pass_tester_helper.h 32.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#include <sstream>
#include <string>
20
#include <unordered_set>
21
#include <vector>
22

23
#include "paddle/fluid/framework/ir/graph.h"
24
#include "paddle/fluid/framework/op_proto_maker.h"
25 26
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
27 28 29 30 31 32 33 34 35

namespace paddle {
namespace framework {
namespace ir {

struct Layers {
 public:
  const ProgramDesc& main_program() { return program_; }

36 37
  VarDesc* data(std::string name,
                std::vector<int64_t> shape = {},
38 39 40
                bool is_persistable = false,
                proto::VarType::Type data_type = proto::VarType::FP32) {
    return lod_tensor(name, shape, is_persistable, data_type);
41
  }
42

43 44 45 46 47
  VarDesc* conv2d(VarDesc* input,
                  VarDesc* filter,
                  VarDesc* bias,
                  int groups = 1,
                  std::vector<int> strides = {1, 1},
W
Wangzheee 已提交
48 49 50
                  std::vector<int> paddings = {0, 0},
                  std::string padding_algorithm = "EXPLICIT",
                  std::vector<int> dilations = {1, 1},
51 52
                  std::string data_format = "NCHW",
                  bool use_cudnn = false) {
53 54 55 56 57 58
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("conv2d");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
W
Wangzheee 已提交
59
    op->SetOutput("Output", {out->Name()});
60
    op->SetAttr("use_cudnn", use_cudnn);
W
Wangzheee 已提交
61 62 63 64 65 66
    op->SetAttr("groups", groups);
    op->SetAttr("strides", strides);
    op->SetAttr("paddings", paddings);
    op->SetAttr("padding_algorithm", padding_algorithm);
    op->SetAttr("dilations", dilations);
    op->SetAttr("data_format", data_format);
67 68 69 70 71
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

72 73 74 75 76
  VarDesc* conv2d_transpose(VarDesc* input,
                            VarDesc* filter,
                            VarDesc* bias,
                            int groups = 1,
                            std::vector<int> strides = {1, 1},
W
Wangzheee 已提交
77 78 79 80
                            std::vector<int> paddings = {0, 0},
                            std::string padding_algorithm = "EXPLICIT",
                            std::vector<int> dilations = {1, 1},
                            std::string data_format = "NCHW") {
81 82 83 84 85 86
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("conv2d_transpose");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
W
Wangzheee 已提交
87 88 89 90 91 92 93
    op->SetOutput("Output", {out->Name()});
    op->SetAttr("groups", groups);
    op->SetAttr("strides", strides);
    op->SetAttr("paddings", paddings);
    op->SetAttr("padding_algorithm", padding_algorithm);
    op->SetAttr("dilations", dilations);
    op->SetAttr("data_format", data_format);
94 95 96 97 98
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

99 100 101
  VarDesc* depthwise_conv2d(VarDesc* input,
                            VarDesc* filter,
                            VarDesc* bias,
102 103 104 105 106 107 108 109 110 111 112 113 114 115
                            bool use_cudnn) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("depthwise_conv2d");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

116 117
  VarDesc* pool2d(VarDesc* x,
                  bool use_cudnn,
118
                  const AttributeMap* attrs = nullptr) {
119 120 121 122 123 124
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("pool2d");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
125 126 127 128 129
    if (attrs) {
      for (auto& iter : *attrs) {
        op->SetAttr(iter.first, iter.second);
      }
    }
130 131 132 133 134
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

135 136 137 138 139 140 141 142 143 144
  VarDesc* unsqueeze2(VarDesc* x, const std::vector<int> axes) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("unsqueeze2");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axes", axes);
    return out;
  }

145 146 147 148
  VarDesc* relu(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("relu", x, out);
  }

149 150 151 152 153 154
  VarDesc* gelu(VarDesc* x, VarDesc* out = nullptr, bool approximate = true) {
    AttributeMap attrs;
    attrs["approximate"] = approximate;
    return unary_op("gelu", x, out, &attrs);
  }

155 156 157 158 159 160 161 162
  VarDesc* sigmoid(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("sigmoid", x, out);
  }

  VarDesc* tanh(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("tanh", x, out);
  }

