io.py 82.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
H
hong 已提交
23
import contextlib
24
from functools import reduce
25

H
hong 已提交
26 27
import numpy as np

28 29 30
import paddle
import paddle.reader
from paddle.reader import *
31
from paddle.fluid import layers
H
hong 已提交
32
from paddle.fluid.executor import Executor, global_scope
33
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
34
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
35
    program_guard, dygraph_not_support
36
from .wrapped_decorator import signature_safe_contextmanager
T
tangwei12 已提交
37
from paddle.fluid.compiler import CompiledProgram
38
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
39
from . import reader
40
from . import unique_name
S
sneaxiy 已提交
41
from .reader import *
42 43
from . import dataloader
from .dataloader import *
K
fix bug  
Kexin Zhao 已提交
44
from . import core
45
from .. import compat as cpt
46

47 48
batch = paddle.batch

49
__all__ = [
50 51 52 53 54 55 56 57 58 59 60 61 62
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
63 64
    'get_program_parameter',
    'get_program_persistable_vars',
65
] + reader.__all__ + paddle.reader.__all__
66

67 68
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
69

70 71

def is_parameter(var):
F
fengjiayi 已提交
72 73
    """
    Check whether the given variable is an instance of Parameter.
74 75

    Args:
F
fengjiayi 已提交
76
        var(Variable): The variable to be checked.
77 78

    Returns:
F
fengjiayi 已提交
79 80 81 82 83 84
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

85
            import paddle.fluid as fluid
F
fengjiayi 已提交
86 87
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
88
    """
89 90 91 92
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

106
            import paddle.fluid as fluid
107
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
108 109
            res = fluid.io.is_persistable(param)
    """
110
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
111 112
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
113
        return False
114 115 116
    return var.persistable


H
hong 已提交
117
def is_belong_to_optimizer(var):
118
    if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
119 120 121
        return is_persistable(var)

    return False
H
hong 已提交
122 123


124
@dygraph_not_support
H
hong 已提交
125 126
def get_program_parameter(program):
    """
127 128
    :api_attr: Static Graph

H
hong 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


149
@dygraph_not_support
H
hong 已提交
150 151
def get_program_persistable_vars(program):
    """
152 153
    :api_attr: Static Graph

H
hong 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


174 175
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
191 192


193
@signature_safe_contextmanager
H
hong 已提交
194 195 196 197 198 199 200
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
201 202
                with paddle.fluid.framework._dygraph_guard(None):
                    yield
H
hong 已提交
203 204


C
chengduo 已提交
205 206 207 208 209 210
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
211 212 213
            raise TypeError(
                "The type of input main_program is invalid, expected tyep is Program, but received None"
            )
C
chengduo 已提交
214 215 216
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
217 218 219
        raise TypeError(
            "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
            % type(main_program))
C
chengduo 已提交
220 221 222
    return main_program


223
@dygraph_not_support
224 225 226 227 228
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
229
              filename=None):
230
    """
231 232
    :api_attr: Static Graph

233
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
234

235
    There are two ways to specify the variables to be saved: set variables in
236 237
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
238

239
    The `dirname` is used to specify the folder where to save variables.
T
tianshuo78520a 已提交
240
    If you prefer to save variables in separate files in the `dirname` folder,
241
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
242
    use `filename` to specify it.
243

F
fengjiayi 已提交
244 245
    Args:
        executor(Executor): The executor to run for saving variables.
246 247
        dirname(str, optional): The folder where to save variables.
                            When you need to save the parameter to the memory, set it to None.
248
        main_program(Program, optional): The program whose variables will be saved.
249
                                    If it is None, the default main program will
F
fengjiayi 已提交
250 251
                                    be used automatically.
                                    Default: None
252 253 254
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
255
                                       `predicate(variable) == True`.
256 257
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
258
                                 use `filename` to specify it. Otherwise, let `filename` be None.
259
                                 Default: None
F
fengjiayi 已提交
260 261

    Returns:
262 263
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
264 265 266 267 268 269 270

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

271
            import paddle.fluid as fluid
272

273 274 275 276 277 278 279 280 281 282 283
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
284

