pass_tester_helper.h 36.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#include <sstream>
#include <string>
20
#include <unordered_set>
21
#include <vector>
22

23
#include "paddle/fluid/framework/ir/graph.h"
24
#include "paddle/fluid/framework/op_proto_maker.h"
25 26
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
27 28 29 30 31 32 33 34 35

namespace paddle {
namespace framework {
namespace ir {

struct Layers {
 public:
  const ProgramDesc& main_program() { return program_; }

36 37
  BlockDesc* Block() { return program_.MutableBlock(0); }

38 39
  VarDesc* data(std::string name,
                std::vector<int64_t> shape = {},
40 41 42
                bool is_persistable = false,
                proto::VarType::Type data_type = proto::VarType::FP32) {
    return lod_tensor(name, shape, is_persistable, data_type);
43
  }
44

45 46 47 48 49
  VarDesc* conv2d(VarDesc* input,
                  VarDesc* filter,
                  VarDesc* bias,
                  int groups = 1,
                  std::vector<int> strides = {1, 1},
W
Wangzheee 已提交
50 51 52
                  std::vector<int> paddings = {0, 0},
                  std::string padding_algorithm = "EXPLICIT",
                  std::vector<int> dilations = {1, 1},
53 54
                  std::string data_format = "NCHW",
                  bool use_cudnn = false) {
55 56 57 58 59 60
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("conv2d");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
W
Wangzheee 已提交
61
    op->SetOutput("Output", {out->Name()});
62
    op->SetAttr("use_cudnn", use_cudnn);
W
Wangzheee 已提交
63 64 65 66 67 68
    op->SetAttr("groups", groups);
    op->SetAttr("strides", strides);
    op->SetAttr("paddings", paddings);
    op->SetAttr("padding_algorithm", padding_algorithm);
    op->SetAttr("dilations", dilations);
    op->SetAttr("data_format", data_format);
69 70 71 72 73
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

74 75 76 77 78
  VarDesc* conv2d_transpose(VarDesc* input,
                            VarDesc* filter,
                            VarDesc* bias,
                            int groups = 1,
                            std::vector<int> strides = {1, 1},
W
Wangzheee 已提交
79 80 81 82
                            std::vector<int> paddings = {0, 0},
                            std::string padding_algorithm = "EXPLICIT",
                            std::vector<int> dilations = {1, 1},
                            std::string data_format = "NCHW") {
83 84 85 86 87 88
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("conv2d_transpose");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
W
Wangzheee 已提交
89 90 91 92 93 94 95
    op->SetOutput("Output", {out->Name()});
    op->SetAttr("groups", groups);
    op->SetAttr("strides", strides);
    op->SetAttr("paddings", paddings);
    op->SetAttr("padding_algorithm", padding_algorithm);
    op->SetAttr("dilations", dilations);
    op->SetAttr("data_format", data_format);
96 97 98 99 100
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

101 102 103
  VarDesc* depthwise_conv2d(VarDesc* input,
                            VarDesc* filter,
                            VarDesc* bias,
104 105 106 107 108 109 110 111 112 113 114 115 116 117
                            bool use_cudnn) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("depthwise_conv2d");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

118 119
  VarDesc* pool2d(VarDesc* x,
                  bool use_cudnn,
120
                  const AttributeMap* attrs = nullptr) {
121 122 123 124 125 126
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("pool2d");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
127 128 129 130 131
    if (attrs) {
      for (auto& iter : *attrs) {
        op->SetAttr(iter.first, iter.second);
      }
    }
132 133 134 135 136
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

137
  VarDesc* unsqueeze2(VarDesc* x, const std::vector<int> axes = {-1}) {
138 139 140 141 142 143 144 145 146
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("unsqueeze2");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axes", axes);
    return out;
  }

147 148 149 150
  VarDesc* relu(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("relu", x, out);
  }

151 152 153 154 155 156
  VarDesc* gelu(VarDesc* x, VarDesc* out = nullptr, bool approximate = true) {
    AttributeMap attrs;
    attrs["approximate"] = approximate;
    return unary_op("gelu", x, out, &attrs);
  }

157 158 159 160 161 162 163 164
  VarDesc* sigmoid(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("sigmoid", x, out);
  }