163 164 165 166 167 168 169 170 171 172 173 174 175 176
  VarDesc* c_identity(VarDesc* x, VarDesc* out = nullptr, int ring_id = -1) {
    AttributeMap attrs;
    attrs["ring_id"] = ring_id;
    return unary_op("c_identity", x, out, &attrs);
  }

  VarDesc* c_allreduce_sum(VarDesc* x,
                           VarDesc* out = nullptr,
                           int ring_id = -1) {
    AttributeMap attrs;
    attrs["ring_id"] = ring_id;
    return unary_op("c_allreduce_sum", x, out, &attrs);
  }

177 178 179 180 181
  VarDesc* fc(VarDesc* input,
              VarDesc* w,
              VarDesc* bias,
              int in_num_col_dims = 1,
              std::string activation_type = "") {
182 183 184 185 186 187 188 189 190 191 192 193 194 195
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("fc");
    op->SetInput("Input", {input->Name()});
    op->SetInput("W", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("in_num_col_dims", in_num_col_dims);
    op->SetAttr("activation_type", activation_type);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

196 197 198 199 200 201 202 203 204 205 206
  void lstm(VarDesc* input,
            VarDesc* w,
            VarDesc* bias,
            VarDesc* cell,
            VarDesc* batch_gate,
            VarDesc* hidden,
            VarDesc* batch_cell_pre_act,
            VarDesc* h0 = nullptr,
            VarDesc* c0 = nullptr,
            bool use_peepholes = true,
            bool is_reverse = false,
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            std::string gate_activation = "sigmoid",
            std::string cell_activation = "tanh",
            std::string candidate_activation = "tanh") {
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("lstm");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Weight", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    if (h0) {
      op->SetInput("H0", {h0->Name()});
    }
    if (c0) {
      op->SetInput("C0", {c0->Name()});
    }
    op->SetOutput("Hidden", {hidden->Name()});
    op->SetOutput("Cell", {cell->Name()});
    op->SetOutput("BatchGate", {batch_gate->Name()});
    op->SetOutput("BatchCellPreAct", {batch_cell_pre_act->Name()});
    op->SetAttr("use_peepholes", use_peepholes);
    op->SetAttr("is_reverse", is_reverse);
    op->SetAttr("gate_activation", gate_activation);
    op->SetAttr("cell_activation", cell_activation);
    op->SetAttr("candidate_activation", candidate_activation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
  }

234 235 236 237 238 239 240 241 242 243 244
  void gru(VarDesc* input,
           VarDesc* w,
           VarDesc* bias,
           VarDesc* batch_gate,
           VarDesc* batch_reset_hidden_prev,
           VarDesc* batch_hidden,
           VarDesc* hidden,
           VarDesc* h0 = nullptr,
           bool origin_mode = false,
           bool is_reverse = false,
           std::string activation = "tanh",
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
           std::string gate_activation = "sigmoid") {
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("gru");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Weight", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    if (h0) {
      op->SetInput("H0", {h0->Name()});
    }
    op->SetOutput("BatchGate", {batch_gate->Name()});
    op->SetOutput("BatchResetHiddenPrev", {batch_reset_hidden_prev->Name()});
    op->SetOutput("BatchHidden", {batch_hidden->Name()});
    op->SetOutput("Hidden", {hidden->Name()});
    op->SetAttr("origin_mode", origin_mode);
    op->SetAttr("is_reverse", is_reverse);
    op->SetAttr("activation", activation);
    op->SetAttr("gate_activation", gate_activation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
  }

266 267 268 269 270
  VarDesc* mul(VarDesc* x,
               VarDesc* y,
               VarDesc* out = nullptr,
               int x_num_col_dims = 1,
               int y_num_col_dims = 1,
271
               bool use_mkldnn = false) {
272
    AttributeMap attrs;
273 274
    attrs["x_num_col_dims"] = x_num_col_dims;
    attrs["y_num_col_dims"] = y_num_col_dims;
275
    attrs["use_mkldnn"] = use_mkldnn;
276
    return binary_op("mul", x, y, out, &attrs);
277 278
  }