285
            # The first usage: use `vars` to set the saved variables.
286 287
            var_list = [w, b]
            path = "./my_paddle_vars"
288
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
289 290 291 292 293 294 295 296 297 298
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
299
    """
300 301 302 303
    save_to_memory = False
    if dirname is None and filename is None:
        save_to_memory = True

C
chengduo 已提交
304
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
305

306
    if vars is None:
307
        return save_vars(
308
            executor,
309
            main_program=main_program,
310
            dirname=dirname,
311
            vars=list(filter(predicate, main_program.list_vars())),
312
            filename=filename)
313
    else:
314
        params_var_name = unique_name.generate("saved_params")
315 316 317 318 319 320 321
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

322 323
        save_program = Program()
        save_block = save_program.global_block()
324 325

        save_var_map = {}
326
        for each_var in vars:
327 328 329
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
330
            new_var = _clone_var_in_block_(save_block, each_var)
331 332 333
            if filename is None and save_to_memory is False:
                save_file_path = os.path.join(
                    os.path.normpath(dirname), new_var.name)
334 335 336 337
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
338
                    attrs={'file_path': os.path.normpath(save_file_path)})
339 340 341
            else:
                save_var_map[new_var.name] = new_var

342
        if filename is not None or save_to_memory:
343 344 345 346
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

347 348 349 350 351 352 353
            save_path = str()
            if save_to_memory is False:
                save_path = os.path.join(os.path.normpath(dirname), filename)

            saved_params = save_block.create_var(
                type=core.VarDesc.VarType.RAW, name=params_var_name)
            saved_params.desc.set_persistable(True)
354
            save_block.append_op(
355 356
                type='save_combine',
                inputs={'X': save_var_list},
357 358 359 360 361
                outputs={'Y': saved_params},
                attrs={
                    'file_path': save_path,
                    'save_to_memory': save_to_memory
                })
362

363
        # NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
364 365 366
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
367
        executor.run(save_program)
368 369
        if save_to_memory:
            return global_scope().find_var(params_var_name).get_bytes()
370 371


372
@dygraph_not_support
373
def save_params(executor, dirname, main_program=None, filename=None):
374
    """
375 376
    :api_attr: Static Graph

G
guofei 已提交
377
    This operator saves all parameters from the :code:`main_program` to
378
    the folder :code:`dirname` or file :code:`filename`. You can refer to
G
guofei 已提交
379
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
380

G
guofei 已提交
381 382 383
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
384 385
    the file name.

386
    Note:
G
guofei 已提交
387
        Some variables are not Parameter while they are necessary for
388
        training, such as learning rate, global step, etc. So you can NOT save
G
guofei 已提交
389 390
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
391 392 393
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to save your model for the inference, please use the
G
guofei 已提交
394 395
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
396 397

    Args:
398
        executor(Executor): The executor to run for saving parameters, You can
G
guofei 已提交
399
                            refer to :ref:`api_guide_executor_en`.
400 401
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
G
guofei 已提交
402
        main_program(Program, optional): The program whose parameters will be
403 404
                                         saved. You can refer to
                                         :ref:`api_guide_Program_en` for more
G
guofei 已提交
405 406 407 408 409 410 411
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
412 413

    Returns:
414 415
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
416 417 418 419

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
420
            import paddle.fluid as fluid
421

G
guofei 已提交
422 423 424 425 426
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
427

G
guofei 已提交
428 429
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
430

F
fengjiayi 已提交
431
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
432 433
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
434 435
            # The parameters weights and bias of the fc layer in the network are going to
            # be saved in different files in the path "./my_paddle_model"
436
    """
437
    return save_vars(
438 439
        executor,
        dirname=dirname,
440
        main_program=main_program,
441
        vars=None,
442
        predicate=is_parameter,
443
        filename=filename)
444 445


446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

468
            import paddle.fluid as fluid
469 470 471 472 473 474 475 476 477 478
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
T
tianshuo78520a 已提交
479
        receive params on pserver through rpc.
480 481 482 483 484 485 486 487 488 489
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
490 491 492 493 494 495 496
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
497 498 499

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
500
                slice = optimizer.slice
501 502 503
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
504 505 506
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
507 508
                endpoints[index] = endpoint

T
tangwei12 已提交
509 510 511 512 513
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

