pass_tester_helper.h 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#include <sstream>
#include <string>
20
#include <unordered_set>
21
#include <vector>
22
#include "paddle/fluid/framework/ir/graph.h"
23
#include "paddle/fluid/framework/op_proto_maker.h"
24 25
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
26 27 28 29 30 31 32 33 34

namespace paddle {
namespace framework {
namespace ir {

struct Layers {
 public:
  const ProgramDesc& main_program() { return program_; }

35
  VarDesc* data(std::string name, std::vector<int64_t> shape = {},
36 37 38
                bool is_persistable = false,
                proto::VarType::Type data_type = proto::VarType::FP32) {
    return lod_tensor(name, shape, is_persistable, data_type);
39
  }
40

41
  VarDesc* conv2d(VarDesc* input, VarDesc* filter, VarDesc* bias,
W
Wangzheee 已提交
42 43 44 45 46
                  int groups = 1, std::vector<int> strides = {1, 1},
                  std::vector<int> paddings = {0, 0},
                  std::string padding_algorithm = "EXPLICIT",
                  std::vector<int> dilations = {1, 1},
                  std::string data_format = "NCHW", bool use_cudnn = false) {
47 48 49 50 51 52
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("conv2d");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
W
Wangzheee 已提交
53
    op->SetOutput("Output", {out->Name()});
54
    op->SetAttr("use_cudnn", use_cudnn);
W
Wangzheee 已提交
55 56 57 58 59 60
    op->SetAttr("groups", groups);
    op->SetAttr("strides", strides);
    op->SetAttr("paddings", paddings);
    op->SetAttr("padding_algorithm", padding_algorithm);
    op->SetAttr("dilations", dilations);
    op->SetAttr("data_format", data_format);
61 62 63 64 65
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

W
Wangzheee 已提交
66 67 68 69 70 71
  VarDesc* conv2d_transpose(VarDesc* input, VarDesc* filter, VarDesc* bias,
                            int groups = 1, std::vector<int> strides = {1, 1},
                            std::vector<int> paddings = {0, 0},
                            std::string padding_algorithm = "EXPLICIT",
                            std::vector<int> dilations = {1, 1},
                            std::string data_format = "NCHW") {
72 73 74 75 76 77
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("conv2d_transpose");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
W
Wangzheee 已提交
78 79 80 81 82 83 84
    op->SetOutput("Output", {out->Name()});
    op->SetAttr("groups", groups);
    op->SetAttr("strides", strides);
    op->SetAttr("paddings", paddings);
    op->SetAttr("padding_algorithm", padding_algorithm);
    op->SetAttr("dilations", dilations);
    op->SetAttr("data_format", data_format);
85 86 87 88 89
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  VarDesc* depthwise_conv2d(VarDesc* input, VarDesc* filter, VarDesc* bias,
                            bool use_cudnn) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("depthwise_conv2d");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Filter", {filter->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

105 106
  VarDesc* pool2d(VarDesc* x, bool use_cudnn,
                  const AttributeMap* attrs = nullptr) {
107 108 109 110 111 112
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("pool2d");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("use_cudnn", use_cudnn);
113 114 115 116 117
    if (attrs) {
      for (auto& iter : *attrs) {
        op->SetAttr(iter.first, iter.second);
      }
    }
118 119 120 121 122
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

123 124 125 126 127 128 129 130 131 132
  VarDesc* unsqueeze2(VarDesc* x, const std::vector<int> axes) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("unsqueeze2");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axes", axes);
    return out;
  }

133 134 135 136
  VarDesc* relu(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("relu", x, out);
  }

137 138 139 140 141 142 143 144
  VarDesc* sigmoid(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("sigmoid", x, out);
  }

  VarDesc* tanh(VarDesc* x, VarDesc* out = nullptr) {
    return unary_op("tanh", x, out);
  }