279 280 281 282 283
  VarDesc* elementwise_add(VarDesc* x,
                           VarDesc* y,
                           VarDesc* out = nullptr,
                           int axis = -1,
                           bool use_mkldnn = false) {
284 285
    AttributeMap attrs;
    attrs["axis"] = axis;
286
    attrs["use_mkldnn"] = use_mkldnn;
287
    return binary_op("elementwise_add", x, y, out, &attrs);
288 289
  }

290 291 292
  VarDesc* elementwise_mul(VarDesc* x,
                           VarDesc* y,
                           VarDesc* out = nullptr,
293 294
                           const AttributeMap* attrs = nullptr) {
    return binary_op("elementwise_mul", x, y, out, attrs);
295 296
  }

297 298
  VarDesc* dropout(VarDesc* x,
                   float dropout_prob,
299 300 301 302 303 304 305 306 307 308 309 310 311 312
                   std::string dropout_implementation) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("dropout");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("is_test", true);
    op->SetAttr("dropout_prob", dropout_prob);
    op->SetAttr("dropout_implementation", dropout_implementation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  VarDesc* concat(std::vector<VarDesc*> inputs, int axis = -1) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("concat");
    std::vector<std::string> input_names(inputs.size());
    for (size_t i = 0; i < inputs.size(); ++i) {
      input_names[i] = inputs[i]->Name();
    }
    op->SetInput("X", input_names);
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axis", axis);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

329 330
  std::vector<VarDesc*> layer_norm(VarDesc* x,
                                   VarDesc* scale = nullptr,
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
                                   VarDesc* bias = nullptr) {
    VarDesc* y = lod_tensor(unique_name());
    VarDesc* mean = lod_tensor(unique_name());
    VarDesc* variance = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("layer_norm");
    op->SetInput("X", {x->Name()});
    if (scale) {
      op->SetInput("Scale", {scale->Name()});
    }
    if (bias) {
      op->SetInput("Bias", {bias->Name()});
    }
    op->SetOutput("Y", {y->Name()});
    op->SetOutput("Mean", {mean->Name()});
    op->SetOutput("Variance", {variance->Name()});
    op->SetAttr("epsilon", static_cast<float>(1E-05));
    op->SetAttr("begin_norm_axis", static_cast<int>(1));
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    std::vector<VarDesc*> outs = {y, mean, variance};
    return outs;
  }

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
  std::vector<VarDesc*> split(VarDesc* x, int num_or_section, int axis = 0) {
    std::vector<VarDesc*> outs(num_or_section);
    for (int i = 0; i < num_or_section; i++) {
      outs[i] = lod_tensor(unique_name());
    }
    std::vector<std::string> out_names(num_or_section);
    for (int i = 0; i < num_or_section; i++) {
      out_names[i] = outs[i]->Name();
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("split");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", out_names);
    op->SetAttr("num_or_section", num_or_section);
    op->SetAttr("axis", axis);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return outs;
  }

  VarDesc* assign(VarDesc* x) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("assign");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

386 387 388 389 390
  VarDesc* matmul(VarDesc* x,
                  VarDesc* y,
                  VarDesc* alpha = nullptr,
                  bool transpose_x = false,
                  bool transpose_y = false) {
391 392 393 394 395 396
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("matmul");
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
397 398 399
    op->SetAttr("transpose_X", transpose_x);
    op->SetAttr("transpose_Y", transpose_y);
    op->SetAttr("alpha", 1.0f);
400 401 402
    return out;
  }

403 404 405 406 407
  VarDesc* matmul_v2(VarDesc* x,
                     VarDesc* y,
                     VarDesc* alpha = nullptr,
                     bool trans_x = false,
                     bool trans_y = false) {
408 409 410 411 412 413 414 415 416 417 418
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("matmul_v2");
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("trans_x", trans_x);
    op->SetAttr("trans_y", trans_y);
    return out;
  }

419 420
  VarDesc* transpose2(VarDesc* x,
                      std::vector<int> axis,
421
                      bool with_xshape = false) {
422 423 424 425 426 427
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("transpose2");
    op->SetInput("X", {x->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
428 429 430 431
    if (with_xshape) {
      VarDesc* xshape = lod_tensor(unique_name());
      op->SetOutput("XShape", {xshape->Name()});
    }
432 433 434
    return out;
  }