514
            block.append_op(
T
tangwei12 已提交
515 516 517 518 519 520 521 522 523 524 525
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
555 556
                            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                            var.desc.type() == core.VarDesc.VarType.READER:
557 558 559 560 561 562
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
563
        raise TypeError("'main_program' should be an instance of Program.")
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


597
@dygraph_not_support
598
def save_persistables(executor, dirname, main_program=None, filename=None):
599
    """
600 601
    :api_attr: Static Graph

G
guofei 已提交
602 603 604
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
605 606
    saves these persistables variables to the folder :code:`dirname` or file
    :code:`filename`.
F
fengjiayi 已提交
607

G
guofei 已提交
608
    The :code:`dirname` is used to specify the folder where persistable variables
609
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
610 611
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
612 613 614

    Args:
        executor(Executor): The executor to run for saving persistable variables.
615
                            You can refer to :ref:`api_guide_executor_en` for
G
guofei 已提交
616
                            more details.
617

618 619 620
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
        main_program(Program, optional): The program whose persistbale variables will
G
guofei 已提交
621 622
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
623
                                         If it is None, the default main program will
G
guofei 已提交
624 625 626 627 628
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
629 630

    Returns:
631 632
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
633 634 635 636

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
637
            import paddle.fluid as fluid
638

G
guofei 已提交
639 640 641 642 643
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
644

G
guofei 已提交
645 646 647
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
648
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
649 650
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
651
            # The persistables variables weights and bias in the fc layer of the network
G
guofei 已提交
652 653
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
654
    """
655
    if main_program and main_program._is_distributed:
656
        return _save_distributed_persistables(
657 658
            executor, dirname=dirname, main_program=main_program)
    else:
659
        return save_vars(
660 661 662 663 664 665
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
666 667


668 669 670 671 672
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
673
              filename=None):
674
    """
675 676
    :api_attr: Static Graph

677
    This API loads variables from files by executor.
F
fengjiayi 已提交
678

679
    There are two ways to specify the variables to be loaded: the first way, set
680 681
    variables in a list and assign it to the `vars`; the second way, use the
    `predicate` function to select variables that make `predicate(variable) == True`.
682
    The first way has a higher priority.
F
fengjiayi 已提交
683

684
    The `dirname` is used to specify the folder where to load variables.
685
    If variables were saved in separate files in the folder `dirname`,
686
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
687
    use `filename` to specify it.
688

F
fengjiayi 已提交
689 690
    Args:
        executor(Executor): The executor to run for loading variables.
691 692
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
693
                                    If it is None, the default main program will
F
fengjiayi 已提交
694 695
                                    be used automatically.
                                    Default: None
696
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
697
                                   Default: None
698
        predicate(function, optional): The function selects variables that make
699 700 701 702 703
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
704 705 706 707 708 709 710 711 712 713

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

714
            import paddle.fluid as fluid
715

716 717 718 719 720 721 722 723 724 725 726
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
727

728 729 730 731 732 733 734 735 736 737 738
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
739
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
740 741 742
            def name_has_fc(var):
                res = "fc" in var.name
                return res
743 744 745
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
746
                               vars=None, predicate=name_has_fc)
747 748
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
749

750
    """
751 752 753 754 755
    vars_from_memory = False
    if dirname is not None:
        dirname = os.path.normpath(dirname)
    else:
        vars_from_memory = True
T
tangwei12 已提交
756

757
    if vars is None:
758
        if main_program is None:
Y
Yu Yang 已提交
759
            main_program = default_main_program()
760
        if not isinstance(main_program, Program):
761 762 763
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
764 765 766

        load_vars(
            executor,
767
            dirname=dirname,
T
tangwei12 已提交
768
            main_program=main_program,
769
            vars=list(filter(predicate, main_program.list_vars())),
770
            filename=filename)
771 772 773
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
774

775 776
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
777

778
        if not isinstance(main_program, Program):
779 780 781
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
782

T
tangwei12 已提交
783
        # save origin param shape
H
hong 已提交
784
        orig_para_shape = {}
785
        load_var_map = {}
786 787 788 789

        check_vars = []
        sparse_vars = []

790 791
        for each_var in vars:
            assert isinstance(each_var, Variable)
792

T
tangwei12 已提交
793 794
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
795 796

            if isinstance(each_var, Parameter):
797 798
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
799 800 801 802 803

            if each_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_vars.append(each_var)
                continue