  VarDesc* tanh(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("tanh", x, out);
  }

165 166 167 168 169 170 171 172 173 174 175 176 177 178
  VarDesc* c_identity(VarDesc* x, VarDesc* out = nullptr, int ring_id = -1) {
    AttributeMap attrs;
    attrs["ring_id"] = ring_id;
    return unary_op("c_identity", x, out, &attrs);
  }

  VarDesc* c_allreduce_sum(VarDesc* x,
                           VarDesc* out = nullptr,
                           int ring_id = -1) {
    AttributeMap attrs;
    attrs["ring_id"] = ring_id;
    return unary_op("c_allreduce_sum", x, out, &attrs);
  }

179 180 181 182 183
  VarDesc* fc(VarDesc* input,
              VarDesc* w,
              VarDesc* bias,
              int in_num_col_dims = 1,
              std::string activation_type = "") {
184 185 186 187 188 189 190 191 192 193 194 195 196 197
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("fc");
    op->SetInput("Input", {input->Name()});
    op->SetInput("W", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("in_num_col_dims", in_num_col_dims);
    op->SetAttr("activation_type", activation_type);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

198 199 200 201 202 203 204 205 206 207 208
  void lstm(VarDesc* input,
            VarDesc* w,
            VarDesc* bias,
            VarDesc* cell,
            VarDesc* batch_gate,
            VarDesc* hidden,
            VarDesc* batch_cell_pre_act,
            VarDesc* h0 = nullptr,
            VarDesc* c0 = nullptr,
            bool use_peepholes = true,
            bool is_reverse = false,
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
            std::string gate_activation = "sigmoid",
            std::string cell_activation = "tanh",
            std::string candidate_activation = "tanh") {
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("lstm");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Weight", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    if (h0) {
      op->SetInput("H0", {h0->Name()});
    }
    if (c0) {
      op->SetInput("C0", {c0->Name()});
    }
    op->SetOutput("Hidden", {hidden->Name()});
    op->SetOutput("Cell", {cell->Name()});
    op->SetOutput("BatchGate", {batch_gate->Name()});
    op->SetOutput("BatchCellPreAct", {batch_cell_pre_act->Name()});
    op->SetAttr("use_peepholes", use_peepholes);
    op->SetAttr("is_reverse", is_reverse);
    op->SetAttr("gate_activation", gate_activation);
    op->SetAttr("cell_activation", cell_activation);
    op->SetAttr("candidate_activation", candidate_activation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
  }

236 237 238 239 240 241 242 243 244 245 246
  void gru(VarDesc* input,
           VarDesc* w,
           VarDesc* bias,
           VarDesc* batch_gate,
           VarDesc* batch_reset_hidden_prev,
           VarDesc* batch_hidden,
           VarDesc* hidden,
           VarDesc* h0 = nullptr,
           bool origin_mode = false,
           bool is_reverse = false,
           std::string activation = "tanh",
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
           std::string gate_activation = "sigmoid") {
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("gru");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Weight", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    if (h0) {
      op->SetInput("H0", {h0->Name()});
    }
    op->SetOutput("BatchGate", {batch_gate->Name()});
    op->SetOutput("BatchResetHiddenPrev", {batch_reset_hidden_prev->Name()});
    op->SetOutput("BatchHidden", {batch_hidden->Name()});
    op->SetOutput("Hidden", {hidden->Name()});
    op->SetAttr("origin_mode", origin_mode);
    op->SetAttr("is_reverse", is_reverse);
    op->SetAttr("activation", activation);
    op->SetAttr("gate_activation", gate_activation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
  }

268 269 270 271 272
  VarDesc* mul(VarDesc* x,
               VarDesc* y,
               VarDesc* out = nullptr,
               int x_num_col_dims = 1,
               int y_num_col_dims = 1,
273
               bool use_mkldnn = false) {
274
    AttributeMap attrs;
275 276
    attrs["x_num_col_dims"] = x_num_col_dims;
    attrs["y_num_col_dims"] = y_num_col_dims;
277
    attrs["use_mkldnn"] = use_mkldnn;
278
    return binary_op("mul", x, y, out, &attrs);
279 280
  }