435 436
  VarDesc* reshape2(VarDesc* x,
                    std::vector<int> shape,
437
                    bool with_xshape = false) {
438 439 440 441 442 443
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("reshape2");
    op->SetInput("X", {x->Name()});
    op->SetAttr("shape", shape);
    op->SetOutput("Out", {out->Name()});
444 445 446 447
    if (with_xshape) {
      VarDesc* xshape = lod_tensor(unique_name());
      op->SetOutput("XShape", {xshape->Name()});
    }
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    return out;
  }

  VarDesc* softmax(VarDesc* x, int axis) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("softmax");
    op->SetInput("X", {x->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* scale(VarDesc* x, float scale, float bias, bool bias_after) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("scale");
    op->SetInput("X", {x->Name()});
    op->SetAttr("scale", scale);
    op->SetAttr("bias", bias);
    op->SetAttr("bias_after_scale", bias_after);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

473 474 475 476 477
  std::vector<VarDesc*> batch_norm(VarDesc* x,
                                   VarDesc* scale,
                                   VarDesc* bias,
                                   VarDesc* mean,
                                   VarDesc* variance) {
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    VarDesc* y = lod_tensor(unique_name());
    VarDesc* mean_out = lod_tensor(unique_name());
    VarDesc* variance_out = lod_tensor(unique_name());
    VarDesc* saved_mean = lod_tensor(unique_name());
    VarDesc* saved_variance = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("batch_norm");
    op->SetInput("X", {x->Name()});
    op->SetInput("Scale", {scale->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetInput("Mean", {mean->Name()});
    op->SetInput("Variance", {variance->Name()});
    op->SetOutput("Y", {y->Name()});
    op->SetOutput("MeanOut", {mean_out->Name()});
    op->SetOutput("VarianceOut", {variance_out->Name()});
    op->SetOutput("SavedMean", {saved_mean->Name()});
    op->SetOutput("SavedVariance", {saved_variance->Name()});
    op->SetAttr("epsilon", static_cast<float>(1e-5));
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
498 499
    std::vector<VarDesc*> outs = {
        y, mean_out, variance_out, saved_mean, saved_variance};
500 501 502
    return outs;
  }

503 504 505 506 507 508 509 510 511 512
  VarDesc* embedding(VarDesc* x, VarDesc* weights) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("lookup_table");
    op->SetInput("Ids", {x->Name()});
    op->SetInput("W", {weights->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
  VarDesc* while_loop(std::vector<VarDesc*> xs, VarDesc* cond = nullptr) {
    VarDesc* out = lod_tensor(unique_name());
    VarDesc* step_scopes = lod_tensor(unique_name());
    if (cond == nullptr) cond = lod_tensor(unique_name());

    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("while");
    std::vector<std::string> xs_names;
    for (auto& x : xs) xs_names.emplace_back(x->Name());
    op->SetInput("X", xs_names);
    op->SetInput("Condition", {cond->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetOutput("StepScopes", {step_scopes->Name()});
    op->SetAttr("sub_block", {program_.MutableBlock(0)});
    op->SetAttr("is_test", true);
    return out;
  }

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
  VarDesc* shape(VarDesc* input) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("shape");
    op->SetInput("Input", {input->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* slice(VarDesc* input,
                 std::vector<int> axes,
                 std::vector<int> starts,
                 std::vector<int> ends) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("slice");
    op->SetInput("Input", {input->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axes", axes);
    op->SetAttr("starts", starts);
    op->SetAttr("ends", ends);
    return out;
  }