804
            new_var = _clone_var_in_block_(load_block, each_var)
805 806
            check_vars.append(each_var)

807
            if filename is None:
808 809 810 811
                if dirname is None:
                    raise ValueError(
                        "The directory path and params cannot be None at the same time."
                    )
812 813 814 815
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
816
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
817 818 819
            else:
                load_var_map[new_var.name] = new_var

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
        for each_var in sparse_vars:
            assert isinstance(each_var, Variable)

            if filename is not None:
                raise ValueError(
                    "SelectedRows can not be load with load_combine")

            new_var = _clone_var_in_block_(load_block, each_var)

            var_path = os.path.join(dirname, new_var.name)
            if not os.path.exists(var_path):
                raise ValueError("SelectedRows var {} can not find at {}".
                                 format(new_var.name, var_path))

            if os.path.isfile(var_path):
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                blocks = []
                block_paths = os.listdir(var_path)

                for block in block_paths:
                    if block.startswith(new_var.name):
                        blocks.append(block)

                slices = []
                for block in blocks:
                    slice = load_block.create_var(
                        name=block,
                        type=new_var.type,
                        shape=new_var.shape,
                        dtype=new_var.dtype,
                        persistable=False)
                    slices.append(slice)

                    file_path = os.path.join(var_path, block, "Param")
                    load_block.append_op(
                        type='load',
                        inputs={},
                        outputs={'Out': [slice]},
                        attrs={'file_path': file_path})

                load_block.append_op(
                    type='lookup_sparse_table_merge',
                    inputs={'X': slices},
                    outputs={'Out': new_var},
                    attrs={})

871
        if filename is not None:
872 873 874 875
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

876 877 878
            if vars_from_memory is False:
                filename = os.path.join(dirname, filename)

879
            load_block.append_op(
880
                type='load_combine',
881
                inputs={},
882
                outputs={"Out": load_var_list},
883 884 885 886
                attrs={
                    'file_path': filename,
                    'model_from_memory': vars_from_memory
                })
887 888
        executor.run(load_prog)

T
tangwei12 已提交
889
        # check var shape
890
        for each_var in check_vars:
H
hong 已提交
891 892 893 894 895
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
896
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
H
hong 已提交
897 898 899
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
900
                    "Variable's shape does not match, the Program requires a parameter with the shape of ({}), "
H
hong 已提交
901 902 903
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

904

905
@dygraph_not_support
906
def load_params(executor, dirname, main_program=None, filename=None):
907
    """
908 909
    :api_attr: Static Graph

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
929 930

    Args:
931 932
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
933
        dirname(str): The directory path.
934 935 936 937 938 939 940 941
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
942 943 944 945 946 947 948

    Returns:
        None

    Examples:
        .. code-block:: python

949
            import paddle.fluid as fluid
950

F
fengjiayi 已提交
951 952 953
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
954
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
955
                                main_program=None)
956 957
    """
    load_vars(
958 959 960
        executor,
        dirname=dirname,
        main_program=main_program,
961
        predicate=is_parameter,
962
        filename=filename)
963 964


965
@dygraph_not_support
966
def load_persistables(executor, dirname, main_program=None, filename=None):
967
    """
968 969
    :api_attr: Static Graph
    
970 971
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
T
tianshuo78520a 已提交
972
    directory ``dirname`` or the file ``filename``.
F
fengjiayi 已提交
973

974 975 976 977
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
978 979

    Args:
980 981
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
982
        dirname(str): The directory path.
T
tianshuo78520a 已提交
983
        main_program(Program, optional): The program whose persistable variables will
984 985 986 987 988 989 990
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
991 992 993 994 995 996 997

    Returns:
        None

    Examples:
        .. code-block:: python

998
            import paddle.fluid as fluid
999

F
fengjiayi 已提交
1000 1001 1002
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
1003
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
1004
                                       main_program=None)
1005
    """
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

1037
            import paddle.fluid as fluid
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
1071 1072 1073 1074 1075 1076 1077 1078
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
1101
        raise TypeError("'main_program' should be an instance of Program.")
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
1116 1117


1118 1119 1120
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
1121 1122 1123
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
1124 1125
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
1126 1127 1128
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
1129