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  VarDesc* fc(VarDesc* input, VarDesc* w, VarDesc* bias,
              int in_num_col_dims = 1, std::string activation_type = "") {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("fc");
    op->SetInput("Input", {input->Name()});
    op->SetInput("W", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("in_num_col_dims", in_num_col_dims);
    op->SetAttr("activation_type", activation_type);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  void lstm(VarDesc* input, VarDesc* w, VarDesc* bias, VarDesc* cell,
            VarDesc* batch_gate, VarDesc* hidden, VarDesc* batch_cell_pre_act,
            VarDesc* h0 = nullptr, VarDesc* c0 = nullptr,
            bool use_peepholes = true, bool is_reverse = false,
            std::string gate_activation = "sigmoid",
            std::string cell_activation = "tanh",
            std::string candidate_activation = "tanh") {
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("lstm");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Weight", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    if (h0) {
      op->SetInput("H0", {h0->Name()});
    }
    if (c0) {
      op->SetInput("C0", {c0->Name()});
    }
    op->SetOutput("Hidden", {hidden->Name()});
    op->SetOutput("Cell", {cell->Name()});
    op->SetOutput("BatchGate", {batch_gate->Name()});
    op->SetOutput("BatchCellPreAct", {batch_cell_pre_act->Name()});
    op->SetAttr("use_peepholes", use_peepholes);
    op->SetAttr("is_reverse", is_reverse);
    op->SetAttr("gate_activation", gate_activation);
    op->SetAttr("cell_activation", cell_activation);
    op->SetAttr("candidate_activation", candidate_activation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
  }

  void gru(VarDesc* input, VarDesc* w, VarDesc* bias, VarDesc* batch_gate,
           VarDesc* batch_reset_hidden_prev, VarDesc* batch_hidden,
           VarDesc* hidden, VarDesc* h0 = nullptr, bool origin_mode = false,
           bool is_reverse = false, std::string activation = "tanh",
           std::string gate_activation = "sigmoid") {
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("gru");
    op->SetInput("Input", {input->Name()});
    op->SetInput("Weight", {w->Name()});
    op->SetInput("Bias", {bias->Name()});
    if (h0) {
      op->SetInput("H0", {h0->Name()});
    }
    op->SetOutput("BatchGate", {batch_gate->Name()});
    op->SetOutput("BatchResetHiddenPrev", {batch_reset_hidden_prev->Name()});
    op->SetOutput("BatchHidden", {batch_hidden->Name()});
    op->SetOutput("Hidden", {hidden->Name()});
    op->SetAttr("origin_mode", origin_mode);
    op->SetAttr("is_reverse", is_reverse);
    op->SetAttr("activation", activation);
    op->SetAttr("gate_activation", gate_activation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
  }

217
  VarDesc* mul(VarDesc* x, VarDesc* y, VarDesc* out = nullptr,
218 219
               int x_num_col_dims = 1, int y_num_col_dims = 1,
               bool use_mkldnn = false) {
220
    AttributeMap attrs;
221 222
    attrs["x_num_col_dims"] = x_num_col_dims;
    attrs["y_num_col_dims"] = y_num_col_dims;
223
    attrs["use_mkldnn"] = use_mkldnn;
224
    return binary_op("mul", x, y, out, &attrs);
225 226
  }

227
  VarDesc* elementwise_add(VarDesc* x, VarDesc* y, VarDesc* out = nullptr,
228
                           int axis = -1, bool use_mkldnn = false) {
229 230
    AttributeMap attrs;
    attrs["axis"] = axis;
231
    attrs["use_mkldnn"] = use_mkldnn;
232
    return binary_op("elementwise_add", x, y, out, &attrs);
233 234
  }

235 236 237
  VarDesc* elementwise_mul(VarDesc* x, VarDesc* y, VarDesc* out = nullptr,
                           const AttributeMap* attrs = nullptr) {
    return binary_op("elementwise_mul", x, y, out, attrs);
238 239
  }