  VarDesc* fill_constant_batch_size_like(VarDesc* x,
                                         int dtype,
                                         int input_dim_idx,
                                         int output_dim_idx,
                                         std::vector<int> shape,
                                         float value) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("fill_constant_batch_size_like");
    op->SetInput("Input", {x->Name()});
    op->SetAttr("dtype", dtype);
    op->SetAttr("input_dim_idx", input_dim_idx);
    op->SetAttr("output_dim_idx", output_dim_idx);
    op->SetAttr("shape", shape);
    op->SetAttr("value", value);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* fused_multi_transformer(VarDesc* x,
                                   VarDesc* cache_kv,
                                   VarDesc* src_mask,
                                   VarDesc* qkv_w,
                                   VarDesc* qkv_bias,
                                   VarDesc* out_linear_w,
                                   VarDesc* out_linear_bias,
                                   VarDesc* ffn1_w,
                                   VarDesc* ffn1_bias,
                                   VarDesc* ffn2_w,
                                   VarDesc* ffn2_bias,
                                   VarDesc* ln_scale,
                                   VarDesc* ln_bias,
                                   VarDesc* ffn_ln_scale,
                                   VarDesc* ffn_ln_bias,
                                   float epsilon,
                                   float dropout_rate,
                                   VarDesc* time_stamp = nullptr,
                                   VarDesc* qkv_out_scale = nullptr,
                                   VarDesc* out_linear_out_scale = nullptr,
                                   VarDesc* ffn1_out_scale = nullptr,
                                   VarDesc* ffn2_out_scale = nullptr,
                                   std::vector<float> qkv_in_scale = {},
                                   std::vector<float> out_linear_in_scale = {},
                                   std::vector<float> ffn1_in_scale = {},
                                   std::vector<float> ffn2_in_scale = {}) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    std::string op_type = qkv_out_scale ? "fused_multi_transformer_int8"
                                        : "fused_multi_transformer";
    op->SetType(op_type);
    op->SetInput("X", {x->Name()});
    op->SetInput("CacheKV", {cache_kv->Name()});
    op->SetInput("SrcMask", {src_mask->Name()});
    op->SetInput("QKVW", {qkv_w->Name()});
    op->SetInput("QKVBias", {qkv_bias->Name()});
    op->SetInput("OutLinearW", {out_linear_w->Name()});
    op->SetInput("OutLinearBias", {out_linear_bias->Name()});
    op->SetInput("FFN1Weight", {ffn1_w->Name()});
    op->SetInput("FFN1Bias", {ffn1_bias->Name()});
    op->SetInput("FFN2Weight", {ffn2_w->Name()});
    op->SetInput("FFN2Bias", {ffn2_bias->Name()});
    op->SetInput("LnScale", {ln_scale->Name()});
    op->SetInput("LnBias", {ln_bias->Name()});
    op->SetInput("FFNLnScale", {ffn_ln_scale->Name()});
    op->SetInput("FFNLnBias", {ffn_ln_bias->Name()});
    op->SetAttr("pre_layer_norm", true);
    op->SetAttr("is_test", true);
    op->SetAttr("dropout_implementation", "upscale_in_train");
    op->SetAttr("dropout_rate", dropout_rate);
    op->SetAttr("epsilon", epsilon);
    op->SetOutput("Out", {out->Name()});

    if (time_stamp) {
      op->SetInput("TimeStep", {time_stamp->Name()});
    }

    if (qkv_out_scale) {
      op->SetInput("QKVOutScale", {qkv_out_scale->Name()});
      op->SetInput("OutLinearOutScale", {out_linear_out_scale->Name()});
      op->SetInput("FFN1OutScale", {ffn1_out_scale->Name()});
      op->SetInput("FFN2OutScale", {ffn2_out_scale->Name()});
      op->SetAttr("qkv_in_scale", qkv_in_scale);
      op->SetAttr("out_linear_in_scale", out_linear_in_scale);
      op->SetAttr("ffn1_in_scale", ffn1_in_scale);
      op->SetAttr("ffn2_in_scale", ffn2_in_scale);
    }
    return out;
  }

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
  VarDesc* dequantize_linear(VarDesc* x,
                             VarDesc* scale,
                             VarDesc* zero_point,
                             int bit_length = 8,
                             int quant_axis = -1) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("dequantize_linear");
    op->SetInput("X", {x->Name()});
    op->SetInput("Scale", {scale->Name()});
    op->SetInput("ZeroPoint", {zero_point->Name()});
    op->SetAttr("bit_length", bit_length);
    op->SetAttr("quant_axis", quant_axis);
    op->SetOutput("Y", {out->Name()});
    return out;
  }