1130
    for i, name in enumerate(feed_target_names):
1131 1132 1133 1134 1135 1136 1137
        if not global_block.has_var(name):
            raise ValueError(
                "The feeded_var_names[{i}]: '{name}' doesn't exist in pruned inference program. "
                "Please check whether '{name}' is a valid feed_var name, or remove it from feeded_var_names "
                "if '{name}' is not involved in the target_vars calculation.".
                format(
                    i=i, name=name))
K
fix bug  
Kexin Zhao 已提交
1138
        out = global_block.var(name)
W
Wu Yi 已提交
1139
        global_block._prepend_op(
K
Kexin Zhao 已提交
1140 1141
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
1142
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
1143 1144 1145
            attrs={'col': i})


1146 1147 1148
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1149 1150
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
1151 1152 1153
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
1154

1155
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
1156 1157 1158 1159 1160 1161 1162
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


1163
@dygraph_not_support
1164 1165 1166 1167
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1168
                         main_program=None,
1169
                         model_filename=None,
1170
                         params_filename=None,
T
tangwei12 已提交
1171 1172
                         export_for_deployment=True,
                         program_only=False):
1173
    """
1174 1175
    :api_attr: Static Graph

F
fengjiayi 已提交
1176
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1177
    and then save it and all related parameters to given `dirname` .
1178
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1179 1180
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1181

G
guofei 已提交
1182
    Note:
1183
        The :code:`dirname` is used to specify the folder where inference model
G
guofei 已提交
1184
        structure and parameters are going to be saved. If you would like to save params of
1185
        Program in separate files, set `params_filename` None; if you would like to save all
G
guofei 已提交
1186
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1187 1188 1189

    Args:
        dirname(str): The directory path to save the inference model.
T
tianshuo78520a 已提交
1190
        feeded_var_names(list[str]): list of string. Names of variables that need to be fed
G
guofei 已提交
1191
                                     data during inference.
1192
        target_vars(list[Variable]): list of Variable. Variables from which we can get
G
guofei 已提交
1193
                                     inference results.
1194
        executor(Executor): The executor that saves the inference model. You can refer
G
guofei 已提交
1195 1196
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
T
tianshuo78520a 已提交
1197
                                         build the inference model. If is set None,
G
guofei 已提交
1198 1199 1200
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
T
tianshuo78520a 已提交
1201
                                       itself. If is set None, a default filename
G
guofei 已提交
1202 1203
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
T
tianshuo78520a 已提交
1204
                                        If it is set None, parameters will be saved
G
guofei 已提交
1205
                                        in separate files .
X
Xin Pan 已提交
1206 1207 1208 1209 1210
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1211
                                     Default: True.
1212
        program_only(bool, optional): If True, It will save inference program only, and do not
G
guofei 已提交
1213 1214
                                      save params of Program.
                                      Default: False.
1215

F
fengjiayi 已提交
1216
    Returns:
G
guofei 已提交
1217 1218 1219 1220
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1221 1222

    Raises:
G
guofei 已提交
1223 1224
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1225 1226 1227

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1228

1229 1230
            import paddle.fluid as fluid

F
fengjiayi 已提交
1231 1232
            path = "./infer_model"

T
tianshuo78520a 已提交
1233
            # User defined network, here a softmax regession example
G
guofei 已提交
1234 1235
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1253
            # In this example, the save_inference_mode inference will prune the default
1254
            # main program according to the network's input node (img) and output node(predict).
G
guofei 已提交
1255
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1256
            # and parameters are going to be saved in separate files under folder
1257
            # "./infer_model".
1258 1259

    """
M
minqiyang 已提交
1260
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1261
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1262
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1263
        if len(feeded_var_names) > 0:
1264
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1265
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1266
                    isinstance(name, six.string_types)
1267
                    for name in feeded_var_names)):
M
minqiyang 已提交
1268
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1269 1270

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1271
        target_vars = [target_vars]
X
Xin Pan 已提交
1272
    elif export_for_deployment:
1273 1274
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1275 1276
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1277
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1278

1279
    # remind user to set auc_states to zeros if the program contains auc op
1280 1281
    all_ops = main_program.global_block().ops
    for op in all_ops:
1282 1283 1284
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
1285 1286 1287 1288 1289 1290
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1291 1292 1293 1294 1295
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1296
        for i, var in enumerate(target_vars):
1297
            if isinstance(var, Variable):
F
flame 已提交
1298 1299 1300
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1301
        target_vars = uniq_target_vars
F
flame 已提交
1302
    target_var_name_list = [var.name for var in target_vars]
1303