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
  VarDesc* dropout(VarDesc* x, float dropout_prob,
                   std::string dropout_implementation) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("dropout");
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("is_test", true);
    op->SetAttr("dropout_prob", dropout_prob);
    op->SetAttr("dropout_implementation", dropout_implementation);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
  VarDesc* concat(std::vector<VarDesc*> inputs, int axis = -1) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("concat");
    std::vector<std::string> input_names(inputs.size());
    for (size_t i = 0; i < inputs.size(); ++i) {
      input_names[i] = inputs[i]->Name();
    }
    op->SetInput("X", input_names);
    op->SetOutput("Out", {out->Name()});
    op->SetAttr("axis", axis);
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  std::vector<VarDesc*> layer_norm(VarDesc* x, VarDesc* scale = nullptr,
                                   VarDesc* bias = nullptr) {
    VarDesc* y = lod_tensor(unique_name());
    VarDesc* mean = lod_tensor(unique_name());
    VarDesc* variance = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("layer_norm");
    op->SetInput("X", {x->Name()});
    if (scale) {
      op->SetInput("Scale", {scale->Name()});
    }
    if (bias) {
      op->SetInput("Bias", {bias->Name()});
    }
    op->SetOutput("Y", {y->Name()});
    op->SetOutput("Mean", {mean->Name()});
    op->SetOutput("Variance", {variance->Name()});
    op->SetAttr("epsilon", static_cast<float>(1E-05));
    op->SetAttr("begin_norm_axis", static_cast<int>(1));
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    std::vector<VarDesc*> outs = {y, mean, variance};
    return outs;
  }

296 297 298 299 300 301 302 303 304 305
  VarDesc* matmul(VarDesc* x, VarDesc* y, VarDesc* alpha = nullptr) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("matmul");
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

306 307
  VarDesc* transpose2(VarDesc* x, std::vector<int> axis,
                      bool with_xshape = false) {
308 309 310 311 312 313
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("transpose2");
    op->SetInput("X", {x->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
314 315 316 317
    if (with_xshape) {
      VarDesc* xshape = lod_tensor(unique_name());
      op->SetOutput("XShape", {xshape->Name()});
    }
318 319 320
    return out;
  }

321 322
  VarDesc* reshape2(VarDesc* x, std::vector<int> shape,
                    bool with_xshape = false) {
323 324 325 326 327 328
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("reshape2");
    op->SetInput("X", {x->Name()});
    op->SetAttr("shape", shape);
    op->SetOutput("Out", {out->Name()});
329 330 331 332
    if (with_xshape) {
      VarDesc* xshape = lod_tensor(unique_name());
      op->SetOutput("XShape", {xshape->Name()});
    }
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    return out;
  }

  VarDesc* softmax(VarDesc* x, int axis) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("softmax");
    op->SetInput("X", {x->Name()});
    op->SetAttr("axis", axis);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

  VarDesc* scale(VarDesc* x, float scale, float bias, bool bias_after) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("scale");
    op->SetInput("X", {x->Name()});
    op->SetAttr("scale", scale);
    op->SetAttr("bias", bias);
    op->SetAttr("bias_after_scale", bias_after);
    op->SetOutput("Out", {out->Name()});
    return out;
  }

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
  std::vector<VarDesc*> batch_norm(VarDesc* x, VarDesc* scale, VarDesc* bias,
                                   VarDesc* mean, VarDesc* variance) {
    VarDesc* y = lod_tensor(unique_name());
    VarDesc* mean_out = lod_tensor(unique_name());
    VarDesc* variance_out = lod_tensor(unique_name());
    VarDesc* saved_mean = lod_tensor(unique_name());
    VarDesc* saved_variance = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("batch_norm");
    op->SetInput("X", {x->Name()});
    op->SetInput("Scale", {scale->Name()});
    op->SetInput("Bias", {bias->Name()});
    op->SetInput("Mean", {mean->Name()});
    op->SetInput("Variance", {variance->Name()});
    op->SetOutput("Y", {y->Name()});
    op->SetOutput("MeanOut", {mean_out->Name()});
    op->SetOutput("VarianceOut", {variance_out->Name()});
    op->SetOutput("SavedMean", {saved_mean->Name()});
    op->SetOutput("SavedVariance", {saved_variance->Name()});
    op->SetAttr("epsilon", static_cast<float>(1e-5));
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    std::vector<VarDesc*> outs = {y, mean_out, variance_out, saved_mean,
                                  saved_variance};
    return outs;
  }

385 386 387 388 389 390 391 392 393 394
  VarDesc* embedding(VarDesc* x, VarDesc* weights) {
    VarDesc* out = lod_tensor(unique_name());
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType("lookup_table");
    op->SetInput("Ids", {x->Name()});
    op->SetInput("W", {weights->Name()});
    op->SetOutput("Out", {out->Name()});
    return out;
  }