661 662 663
  void backward(std::vector<VarDesc*> targets) {
    // This function is designed to simulate the structure of training program,
    //  but is constructed differently as the actual program.
664 665
    BlockDesc* block = program_.MutableBlock(0);
    std::vector<OpDesc*> forward_ops = block->AllOps();
666 667 668 669 670 671 672 673
    for (auto* var : targets) {
      OpDesc* none_op = block->AppendOp();
      none_op->SetType("none");
      none_op->SetInput("X", {var->Name()});
      VarDesc* grad_var =
          lod_tensor(GradVarName(var->Name()), var->GetShape(), false);
      none_op->SetOutput("Out", {grad_var->Name()});
    }
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
    for (int i = forward_ops.size() - 1; i >= 0; --i) {
      OpDesc* op = forward_ops[i];
      OpDesc* grad_op = block->AppendOp();
      grad_op->SetType(op->Type() + "_grad");
      // All op's inputs are grad_op's input.
      for (auto name : op->InputNames()) {
        grad_op->SetInput(name, op->Input(name));
      }
      // All op's outputs are grad_op's input.
      for (auto name : op->OutputNames()) {
        grad_op->SetInput(name, op->Output(name));
      }
      // All op's outputs grad are grad_op's input.
      for (auto name : op->OutputNames()) {
        std::vector<std::string> grad_var_names;
        for (auto var_name : op->Output(name)) {
          VarDesc* var = block->FindVar(var_name);
          VarDesc* grad_var =
              lod_tensor(GradVarName(var_name), var->GetShape(), false);
          grad_var_names.push_back(grad_var->Name());
        }
        grad_op->SetInput(GradVarName(name), grad_var_names);
      }
      // All op's inputs grad are grad_op's output.
      for (auto name : op->InputNames()) {
        std::vector<std::string> grad_var_names;
        for (auto var_name : op->Input(name)) {
          VarDesc* var = block->FindVar(var_name);
          VarDesc* grad_var =
              lod_tensor(GradVarName(var_name), var->GetShape(), false);
          grad_var_names.push_back(grad_var->Name());
        }
        grad_op->SetOutput(GradVarName(name), grad_var_names);
      }
      // TODO(liuyiqun): attrs
    }
  }

712
 private:
713 714
  VarDesc* lod_tensor(std::string name,
                      std::vector<int64_t> shape = {},
715 716
                      bool is_persistable = false,
                      proto::VarType::Type data_type = proto::VarType::FP32) {
717 718
    auto* var = program_.MutableBlock(0)->Var(name);
    var->SetType(proto::VarType::LOD_TENSOR);
719
    var->SetDataType(data_type);
720 721
    var->SetShape(shape);
    var->SetPersistable(is_persistable);
722 723 724
    return var;
  }

725 726 727 728
  VarDesc* unary_op(std::string type,
                    VarDesc* x,
                    VarDesc* out = nullptr,
                    const AttributeMap* attrs = nullptr) {
729 730 731 732 733 734 735
    if (!out) {
      out = lod_tensor(unique_name());
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType(type);
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
736 737 738 739 740
    if (attrs) {
      for (auto& iter : *attrs) {
        op->SetAttr(iter.first, iter.second);
      }
    }
741 742 743 744 745
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

746 747 748
  VarDesc* binary_op(std::string type,
                     VarDesc* x,
                     VarDesc* y,
749 750
                     VarDesc* out = nullptr,
                     const AttributeMap* attrs = nullptr) {
751 752 753 754 755 756 757 758
    if (!out) {
      out = lod_tensor(unique_name());
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType(type);
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
759 760 761 762 763
    if (attrs) {
      for (auto& iter : *attrs) {
        op->SetAttr(iter.first, iter.second);
      }
    }
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

  std::string unique_name() { return "tmp_" + std::to_string(idx_++); }

 private:
  ProgramDesc program_;
  int idx_{0};
};

static std::string DebugString(OpDesc* op) {
  std::ostringstream os;
  os << "Op(" << op->Type() << "), inputs:{";
  bool is_first = true;
  for (auto& name : op->InputNames()) {
    if (!is_first) {
      os << ", ";
    }
    os << name << "[";
    bool is_first_var_name = true;
    for (auto& var_name : op->Input(name)) {
      if (!is_first_var_name) {
        os << ", ";
      }
      os << var_name;
      is_first_var_name = false;
    }
    os << "]";
    is_first = false;
  }

  os << "}, outputs:{";
  is_first = true;
  for (auto& name : op->OutputNames()) {
    if (!is_first) {
      os << ", ";
    }
    os << name << "[";
    bool is_first_var_name = true;
    for (auto& var_name : op->Output(name)) {
      if (!is_first_var_name) {
        os << ", ";
      }
      os << var_name;
      is_first_var_name = false;
    }
    os << "]";
    is_first = false;
  }
  os << "}";
  return os.str();
}