1304
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1305
    save_dirname = dirname
1306
    try:
L
lujun 已提交
1307 1308
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1309 1310 1311 1312
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1313 1314 1315 1316
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1317
    model_basename = os.path.join(save_dirname, model_basename)
1318

X
Xin Pan 已提交
1319 1320 1321 1322
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1323 1324 1325

    origin_program = main_program.clone()

X
Xin Pan 已提交
1326
    if export_for_deployment:
X
Xin Pan 已提交
1327 1328
        main_program = main_program.clone()
        global_block = main_program.global_block()
1329
        need_to_remove_op_index = []
X
Xin Pan 已提交
1330 1331 1332
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1333 1334 1335 1336 1337
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1338
        main_program.desc.flush()
X
Xin Pan 已提交
1339

1340 1341
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1342
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1343 1344
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1345 1346 1347
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1348 1349
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1350 1351
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1352 1353 1354
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1355 1356
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1357

T
tangwei12 已提交
1358 1359 1360 1361 1362 1363
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1364 1365
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1366 1367
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1368

L
lujun 已提交
1369
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1370
    return target_var_name_list
X
fix  
Xin Pan 已提交
1371

1372

1373
@dygraph_not_support
1374 1375 1376
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1377 1378
                         params_filename=None,
                         pserver_endpoints=None):
1379
    """
1380 1381
    :api_attr: Static Graph

1382 1383 1384
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1385
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1386

F
fengjiayi 已提交
1387
    Args:
1388 1389 1390
        dirname(str): One of the following:
          - The given directory path.
          - Set to None when reading the model from memory.
F
fengjiayi 已提交
1391
        executor(Executor): The executor to run for loading inference model.
1392
                            See :ref:`api_guide_executor_en` for more details about it.
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
        model_filename(str, optional): One of the following:
          - The name of file to load the inference program.
          - If it is None, the default filename ``__model__`` will be used.
          - When ``dirname`` is ``None``, it must be set to a string containing model.
          Default: ``None``.
        params_filename(str, optional): It is only used for the case that all
            parameters were saved in a single binary file. One of the following:
          - The name of file to load all parameters.  
          - When ``dirname`` is ``None``, it must be set to a string containing all the parameters.
          - If parameters were saved in separate files, set it as ``None``.
            Default: ``None``.
1404 1405 1406 1407

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1408
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1409 1410

    Returns:
1411
        list: The return of this API is a list with three elements:
1412
        (program, feed_target_names, fetch_targets). The `program` is a
1413 1414 1415 1416 1417
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1418 1419 1420 1421 1422 1423 1424

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1425 1426
            import paddle.fluid as fluid
            import numpy as np
1427 1428

            # Build the model
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1440 1441

            # Save the inference model
F
fengjiayi 已提交
1442
            path = "./infer_model"
1443 1444
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1445 1446 1447

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1448 1449
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1450
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1451 1452 1453 1454
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1455 1456 1457
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1458
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1459
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1460 1461
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1462
                                              pserver_endpoints=endpoints))
1463

1464
            # In this example, the inference program was saved in the file
1465
            # "./infer_model/__model__" and parameters were saved in
1466 1467 1468 1469
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1470
    """
1471 1472 1473 1474
    load_from_memory = False
    if dirname is not None:
        load_dirname = os.path.normpath(dirname)
        if not os.path.isdir(load_dirname):
1475
            raise ValueError("There is no directory named '%s'" % dirname)
1476

1477 1478
        if model_filename is None:
            model_filename = '__model__'
1479

1480 1481
        model_filename = os.path.join(load_dirname,
                                      os.path.basename(model_filename))
1482

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
        if params_filename is not None:
            params_filename = os.path.basename(params_filename)

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()
    else:
        load_from_memory = True
        if params_filename is None:
            raise ValueError(
                "The path of params cannot be None when the directory path is None."
            )
        load_dirname = dirname
        program_desc_str = model_filename
        params_filename = params_filename
1497

1498
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1499
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1500 1501 1502
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1503
    load_persistables(executor, load_dirname, program, params_filename)
1504