281 282 283 284 285
  VarDesc* elementwise_add(VarDesc* x,
                           VarDesc* y,
                           VarDesc* out = nullptr,
                           int axis = -1,
                           bool use_mkldnn = false) {
286 287
    AttributeMap attrs;
    attrs["axis"] = axis;
288
    attrs["use_mkldnn"] = use_mkldnn;
289
    return binary_op("elementwise_add", x, y, out, &attrs);
290 291
  }

292 293 294
  VarDesc* elementwise_mul(VarDesc* x,
                           VarDesc* y,
                           VarDesc* out = nullptr,
295 296
                           const AttributeMap* attrs = nullptr) {
    return binary_op("elementwise_mul", x, y, out, attrs);
297 298
  }

299 300 301 302 303 304 305
  VarDesc* elementwise_div(VarDesc* x,
                           VarDesc* y,
                           VarDesc* out = nullptr,
                           const AttributeMap* attrs = nullptr) {
    return binary_op("elementwise_div", x, y, out, attrs);
  }

306 307
  VarDesc* dropout(VarDesc* x,
                   float dropout_prob,
308 309 310 311 312 313 314 315 316 317 318 319 320 321
                   std::string dropout_implementation) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("dropout");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("is_test", true);
    op->SetAttr("dropout_prob", dropout_prob);
    op->SetAttr("dropout_implementation", dropout_implementation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
  VarDesc* concat(std::vector<VarDesc*> inputs, int axis = -1) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("concat");
    std::vector<std::string> input_names(inputs.size());
    for (size_t i = 0; i < inputs.size(); ++i) {
      input_names[i] = inputs[i]->Name();
    }
    op->SetInput("X", input_names);
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axis", axis);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

338 339
  std::vector<VarDesc*> layer_norm(VarDesc* x,
                                   VarDesc* scale = nullptr,
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
                                   VarDesc* bias = nullptr) {
    VarDesc* y = lod_tensor(unique_name());
    VarDesc* mean = lod_tensor(unique_name());
    VarDesc* variance = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("layer_norm");
    op->SetInput("X", {x->Name()});
    if (scale) {
      op->SetInput("Scale", {scale->Name()});
    }
    if (bias) {
      op->SetInput("Bias", {bias->Name()});
    }
    op->SetOutput("Y", {y->Name()});
    op->SetOutput("Mean", {mean->Name()});
    op->SetOutput("Variance", {variance->Name()});
    op->SetAttr("epsilon", static_cast<float>(1E-05));
    op->SetAttr("begin_norm_axis", static_cast<int>(1));
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    std::vector<VarDesc*> outs = {y, mean, variance};
    return outs;
  }

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
  std::vector<VarDesc*> split(VarDesc* x, int num_or_section, int axis = 0) {
    std::vector<VarDesc*> outs(num_or_section);
    for (int i = 0; i < num_or_section; i++) {
      outs[i] = lod_tensor(unique_name());
    }
    std::vector<std::string> out_names(num_or_section);
    for (int i = 0; i < num_or_section; i++) {
      out_names[i] = outs[i]->Name();
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("split");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", out_names);
    op->SetAttr("num_or_section", num_or_section);
    op->SetAttr("axis", axis);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return outs;
  }

  VarDesc* assign(VarDesc* x) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("assign");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

395 396 397 398 399
  VarDesc* matmul(VarDesc* x,
                  VarDesc* y,
                  VarDesc* alpha = nullptr,
                  bool transpose_x = false,
                  bool transpose_y = false) {
400 401 402 403 404 405
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("matmul");
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
406 407 408
    op->SetAttr("transpose_X", transpose_x);
    op->SetAttr("transpose_Y", transpose_y);
    op->SetAttr("alpha", 1.0f);
409 410 411
    return out;
  }

412 413 414 415 416
  VarDesc* matmul_v2(VarDesc* x,
                     VarDesc* y,
                     VarDesc* alpha = nullptr,
                     bool trans_x = false,
                     bool trans_y = false) {
417 418 419 420 421 422 423 424 425 426 427
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("matmul_v2");
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("trans_x", trans_x);
    op->SetAttr("trans_y", trans_y);
    return out;
  }