819
static std::string DebugString(const Node* node) {
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
  std::ostringstream os;
  if (node->IsOp() && node->Op()) {
    OpDesc* op = node->Op();
    os << "Node(" << DebugString(op) << "), inputs:{";
    bool is_first = true;
    for (auto* in : node->inputs) {
      if (!is_first) {
        os << ", ";
      }
      os << in->Name();
      is_first = false;
    }
    os << "}, outputs:{";
    is_first = true;
    for (auto* out : node->outputs) {
      if (!is_first) {
        os << ", ";
      }
      os << out->Name();
      is_first = false;
    }
    os << "}.";
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
  } else {
    os << "Node(" << node->Name();
    if (node->IsVar() && node->Var()) {
      os << "{";
      bool is_first = true;
      for (auto dim : node->Var()->GetShape()) {
        if (!is_first) {
          os << "x";
        }
        os << dim;
        is_first = false;
      }
      os << "}";
    }
    os << "), inputs:{";
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
    bool is_first = true;
    for (auto* in : node->inputs) {
      if (!is_first) {
        os << ", ";
      }
      if (in->IsOp() && in->Op()) {
        os << in->Op()->Type();
      }
      is_first = false;
    }
    os << "}, outputs:{";
    is_first = true;
    for (auto* out : node->outputs) {
      if (!is_first) {
        os << ", ";
      }
      if (out->IsOp() && out->Op()) {
        os << out->Op()->Type();
      }
      is_first = false;
    }
    os << "}";
  }
  return os.str();
}

883
static std::string DebugString(const std::vector<Node*>& nodes) {
884
  std::ostringstream os;
885
  for (auto* node : nodes) {
886 887
    if (node->IsOp() && node->Op()) {
      os << "  ";
888
    } else if ((node->IsVar() && node->Var()) || node->IsCtrlVar()) {
889 890 891 892
      os << "    ";
    }
    os << DebugString(node) << "\n";
  }
893 894 895
  return os.str();
}

896 897 898 899 900 901 902 903
static std::string DebugString(const std::unordered_set<Node*>& nodes) {
  std::vector<Node*> vec;
  for (auto* node : nodes) {
    vec.push_back(node);
  }
  return DebugString(vec);
}

904
static std::string DebugString(Graph* graph) {
905 906
  std::ostringstream os;
  os << "Graph: {\n" << DebugString(graph->Nodes()) << "}\n";
907 908 909
  return os.str();
}

910 911 912 913
static std::string DebugString(const std::unique_ptr<Graph>& graph) {
  return DebugString(graph.get());
}

914 915 916 917 918 919 920 921 922 923 924
static std::vector<ir::Node*> GetOpNodes(const std::unique_ptr<Graph>& graph,
                                         std::string op_type) {
  std::vector<ir::Node*> rc;
  for (auto* node : graph->Nodes()) {
    if (node->IsOp() && node->Op() && node->Op()->Type() == op_type) {
      rc.push_back(node);
    }
  }
  return rc;
}

925 926 927 928 929 930 931 932 933 934 935
static int GetNumOpNodes(const std::unique_ptr<Graph>& graph,
                         std::string op_type) {
  int num_nodes = 0;
  for (auto* node : graph->Nodes()) {
    if (node->IsOp() && node->Op() && node->Op()->Type() == op_type) {
      num_nodes++;
    }
  }
  return num_nodes;
}

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
static void RegisterOpKernel(std::vector<std::string>&& op_types) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();

  platform::CPUPlace place = platform::CPUPlace();
  OpKernelType mkldnn_kernel_type = OpKernelType(proto::VarType::FP32,
                                                 place,
                                                 DataLayout::kAnyLayout,
                                                 LibraryType::kMKLDNN);

  auto fake_kernel_func = [](const ExecutionContext&) -> void {};

  for (auto& op_name : op_types)
    all_kernels[op_name][mkldnn_kernel_type] = fake_kernel_func;
}

951 952 953
}  // namespace ir
}  // namespace framework
}  // namespace paddle