395 396 397
  void backward(std::vector<VarDesc*> targets) {
    // This function is designed to simulate the structure of training program,
    //  but is constructed differently as the actual program.
398 399
    BlockDesc* block = program_.MutableBlock(0);
    std::vector<OpDesc*> forward_ops = block->AllOps();
400 401 402 403 404 405 406 407
    for (auto* var : targets) {
      OpDesc* none_op = block->AppendOp();
      none_op->SetType("none");
      none_op->SetInput("X", {var->Name()});
      VarDesc* grad_var =
          lod_tensor(GradVarName(var->Name()), var->GetShape(), false);
      none_op->SetOutput("Out", {grad_var->Name()});
    }
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    for (int i = forward_ops.size() - 1; i >= 0; --i) {
      OpDesc* op = forward_ops[i];
      OpDesc* grad_op = block->AppendOp();
      grad_op->SetType(op->Type() + "_grad");
      // All op's inputs are grad_op's input.
      for (auto name : op->InputNames()) {
        grad_op->SetInput(name, op->Input(name));
      }
      // All op's outputs are grad_op's input.
      for (auto name : op->OutputNames()) {
        grad_op->SetInput(name, op->Output(name));
      }
      // All op's outputs grad are grad_op's input.
      for (auto name : op->OutputNames()) {
        std::vector<std::string> grad_var_names;
        for (auto var_name : op->Output(name)) {
          VarDesc* var = block->FindVar(var_name);
          VarDesc* grad_var =
              lod_tensor(GradVarName(var_name), var->GetShape(), false);
          grad_var_names.push_back(grad_var->Name());
        }
        grad_op->SetInput(GradVarName(name), grad_var_names);
      }
      // All op's inputs grad are grad_op's output.
      for (auto name : op->InputNames()) {
        std::vector<std::string> grad_var_names;
        for (auto var_name : op->Input(name)) {
          VarDesc* var = block->FindVar(var_name);
          VarDesc* grad_var =
              lod_tensor(GradVarName(var_name), var->GetShape(), false);
          grad_var_names.push_back(grad_var->Name());
        }
        grad_op->SetOutput(GradVarName(name), grad_var_names);
      }
      // TODO(liuyiqun): attrs
    }
  }

446
 private:
447
  VarDesc* lod_tensor(std::string name, std::vector<int64_t> shape = {},
448 449
                      bool is_persistable = false,
                      proto::VarType::Type data_type = proto::VarType::FP32) {
450 451
    auto* var = program_.MutableBlock(0)->Var(name);
    var->SetType(proto::VarType::LOD_TENSOR);
452
    var->SetDataType(data_type);
453 454
    var->SetShape(shape);
    var->SetPersistable(is_persistable);
455 456 457
    return var;
  }

458 459 460 461 462 463 464 465 466 467 468 469 470
  VarDesc* unary_op(std::string type, VarDesc* x, VarDesc* out = nullptr) {
    if (!out) {
      out = lod_tensor(unique_name());
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType(type);
    op->SetInput("X", {x->Name()});
    op->SetOutput("Out", {out->Name()});
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

471
  VarDesc* binary_op(std::string type, VarDesc* x, VarDesc* y,
472 473
                     VarDesc* out = nullptr,
                     const AttributeMap* attrs = nullptr) {
474 475 476 477 478 479 480 481
    if (!out) {
      out = lod_tensor(unique_name());
    }
    OpDesc* op = program_.MutableBlock(0)->AppendOp();
    op->SetType(type);
    op->SetInput("X", {x->Name()});
    op->SetInput("Y", {y->Name()});
    op->SetOutput("Out", {out->Name()});
482 483 484 485 486
    if (attrs) {
      for (auto& iter : *attrs) {
        op->SetAttr(iter.first, iter.second);
      }
    }
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                static_cast<int>(OpRole::kForward));
    return out;
  }

  std::string unique_name() { return "tmp_" + std::to_string(idx_++); }

 private:
  ProgramDesc program_;
  int idx_{0};
};