428 429
  VarDesc* transpose2(VarDesc* x,
                      std::vector<int> axis,
430
                      bool with_xshape = false) {
431 432 433 434 435 436
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("transpose2");
    op->SetInput("X", {x->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
437 438 439 440
    if (with_xshape) {
      VarDesc* xshape = lod_tensor(unique_name());
      op->SetOutput("XShape", {xshape->Name()});
    }
441 442 443
    return out;
  }

444 445
  VarDesc* reshape2(VarDesc* x,
                    std::vector<int> shape,
446
                    bool with_xshape = false) {
447 448 449 450 451 452
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("reshape2");
    op->SetInput("X", {x->Name()});
    op->SetAttr("shape", shape);
    op->SetOutput("Out", {out->Name()});
453 454 455 456
    if (with_xshape) {
      VarDesc* xshape = lod_tensor(unique_name());
      op->SetOutput("XShape", {xshape->Name()});
    }
457 458 459 460 461 462 463 464 465 466 467 468 469
    return out;
  }

  VarDesc* softmax(VarDesc* x, int axis) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("softmax");
    op->SetInput("X", {x->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

470 471 472 473
  VarDesc* scale(VarDesc* x,
                 float scale = 1.,
                 float bias = 0.,
                 bool bias_after = true) {
474 475 476 477 478 479 480 481 482 483 484
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("scale");
    op->SetInput("X", {x->Name()});
    op->SetAttr("scale", scale);
    op->SetAttr("bias", bias);
    op->SetAttr("bias_after_scale", bias_after);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

485 486 487 488 489
  std::vector<VarDesc*> batch_norm(VarDesc* x,
                                   VarDesc* scale,
                                   VarDesc* bias,
                                   VarDesc* mean,
                                   VarDesc* variance) {
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
    VarDesc* y = lod_tensor(unique_name());
    VarDesc* mean_out = lod_tensor(unique_name());
    VarDesc* variance_out = lod_tensor(unique_name());
    VarDesc* saved_mean = lod_tensor(unique_name());
    VarDesc* saved_variance = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("batch_norm");
    op->SetInput("X", {x->Name()});
    op->SetInput("Scale", {scale->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetInput("Mean", {mean->Name()});
    op->SetInput("Variance", {variance->Name()});
    op->SetOutput("Y", {y->Name()});
    op->SetOutput("MeanOut", {mean_out->Name()});
    op->SetOutput("VarianceOut", {variance_out->Name()});
    op->SetOutput("SavedMean", {saved_mean->Name()});
    op->SetOutput("SavedVariance", {saved_variance->Name()});
    op->SetAttr("epsilon", static_cast<float>(1e-5));
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
510 511
    std::vector<VarDesc*> outs = {
        y, mean_out, variance_out, saved_mean, saved_variance};
512 513 514
    return outs;
  }

515 516 517 518 519 520 521 522 523 524
  VarDesc* embedding(VarDesc* x, VarDesc* weights) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("lookup_table");
    op->SetInput("Ids", {x->Name()});
    op->SetInput("W", {weights->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
  VarDesc* while_loop(std::vector<VarDesc*> xs, VarDesc* cond = nullptr) {
    VarDesc* out = lod_tensor(unique_name());
    VarDesc* step_scopes = lod_tensor(unique_name());
    if (cond == nullptr) cond = lod_tensor(unique_name());

    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("while");
    std::vector<std::string> xs_names;
    for (auto& x : xs) xs_names.emplace_back(x->Name());
    op->SetInput("X", xs_names);
    op->SetInput("Condition", {cond->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetOutput("StepScopes", {step_scopes->Name()});
    op->SetAttr("sub_block", {program_.MutableBlock(0)});
    op->SetAttr("is_test", true);
    return out;
  }

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
  VarDesc* shape(VarDesc* input) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("shape");
    op->SetInput("Input", {input->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* slice(VarDesc* input,
                 std::vector<int> axes,
                 std::vector<int> starts,
                 std::vector<int> ends) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("slice");
    op->SetInput("Input", {input->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axes", axes);
    op->SetAttr("starts", starts);
    op->SetAttr("ends", ends);
    return out;
  }

