Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
69802396
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2322
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
69802396
编写于
2月 13, 2020
作者:
H
hong
提交者:
GitHub
2月 13, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Enhance load program state (#22546)
* enhance load program state; test=develop * optimize commet; test=develop
上级
8acd745c
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
412 addition
and
3 deletion
+412
-3
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+100
-3
python/paddle/fluid/tests/unittests/test_static_save_load.py
python/paddle/fluid/tests/unittests/test_static_save_load.py
+312
-0
未找到文件。
python/paddle/fluid/io.py
浏览文件 @
69802396
...
...
@@ -20,6 +20,7 @@ import warnings
import
six
import
logging
import
pickle
import
contextlib
from
functools
import
reduce
import
numpy
as
np
...
...
@@ -179,6 +180,17 @@ def _clone_var_in_block_(block, var):
persistable
=
True
)
@
contextlib
.
contextmanager
def
_load_program_scope
(
main
=
None
,
startup
=
None
,
scope
=
None
):
prog
=
main
if
main
else
paddle
.
fluid
.
Program
()
startup_prog
=
startup
if
startup
else
paddle
.
fluid
.
Program
()
scope
=
scope
if
scope
else
paddle
.
fluid
.
core
.
Scope
()
with
paddle
.
fluid
.
scope_guard
(
scope
):
with
paddle
.
fluid
.
program_guard
(
prog
,
startup_prog
):
with
paddle
.
fluid
.
unique_name
.
guard
():
yield
def
_get_valid_program
(
main_program
):
if
main_program
is
None
:
main_program
=
default_main_program
()
...
...
@@ -1711,12 +1723,17 @@ def load(program, model_path, executor=None, var_list=None):
set_var
(
v
,
load_dict
[
v
.
name
])
def
load_program_state
(
model_path
):
def
load_program_state
(
model_path
,
var_list
=
None
):
"""
Load program state from local file
Args:
model_path(str): The file prefix store the program
var_list(list, optional): The variable list to load saved with
[ save_params, save_persistables, save_vars ].
Default: None.
The var_list is only used to get name,
will not be modified.
Returns:
state_dict(dict): the dict store Parameter and optimizer information
...
...
@@ -1737,14 +1754,94 @@ def load_program_state(model_path):
program_state = fluid.load_program_state( "./temp")
"""
parameter_file_name
=
model_path
+
".pdparams"
model_prefix
=
model_path
if
model_prefix
.
endswith
(
".pdparams"
):
model_prefix
=
model_prefix
[:
-
9
]
elif
model_prefix
.
endswith
(
".pdopt"
):
model_prefix
=
model_prefix
[:
-
6
]
elif
model_prefix
.
endswith
(
".pdmodel"
):
model_prefix
=
model_prefix
[:
-
8
]
parameter_file_name
=
model_prefix
+
".pdparams"
if
not
os
.
path
.
exists
(
parameter_file_name
):
# model file saved with fluid.save is not found, try to load model file saved with
# [save_vars, save_params, save_persistables]
_logger
.
warning
(
"{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]"
.
format
(
parameter_file_name
))
var_name_list
=
[]
if
var_list
is
None
and
os
.
path
.
isfile
(
model_path
):
raise
ValueError
(
"var_list can not be None when model_path is a file type"
)
for
root
,
dirs
,
files
in
os
.
walk
(
model_path
,
topdown
=
False
):
for
f
in
files
:
file_path
=
os
.
path
.
join
(
root
,
f
)
var_temp_name
=
os
.
path
.
relpath
(
file_path
,
model_path
)
var_temp_name
=
var_temp_name
.
replace
(
"
\\
"
,
"/"
)
var_name_list
.
append
(
var_temp_name
)
with
_load_program_scope
():
load_prog
=
Program
()
load_block
=
load_prog
.
global_block
()
def
clone_var_to_block
(
block
,
var
):
if
not
isinstance
(
var
,
Variable
):
raise
TypeError
(
"value in var_list must be variable"
)
return
block
.
create_var
(
name
=
var
.
name
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
,
type
=
var
.
type
,
lod_level
=
var
.
lod_level
if
var
.
desc
.
type
()
==
core
.
VarDesc
.
VarType
.
LOD_TENSOR
else
None
,
persistable
=
True
)
loaded_var_list
=
[]
if
var_list
is
not
None
:
for
var
in
var_list
:
loaded_var_list
.
append
(
clone_var_to_block
(
load_block
,
var
))
else
:
for
var_name
in
var_name_list
:
loaded_var_list
.
append
(
load_block
.
create_var
(
name
=
var_name
,
persistable
=
True
))
place
=
paddle
.
fluid
.
CPUPlace
()
exe
=
paddle
.
fluid
.