T
tangwei12 已提交
1505
    if pserver_endpoints:
T
tangwei12 已提交
1506
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1507

1508 1509
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1510 1511 1512 1513 1514
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1515 1516


T
tangwei12 已提交
1517 1518 1519
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1520 1521
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1522
    program._sync_with_cpp()
T
tangwei12 已提交
1523
    return program
T
tangwei12 已提交
1524 1525


X
xuwei06 已提交
1526 1527
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1539

F
fengjiayi 已提交
1540 1541
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1542

1543
            import paddle.fluid as fluid
F
fengjiayi 已提交
1544 1545 1546
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1547

X
xuwei06 已提交
1548
    """
1549
    assert is_parameter(para), "The input variable is not parameter."
X
xuwei06 已提交
1550

X
xuwei06 已提交
1551 1552 1553 1554 1555 1556 1557 1558
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1559
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1560

F
fengjiayi 已提交
1561 1562 1563 1564 1565 1566 1567
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1568

F
fengjiayi 已提交
1569 1570
    Returns:
        numpy.array: The parameter's values.
1571

F
fengjiayi 已提交
1572 1573 1574
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
T
tianshuo78520a 已提交
1575
        AssertionError: If there is a variable named `name` in the
F
fengjiayi 已提交
1576
                        given program but it is not a Parameter.
1577

F
fengjiayi 已提交
1578 1579 1580
    Examples:
        .. code-block:: python

1581
            import paddle.fluid as fluid
F
fengjiayi 已提交
1582 1583
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1584 1585
    """
    if program is None:
Y
Yu Yang 已提交
1586
        program = default_main_program()
X
xuwei06 已提交
1587 1588
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1613
                        var_desc.type() == core.VarDesc.VarType.READER:
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1652
                        var_desc.type() == core.VarDesc.VarType.READER:
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1666 1667


1668
@dygraph_not_support
H
hong 已提交
1669 1670
def save(program, model_path):
    """
1671 1672 1673 1674 1675
    :api_attr: Static Graph
	:alias_main: paddle.save
	:alias: paddle.save,paddle.tensor.save,paddle.tensor.io.save
	:old_api: paddle.fluid.save

H
hong 已提交
1676 1677 1678 1679 1680
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
1681

H
hong 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
1701
        "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received model_path is empty string."
H
hong 已提交
1702

1703 1704 1705 1706
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1707 1708 1709 1710
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1711
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1712 1713
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
    with open(model_path + ".pdparams", 'wb') as f:
1714
        pickle.dump(param_dict, f, protocol=2)
H
hong 已提交
1715 1716 1717 1718

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1719 1720
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
1721
        pickle.dump(opt_dict, f, protocol=2)
H
hong 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


1732
@dygraph_not_support
H
hong 已提交
1733
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1734
    """
1735 1736 1737 1738 1739
    :api_attr: Static Graph
	:alias_main: paddle.load
	:alias: paddle.load,paddle.tensor.load,paddle.tensor.io.load
	:old_api: paddle.fluid.io.load

H
hong 已提交
1740
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1741
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1742

1743 1744
    This function can also load model file saved with [ save_params, save_persistables, save_vars ].
    var_list can not be None  when load single model file
H
hong 已提交
1745 1746
    ( filename is not None When save_params, save_persistables or save_vars is called ).

1747
    Args:
1748 1749
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
1750
        executor(Executor, optional): The executor used for initialize the parameter
1751
                                      When startup program is not run.
1752 1753
        var_list(list, optional): The variable list to load single model file saved with
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
1754
                                  Default: None
H
hong 已提交
1755 1756 1757

    Returns:
        None
1758

H
hong 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

1771 1772
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
1786
        _logger.debug(
H
hong 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
                if var_path in binary_file_set:
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
                load_vars(
                    executor=executor, dirname=model_path, vars=loaded_var_list)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
1818
                    "Failed to load model file, please make sure model file is saved with the "
H
hong 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
1834
                        "loaded var [{}] is not in program variable list")
H
hong 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

            dir_name, file_name = os.path.split(model_path)
            try:
                load_vars(
                    executor=executor,
                    dirname=dir_name,
                    vars=var_list,
                    filename=file_name)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
1847 1848 1849
                raise RuntimeError("Failed to load model file , please make sure model file is saved with the " \
                                   "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                   "When these API called, filename CANNOT be None")
H
hong 已提交
1850 1851

            return
Y
Yang Zhang 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1866 1867

    parameter_list = list(filter(is_parameter, program.list_vars()))
1868 1869 1870 1871 1872

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1873
    with open(parameter_file_name, 'rb') as f:
1874
        load_dict = pickle.load(f) if six.PY2 else pickle.load(
1875
            f, encoding='latin1')
Y
Yang Zhang 已提交
1876 1877 1878 1879 1880
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1881 1882 1883 1884 1885

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
1886
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
1887
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
1888
            "Optimizer file [{}] not exits".format(opt_file_name)
1889 1890 1891 1892

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
1893 1894

        with open(opt_file_name, 'rb') as f:
1895
            load_dict = pickle.load(f) if six.PY2 else pickle.load(
1896
                f, encoding='latin1')
Y
Yang Zhang 已提交
1897 1898 1899 1900 1901
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
1902 1903


H
hong 已提交
1904
def load_program_state(model_path, var_list=None):
1905
    """
1906 1907
    :api_attr: Static Graph

1908
    Load program state from local file
1909

1910 1911
    Args:
        model_path(str): The file prefix store the program
1912 1913
        var_list(list, optional): The variable list to load saved with
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
1914
                                  Default: None.
1915
                                  The var_list is only used to get name,
H
hong 已提交
1916
                                  will not be modified.
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")
1935

1936
    """
H
hong 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
1949
        _logger.debug(
H
hong 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
                    lod_level=var.lod_level
                    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR else
                    None,
                    persistable=True)

            loaded_var_list = []

            if var_list is not None:
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
            else:
                for var_name in var_name_list:
                    loaded_var_list.append(
                        load_block.create_var(
                            name=var_name, persistable=True))

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

            try:
                if os.path.isfile(model_path):
                    dir_name, file_name = os.path.split(model_path)
                else:
                    dir_name = model_path
                    file_name = None
                load_vars(
                    executor=exe,
                    dirname=dir_name,
                    vars=loaded_var_list,
                    filename=file_name)
            except:
                raise RuntimeError(
                    "Failed to load model file , please make sure model file is saved with the "
                    "following APIs: save_params, save_persistables, save_vars")
            res_dict = {}
            for var in loaded_var_list:
                res_dict[var.name] = np.asarray(paddle.fluid.global_scope(
                ).find_var(var.name).get_tensor())

            return res_dict

2018
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
2019
        "Parameter file [{}] not exits".format(parameter_file_name)
2020 2021

    with open(parameter_file_name, 'rb') as f:
2022
        para_dict = pickle.load(f) if six.PY2 else pickle.load(
2023
            f, encoding='latin1')
2024

H
hong 已提交
2025
    opt_file_name = model_prefix + ".pdopt"
2026 2027
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
2028
            opti_dict = pickle.load(f) if six.PY2 else pickle.load(
2029
                f, encoding='latin1')
2030 2031 2032 2033 2034 2035

        para_dict.update(opti_dict)

    return para_dict


2036
@dygraph_not_support
2037 2038
def set_program_state(program, state_dict):
    """
2039 2040
    :api_attr: Static Graph

2041 2042
    Set program parameter from state_dict

2043
    An exception will throw if shape or dtype of the parameters is not match.
2044 2045 2046 2047 2048 2049

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
2050
    Returns:
2051
        None
2052

2053 2054
    Examples:
        .. code-block:: python
2055

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")

H
hong 已提交
2069 2070
            fluid.set_program_state( prog, program_state)

2071 2072 2073 2074 2075 2076 2077
    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
2078
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
2079 2080 2081 2082
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
2083
            assert orig_para_np.shape == new_para_np.shape, \
2084
                "Parameter's shape does not match, the Program requires a parameter with the shape of ({}), " \
T
tangwei12 已提交
2085
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
2086
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
2087
            assert orig_para_np.dtype == new_para_np.dtype, \
2088
                "Parameter's data type does not match, the Program requires a parameter with a dtype of ({}), " \
T
tangwei12 已提交
2089
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
2090 2091 2092 2093 2094 2095
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

            assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
T
tangwei12 已提交
2096
                "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))