  VarDesc* fill_constant_batch_size_like(VarDesc* x,
                                         int dtype,
                                         int input_dim_idx,
                                         int output_dim_idx,
                                         std::vector<int> shape,
                                         float value) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("fill_constant_batch_size_like");
    op->SetInput("Input", {x->Name()});
    op->SetAttr("dtype", dtype);
    op->SetAttr("input_dim_idx", input_dim_idx);
    op->SetAttr("output_dim_idx", output_dim_idx);
    op->SetAttr("shape", shape);
    op->SetAttr("value", value);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
  std::vector<VarDesc*> fused_multi_transformer(
      VarDesc* x,
      VarDesc* cache_kv,
      VarDesc* src_mask,
      VarDesc* qkv_w,
      VarDesc* qkv_bias,
      VarDesc* out_linear_w,
      VarDesc* out_linear_bias,
      VarDesc* ffn1_w,
      VarDesc* ffn1_bias,
      VarDesc* ffn2_w,
      VarDesc* ffn2_bias,
      VarDesc* ln_scale,
      VarDesc* ln_bias,
      VarDesc* ffn_ln_scale,
      VarDesc* ffn_ln_bias,
      float epsilon,
      float dropout_rate,
      VarDesc* time_stamp = nullptr,
      VarDesc* qkv_out_scale = nullptr,
      VarDesc* out_linear_out_scale = nullptr,
      VarDesc* ffn1_out_scale = nullptr,
      VarDesc* ffn2_out_scale = nullptr,
      std::vector<float> qkv_in_scale = {},
      std::vector<float> out_linear_in_scale = {},
      std::vector<float> ffn1_in_scale = {},
      std::vector<float> ffn2_in_scale = {}) {
613
    VarDesc* out = lod_tensor(unique_name());
614
    VarDesc* cache_kv_out = lod_tensor(unique_name());
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    std::string op_type = qkv_out_scale ? "fused_multi_transformer_int8"
                                        : "fused_multi_transformer";
    op->SetType(op_type);
    op->SetInput("X", {x->Name()});
    op->SetInput("CacheKV", {cache_kv->Name()});
    op->SetInput("SrcMask", {src_mask->Name()});
    op->SetInput("QKVW", {qkv_w->Name()});
    op->SetInput("QKVBias", {qkv_bias->Name()});
    op->SetInput("OutLinearW", {out_linear_w->Name()});
    op->SetInput("OutLinearBias", {out_linear_bias->Name()});
    op->SetInput("FFN1Weight", {ffn1_w->Name()});
    op->SetInput("FFN1Bias", {ffn1_bias->Name()});
    op->SetInput("FFN2Weight", {ffn2_w->Name()});
    op->SetInput("FFN2Bias", {ffn2_bias->Name()});
    op->SetInput("LnScale", {ln_scale->Name()});
    op->SetInput("LnBias", {ln_bias->Name()});
    op->SetInput("FFNLnScale", {ffn_ln_scale->Name()});
    op->SetInput("FFNLnBias", {ffn_ln_bias->Name()});
    op->SetAttr("pre_layer_norm", true);
    op->SetAttr("is_test", true);
    op->SetAttr("dropout_implementation", "upscale_in_train");
    op->SetAttr("dropout_rate", dropout_rate);
    op->SetAttr("epsilon", epsilon);
    op->SetOutput("Out", {out->Name()});
640
    op->SetOutput("CacheKVOut", {cache_kv_out->Name()});
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

    if (time_stamp) {
      op->SetInput("TimeStep", {time_stamp->Name()});
    }

    if (qkv_out_scale) {
      op->SetInput("QKVOutScale", {qkv_out_scale->Name()});
      op->SetInput("OutLinearOutScale", {out_linear_out_scale->Name()});
      op->SetInput("FFN1OutScale", {ffn1_out_scale->Name()});
      op->SetInput("FFN2OutScale", {ffn2_out_scale->Name()});
      op->SetAttr("qkv_in_scale", qkv_in_scale);
      op->SetAttr("out_linear_in_scale", out_linear_in_scale);
      op->SetAttr("ffn1_in_scale", ffn1_in_scale);
      op->SetAttr("ffn2_in_scale", ffn2_in_scale);
    }
656 657
    std::vector<VarDesc*> outs = {out, cache_kv_out};
    return outs;
658 659
  }

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
  VarDesc* dequantize_linear(VarDesc* x,
                             VarDesc* scale,
                             VarDesc* zero_point,
                             int bit_length = 8,
                             int quant_axis = -1) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("dequantize_linear");
    op->SetInput("X", {x->Name()});
    op->SetInput("Scale", {scale->Name()});
    op->SetInput("ZeroPoint", {zero_point->Name()});
    op->SetAttr("bit_length", bit_length);
    op->SetAttr("quant_axis", quant_axis);
    op->SetOutput("Y", {out->Name()});
    return out;
  }

677 678 679
  void backward(std::vector<VarDesc*> targets) {
    // This function is designed to simulate the structure of training program,
    //  but is constructed differently as the actual program.
680 681
    BlockDesc* block = program_.MutableBlock(0);
    std::vector<OpDesc*> forward_ops = block->AllOps();
682 683 684 685 686 687 688 689
    for (auto* var : targets) {
      OpDesc* none_op = block->AppendOp();
      none_op->SetType("none");
      none_op->SetInput("X", {var->Name()});
      VarDesc* grad_var =
          lod_tensor(GradVarName(var->Name()), var->GetShape(), false);
      none_op->SetOutput("Out", {grad_var->Name()});
    }
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    for (int i = forward_ops.size() - 1; i >= 0; --i) {
      OpDesc* op = forward_ops[i];
      OpDesc* grad_op = block->AppendOp();
      grad_op->SetType(op->Type() + "_grad");
      // All op's inputs are grad_op's input.
      for (auto name : op->InputNames()) {
        grad_op->SetInput(name, op->Input(name));
      }
      // All op's outputs are grad_op's input.
      for (auto name : op->OutputNames()) {
        grad_op->SetInput(name, op->Output(name));
      }
      // All op's outputs grad are grad_op's input.
      for (auto name : op->OutputNames()) {
        std::vector<std::string> grad_var_names;
        for (auto var_name : op->Output(name)) {
          VarDesc* var = block->FindVar(var_name);
          VarDesc* grad_var =
              lod_tensor(GradVarName(var_name), var->GetShape(), false);
          grad_var_names.push_back(grad_var->Name());
        }
        grad_op->SetInput(GradVarName(name), grad_var_names);
      }
      // All op's inputs grad are grad_op's output.
      for (auto name : op->InputNames()) {
        std::vector<std::string> grad_var_names;
        for (auto var_name : op->Input(name)) {
          VarDesc* var = block->FindVar(var_name);
          VarDesc* grad_var =
              lod_tensor(GradVarName(var_name), var->GetShape(), false);
          grad_var_names.push_back(grad_var->Name());
        }
        grad_op->SetOutput(GradVarName(name), grad_var_names);
      }
      // TODO(liuyiqun): attrs
    }
  }

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
  VarDesc* cast(VarDesc* input, int in_dtype = 5, int out_dtype = 5) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("cast");
    op->SetInput("X", {input->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("in_dtype", in_dtype);
    op->SetAttr("out_dtype", out_dtype);
    return out;
  }

  VarDesc* range(VarDesc* start, VarDesc* end, VarDesc* step) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("range");
    op->SetInput("Start", {start->Name()});
    op->SetInput("End", {end->Name()});
    op->SetInput("Step", {step->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* flatten_contiguous_range(VarDesc* input) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("flatten_contiguous_range");
    op->SetInput("X", {input->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  std::vector<VarDesc*> beam_search(VarDesc* ids,
                                    VarDesc* scores,
                                    VarDesc* pre_ids,
                                    VarDesc* pre_scores,
                                    int beam_size = 1) {
    VarDesc* parent_idx = lod_tensor(unique_name());
    VarDesc* selected_ids = lod_tensor(unique_name());
    VarDesc* selected_scores = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("beam_search");
    op->SetInput("ids", {ids->Name()});
    op->SetInput("scores", {scores->Name()});
    op->SetInput("pre_ids", {pre_ids->Name()});
    op->SetInput("pre_scores", {pre_scores->Name()});
    op->SetOutput("parent_idx", {parent_idx->Name()});
    op->SetOutput("selected_ids", {selected_ids->Name()});
    op->SetOutput("selected_scores", {selected_scores->Name()});
    op->SetAttr("beam_size", 1);
    return {parent_idx, selected_ids, selected_scores};
  }