static std::string DebugString(OpDesc* op) {
  std::ostringstream os;
  os << "Op(" << op->Type() << "), inputs:{";
  bool is_first = true;
  for (auto& name : op->InputNames()) {
    if (!is_first) {
      os << ", ";
    }
    os << name << "[";
    bool is_first_var_name = true;
    for (auto& var_name : op->Input(name)) {
      if (!is_first_var_name) {
        os << ", ";
      }
      os << var_name;
      is_first_var_name = false;
    }
    os << "]";
    is_first = false;
  }

  os << "}, outputs:{";
  is_first = true;
  for (auto& name : op->OutputNames()) {
    if (!is_first) {
      os << ", ";
    }
    os << name << "[";
    bool is_first_var_name = true;
    for (auto& var_name : op->Output(name)) {
      if (!is_first_var_name) {
        os << ", ";
      }
      os << var_name;
      is_first_var_name = false;
    }
    os << "]";
    is_first = false;
  }
  os << "}";
  return os.str();
}

542
static std::string DebugString(const Node* node) {
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
  std::ostringstream os;
  if (node->IsOp() && node->Op()) {
    OpDesc* op = node->Op();
    os << "Node(" << DebugString(op) << "), inputs:{";
    bool is_first = true;
    for (auto* in : node->inputs) {
      if (!is_first) {
        os << ", ";
      }
      os << in->Name();
      is_first = false;
    }
    os << "}, outputs:{";
    is_first = true;
    for (auto* out : node->outputs) {
      if (!is_first) {
        os << ", ";
      }
      os << out->Name();
      is_first = false;
    }
    os << "}.";
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
  } else {
    os << "Node(" << node->Name();
    if (node->IsVar() && node->Var()) {
      os << "{";
      bool is_first = true;
      for (auto dim : node->Var()->GetShape()) {
        if (!is_first) {
          os << "x";
        }
        os << dim;
        is_first = false;
      }
      os << "}";
    }
    os << "), inputs:{";
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
    bool is_first = true;
    for (auto* in : node->inputs) {
      if (!is_first) {
        os << ", ";
      }
      if (in->IsOp() && in->Op()) {
        os << in->Op()->Type();
      }
      is_first = false;
    }
    os << "}, outputs:{";
    is_first = true;
    for (auto* out : node->outputs) {
      if (!is_first) {
        os << ", ";
      }
      if (out->IsOp() && out->Op()) {
        os << out->Op()->Type();
      }
      is_first = false;
    }
    os << "}";
  }
  return os.str();
}

606
static std::string DebugString(const std::vector<Node*>& nodes) {
607
  std::ostringstream os;
608
  for (auto* node : nodes) {
609 610
    if (node->IsOp() && node->Op()) {
      os << "  ";
611
    } else if ((node->IsVar() && node->Var()) || node->IsCtrlVar()) {
612 613 614 615
      os << "    ";
    }
    os << DebugString(node) << "\n";
  }
616 617 618
  return os.str();
}

619 620 621 622 623 624 625 626
static std::string DebugString(const std::unordered_set<Node*>& nodes) {
  std::vector<Node*> vec;
  for (auto* node : nodes) {
    vec.push_back(node);
  }
  return DebugString(vec);
}

627
static std::string DebugString(Graph* graph) {
628 629
  std::ostringstream os;
  os << "Graph: {\n" << DebugString(graph->Nodes()) << "}\n";
630 631 632
  return os.str();
}

633 634 635 636
static std::string DebugString(const std::unique_ptr<Graph>& graph) {
  return DebugString(graph.get());
}

637 638 639 640 641 642 643 644 645 646 647
static std::vector<ir::Node*> GetOpNodes(const std::unique_ptr<Graph>& graph,
                                         std::string op_type) {
  std::vector<ir::Node*> rc;
  for (auto* node : graph->Nodes()) {
    if (node->IsOp() && node->Op() && node->Op()->Type() == op_type) {
      rc.push_back(node);
    }
  }
  return rc;
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661
static int GetNumOpNodes(const std::unique_ptr<Graph>& graph,
                         std::string op_type) {
  int num_nodes = 0;
  for (auto* node : graph->Nodes()) {
    if (node->IsOp() && node->Op() && node->Op()->Type() == op_type) {
      num_nodes++;
    }
  }
  return num_nodes;
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle