarDesc* y, int axis = -1) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("not_equal");
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

Z
zhupengyang 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889
  VarDesc* stack(std::vector<VarDesc*> inputs, int axis = -1) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("stack");
    std::vector<std::string> input_names;
    for (auto* input : inputs) {
      input_names.push_back(input->Name());
    }
    op->SetInput("X", input_names);
    op->SetAttr("axis", axis);
    op->SetOutput("Y", {out->Name()});
    return out;
  }

890 891 892 893 894 895 896 897 898 899
  VarDesc* tile(VarDesc* x, const std::vector<int>& repeat_times = {2}) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("tile");
    op->SetInput("X", {x->Name()});
    op->SetAttr("repeat_times", repeat_times);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

900
 private:
901 902
  VarDesc* lod_tensor(std::string name,
                      std::vector<int64_t> shape = {},
903 904
                      bool is_persistable = false,
                      proto::VarType::Type data_type = proto::VarType::FP32) {
905 906
    auto* var = program_.MutableBlock(0)->Var(name);
    var->SetType(proto::VarType::LOD_TENSOR);
907
    var->SetDataType(data_type);
908 909
    var->SetShape(shape);
    var->SetPersistable(is_persistable);
910 911 912
    return var;
  }

913 914 915 916
  VarDesc* unary_op(std::string type,
                    VarDesc* x,
                    VarDesc* out = nullptr,
                    const AttributeMap* attrs = nullptr) {
917 918 919 920 921 922 923
    if (!out) {
      out = lod_tensor(unique_name());
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType(type);
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
924 925 926 927 928
    if (attrs) {
      for (auto& iter : *attrs) {
        op->SetAttr(iter.first, iter.second);
      }
    }
929 930 931 932 933
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

934 935 936
  VarDesc* binary_op(std::string type,
                     VarDesc* x,
                     VarDesc* y,
937 938
                     VarDesc* out = nullptr,
                     const AttributeMap* attrs = nullptr) {
939 940 941 942 943 944 945 946
    if (!out) {
      out = lod_tensor(unique_name());
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType(type);
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
947 948 949 950 951
    if (attrs) {
      for (auto& iter : *attrs) {
        op->SetAttr(iter.first, iter.second);
      }
    }
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

  std::string unique_name() { return "tmp_" + std::to_string(idx_++); }

 private:
  ProgramDesc program_;
  int idx_{0};
};

static std::string DebugString(OpDesc* op) {
  std::ostringstream os;
  os << "Op(" << op->Type() << "), inputs:{";
  bool is_first = true;
  for (auto& name : op->InputNames()) {
    if (!is_first) {
      os << ", ";
    }
    os << name << "[";
    bool is_first_var_name = true;
    for (auto& var_name : op->Input(name)) {
      if (!is_first_var_name) {
        os << ", ";
      }
      os << var_name;
      is_first_var_name = false;
    }
    os << "]";
    is_first = false;
  }

  os << "}, outputs:{";
  is_first = true;
  for (auto& name : op->OutputNames()) {
    if (!is_first) {
      os << ", ";
    }
    os << name << "[";
    bool is_first_var_name = true;
    for (auto& var_name : op->Output(name)) {
      if (!is_first_var_name) {
        os << ", ";
      }
      os << var_name;
      is_first_var_name = false;
    }
    os << "]";
    is_first = false;
  }
  os << "}";
  return os.str();
}

1007
static std::string DebugString(const Node* node) {
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
  std::ostringstream os;
  if (node->IsOp() && node->Op()) {
    OpDesc* op = node->Op();
    os << "Node(" << DebugString(op) << "), inputs:{";
    bool is_first = true;
    for (auto* in : node->inputs) {
      if (!is_first) {
        os << ", ";
      }
      os << in->Name();
      is_first = false;
    }
    os << "}, outputs:{";
    is_first = true;
    for (auto* out : node->outputs) {
      if (!is_first) {
        os << ", ";
      }
      os << out->Name();
      is_first = false;
    }
    os << "}.";
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
  } else {
    os << "Node(" << node->Name();
    if (node->IsVar() && node->Var()) {
      os << "{";
      bool is_first = true;
      for (auto dim : node->Var()->GetShape()) {
        if (!is_first) {
          os << "x";
        }
        os << dim;
        is_first = false;
      }
      os << "}";
    }
    os << "), inputs:{";
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    bool is_first = true;
    for (auto* in : node->inputs) {
      if (!is_first) {
        os << ", ";
      }
      if (in->IsOp() && in->Op()) {
        os << in->Op()->Type();
      }
      is_first = false;
    }
    os << "}, outputs:{";
    is_first = true;
    for (auto* out : node->outputs) {
      if (!is_first) {
        os << ", ";
      }
      if (out->IsOp() && out->Op()) {
        os << out->Op()->Type();
      }
      is_first = false;
    }
    os << "}";
  }
  return os.str();
}

1071
static std::string DebugString(const std::vector<Node*>& nodes) {
1072
  std::ostringstream os;
1073
  for (auto* node : nodes) {
1074 1075
    if (node->IsOp() && node->Op()) {
      os << "  ";
1076
    } else if ((node->IsVar() && node->Var()) || node->IsCtrlVar()) {
1077 1078 1079 1080
      os << "    ";
    }
    os << DebugString(node) << "\n";
  }
1081 1082 1083
  return os.str();
}

1084 1085 1086 1087 1088 1089 1090 1091
static std::string DebugString(const std::unordered_set<Node*>& nodes) {
  std::vector<Node*> vec;
  for (auto* node : nodes) {
    vec.push_back(node);
  }
  return DebugString(vec);
}

1092
static std::string DebugString(Graph* graph) {
1093 1094
  std::ostringstream os;
  os << "Graph: {\n" << DebugString(graph->Nodes()) << "}\n";
1095 1096 1097
  return os.str();
}

1098 1099 1100 1101
static std::string DebugString(const std::unique_ptr<Graph>& graph) {
  return DebugString(graph.get());
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
static std::vector<ir::Node*> GetOpNodes(const std::unique_ptr<Graph>& graph,
                                         std::string op_type) {
  std::vector<ir::Node*> rc;
  for (auto* node : graph->Nodes()) {
    if (node->IsOp() && node->Op() && node->Op()->Type() == op_type) {
      rc.push_back(node);
    }
  }
  return rc;
}

1113
static int GetNumOpNodes(const std::unique_ptr<Graph>& graph,
1114
                         std::string op_type = "") {
1115 1116
  int num_nodes = 0;
  for (auto* node : graph->Nodes()) {
1117 1118
    if (node->IsOp() && node->Op() &&
        (node->Op()->Type() == op_type || op_type.empty())) {
1119 1120 1121 1122 1123 1124
      num_nodes++;
    }
  }
  return num_nodes;
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
static void RegisterOpKernel(std::vector<std::string>&& op_types) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();

  platform::CPUPlace place = platform::CPUPlace();
  OpKernelType mkldnn_kernel_type = OpKernelType(proto::VarType::FP32,
                                                 place,
                                                 DataLayout::kAnyLayout,
                                                 LibraryType::kMKLDNN);

  auto fake_kernel_func = [](const ExecutionContext&) -> void {};

  for (auto& op_name : op_types)
    all_kernels[op_name][mkldnn_kernel_type] = fake_kernel_func;
}

1140 1141 1142
}  // namespace ir
}  // namespace framework
}  // namespace paddle