  VarDesc* lod_reset(VarDesc* x, VarDesc* y) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("lod_reset");
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

790
  VarDesc* write_to_array(VarDesc* x, VarDesc* i) {
791 792 793
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("write_to_array");
794 795 796 797 798 799 800 801 802 803 804
    op->SetInput("X", {x->Name()});
    op->SetInput("I", {i->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* read_from_array(VarDesc* x, VarDesc* i) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("read_from_array");
    op->SetInput("X", {x->Name()});
805 806 807 808 809
    op->SetInput("I", {i->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

810 811 812 813 814 815 816 817 818 819 820
  VarDesc* gather(VarDesc* x, VarDesc* index, int axis) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("gather");
    op->SetInput("X", {x->Name()});
    op->SetInput("Index", {index->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

821 822 823 824 825 826
  VarDesc* is_empty(VarDesc* input) { return unary_op("is_empty", input); }

  VarDesc* logical_not(VarDesc* input) {
    return unary_op("logical_not", input);
  }

Z
zhupengyang 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840
  VarDesc* stack(std::vector<VarDesc*> inputs, int axis = -1) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("stack");
    std::vector<std::string> input_names;
    for (auto* input : inputs) {
      input_names.push_back(input->Name());
    }
    op->SetInput("X", input_names);
    op->SetAttr("axis", axis);
    op->SetOutput("Y", {out->Name()});
    return out;
  }

841
 private:
842 843
  VarDesc* lod_tensor(std::string name,
                      std::vector<int64_t> shape = {},
844 845
                      bool is_persistable = false,
                      proto::VarType::Type data_type = proto::VarType::FP32) {
846 847
    auto* var = program_.MutableBlock(0)->Var(name);
    var->SetType(proto::VarType::LOD_TENSOR);
848
    var->SetDataType(data_type);
849 850
    var->SetShape(shape);
    var->SetPersistable(is_persistable);
851 852 853
    return var;
  }

854 855 856 857
  VarDesc* unary_op(std::string type,
                    VarDesc* x,
                    VarDesc* out = nullptr,
                    const AttributeMap* attrs = nullptr) {
858 859 860 861 862 863 864
    if (!out) {
      out = lod_tensor(unique_name());
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType(type);
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
865 866 867 868 869
    if (attrs) {
      for (auto& iter : *attrs) {
        op->SetAttr(iter.first, iter.second);
      }
    }
870 871 872 873 874
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

875 876 877
  VarDesc* binary_op(std::string type,
                     VarDesc* x,
                     VarDesc* y,
878 879
                     VarDesc* out = nullptr,
                     const AttributeMap* attrs = nullptr) {
880 881 882 883 884 885 886 887
    if (!out) {
      out = lod_tensor(unique_name());
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType(type);
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
888 889 890 891 892
    if (attrs) {
      for (auto& iter : *attrs) {
        op->SetAttr(iter.first, iter.second);
      }
    }
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

  std::string unique_name() { return "tmp_" + std::to_string(idx_++); }

 private:
  ProgramDesc program_;
  int idx_{0};
};

static std::string DebugString(OpDesc* op) {
  std::ostringstream os;
  os << "Op(" << op->Type() << "), inputs:{";
  bool is_first = true;
  for (auto& name : op->InputNames()) {
    if (!is_first) {
      os << ", ";
    }
    os << name << "[";
    bool is_first_var_name = true;
    for (auto& var_name : op->Input(name)) {
      if (!is_first_var_name) {
        os << ", ";
      }
      os << var_name;
      is_first_var_name = false;
    }
    os << "]";
    is_first = false;
  }

  os << "}, outputs:{";
  is_first = true;
  for (auto& name : op->OutputNames()) {
    if (!is_first) {
      os << ", ";
    }
    os << name << "[";
    bool is_first_var_name = true;
    for (auto& var_name : op->Output(name)) {
      if (!is_first_var_name) {
        os << ", ";
      }
      os << var_name;
      is_first_var_name = false;
    }
    os << "]";
    is_first = false;
  }
  os << "}";
  return os.str();
}

948
static std::string DebugString(const Node* node) {
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
  std::ostringstream os;
  if (node->IsOp() && node->Op()) {
    OpDesc* op = node->Op();
    os << "Node(" << DebugString(op) << "), inputs:{";
    bool is_first = true;
    for (auto* in : node->inputs) {
      if (!is_first) {
        os << ", ";
      }
      os << in->Name();
      is_first = false;
    }
    os << "}, outputs:{";
    is_first = true;
    for (auto* out : node->outputs) {
      if (!is_first) {
        os << ", ";
      }
      os << out->Name();
      is_first = false;
    }
    os << "}.";
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
  } else {
    os << "Node(" << node->Name();
    if (node->IsVar() && node->Var()) {
      os << "{";
      bool is_first = true;
      for (auto dim : node->Var()->GetShape()) {
        if (!is_first) {
          os << "x";
        }
        os << dim;
        is_first = false;
      }
      os << "}";
    }
    os << "), inputs:{";
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    bool is_first = true;
    for (auto* in : node->inputs) {
      if (!is_first) {
        os << ", ";
      }
      if (in->IsOp() && in->Op()) {
        os << in->Op()->Type();
      }
      is_first = false;
    }
    os << "}, outputs:{";
    is_first = true;
    for (auto* out : node->outputs) {
      if (!is_first) {
        os << ", ";
      }
      if (out->IsOp() && out->Op()) {
        os << out->Op()->Type();
      }
      is_first = false;
    }
    os << "}";
  }
  return os.str();
}

1012
static std::string DebugString(const std::vector<Node*>& nodes) {
1013
  std::ostringstream os;
1014
  for (auto* node : nodes) {
1015 1016
    if (node->IsOp() && node->Op()) {
      os << "  ";
1017
    } else if ((node->IsVar() && node->Var()) || node->IsCtrlVar()) {
1018 1019 1020 1021
      os << "    ";
    }
    os << DebugString(node) << "\n";
  }
1022 1023 1024
  return os.str();
}

1025 1026 1027 1028 1029 1030 1031 1032
static std::string DebugString(const std::unordered_set<Node*>& nodes) {
  std::vector<Node*> vec;
  for (auto* node : nodes) {
    vec.push_back(node);
  }
  return DebugString(vec);
}

1033
static std::string DebugString(Graph* graph) {
1034 1035
  std::ostringstream os;
  os << "Graph: {\n" << DebugString(graph->Nodes()) << "}\n";
1036 1037 1038
  return os.str();
}

1039 1040 1041 1042
static std::string DebugString(const std::unique_ptr<Graph>& graph) {
  return DebugString(graph.get());
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static std::vector<ir::Node*> GetOpNodes(const std::unique_ptr<Graph>& graph,
                                         std::string op_type) {
  std::vector<ir::Node*> rc;
  for (auto* node : graph->Nodes()) {
    if (node->IsOp() && node->Op() && node->Op()->Type() == op_type) {
      rc.push_back(node);
    }
  }
  return rc;
}

1054
static int GetNumOpNodes(const std::unique_ptr<Graph>& graph,
1055
                         std::string op_type = "") {
1056 1057
  int num_nodes = 0;
  for (auto* node : graph->Nodes()) {
1058 1059
    if (node->IsOp() && node->Op() &&
        (node->Op()->Type() == op_type || op_type.empty())) {
1060 1061 1062 1063 1064 1065
      num_nodes++;
    }
  }
  return num_nodes;
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static void RegisterOpKernel(std::vector<std::string>&& op_types) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();

  platform::CPUPlace place = platform::CPUPlace();
  OpKernelType mkldnn_kernel_type = OpKernelType(proto::VarType::FP32,
                                                 place,
                                                 DataLayout::kAnyLayout,
                                                 LibraryType::kMKLDNN);

  auto fake_kernel_func = [](const ExecutionContext&) -> void {};

  for (auto& op_name : op_types)
    all_kernels[op_name][mkldnn_kernel_type] = fake_kernel_func;
}

1081 1082 1083
}  // namespace ir
}  // namespace framework
}  // namespace paddle