Executor
(
place
)
try
:
if
os
.
path
.
isfile
(
model_path
):
dir_name
,
file_name
=
os
.
path
.
split
(
model_path
)
else
:
dir_name
=
model_path
file_name
=
None
load_vars
(
executor
=
exe
,
dirname
=
dir_name
,
vars
=
loaded_var_list
,
filename
=
file_name
)
except
:
raise
RuntimeError
(
"Failed to load model file , please make sure model file is saved with the "
"following APIs: save_params, save_persistables, save_vars"
)
res_dict
=
{}
for
var
in
loaded_var_list
:
res_dict
[
var
.
name
]
=
np
.
asarray
(
paddle
.
fluid
.
global_scope
(
).
find_var
(
var
.
name
).
get_tensor
())
return
res_dict
assert
os
.
path
.
exists
(
parameter_file_name
),
\
"Parameter file [{}] not exits"
.
format
(
parameter_file_name
)
with
open
(
parameter_file_name
,
'rb'
)
as
f
:
para_dict
=
pickle
.
load
(
f
)
opt_file_name
=
model_p
ath
+
".pdopt"
opt_file_name
=
model_p
refix
+
".pdopt"
if
os
.
path
.
exists
(
opt_file_name
):
with
open
(
opt_file_name
,
'rb'
)
as
f
:
opti_dict
=
pickle
.
load
(
f
)
...
...
python/paddle/fluid/tests/unittests/test_static_save_load.py
浏览文件 @
69802396
...
...
@@ -625,6 +625,16 @@ class TestProgramStatePartial(unittest.TestCase):
#fluid.load(test_program, "./test_1", None )
program_state
=
fluid
.
load_program_state
(
os
.
path
.
join
(
'some_dir'
,
'test_1'
))
program_state_1
=
fluid
.
load_program_state
(
os
.
path
.
join
(
'some_dir'
,
'test_1.pdparams'
))
program_state_2
=
fluid
.
load_program_state
(
os
.
path
.
join
(
'some_dir'
,
'test_1.pdopt'
))
program_state_3
=
fluid
.
load_program_state
(
os
.
path
.
join
(
'some_dir'
,
'test_1.pdmodel'
))
fluid
.
set_program_state
(
test_program
,
program_state
)
for
var
in
test_program
.
list_vars
():
...
...
@@ -634,6 +644,66 @@ class TestProgramStatePartial(unittest.TestCase):
base_t
=
base_map
[
var
.
name
]
self
.
assertTrue
(
np
.
array_equal
(
new_t
,
base_t
))
# check 1
for
var
in
main_program
.
list_vars
():
if
isinstance
(
var
,
framework
.
Parameter
)
or
var
.
persistable
:
ten
=
fluid
.
global_scope
().
find_var
(
var
.
name
).
get_tensor
()
ten
.
set
(
np
.
zeros_like
(
np
.
array
(
ten
)),
place
)
new_t
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
var
.
name
)
.
get_tensor
())
# make sure all the paramerter or optimzier var have been set to zero
self
.
assertTrue
(
np
.
sum
(
np
.
abs
(
new_t
))
==
0
)
fluid
.
set_program_state
(
test_program
,
program_state_1
)
for
var
in
test_program
.
list_vars
():
if
isinstance
(
var
,
framework
.
Parameter
)
or
var
.
persistable
:
new_t
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
var
.
name
)
.
get_tensor
())
base_t
=
base_map
[
var
.
name
]
self
.
assertTrue
(
np
.
array_equal
(
new_t
,
base_t
))
# check 2
for
var
in
main_program
.
list_vars
():
if
isinstance
(
var
,
framework
.
Parameter
)
or
var
.
persistable
:
ten
=
fluid
.
global_scope
().
find_var
(
var
.
name
).
get_tensor
()
ten
.
set
(
np
.
zeros_like
(
np
.
array
(
ten
)),
place
)
new_t
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
var
.
name
)
.
get_tensor
())
# make sure all the paramerter or optimzier var have been set to zero
self
.
assertTrue
(
np
.
sum
(
np
.
abs
(
new_t
))
==
0
)
fluid
.
set_program_state
(
test_program
,
program_state_2
)
for
var
in
test_program
.
list_vars
():
if
isinstance
(
var
,
framework
.
Parameter
)
or
var
.
persistable
:
new_t
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
var
.
name
)
.
get_tensor
())
base_t
=
base_map
[
var
.
name
]
self
.
assertTrue
(
np
.
array_equal
(
new_t
,
base_t
))
# check 3
for
var
in
main_program
.
list_vars
():
if
isinstance
(
var
,
framework
.
Parameter
)
or
var
.
persistable
:
ten
=
fluid
.
global_scope
().
find_var
(
var
.
name
).
get_tensor
()
ten
.
set
(
np
.
zeros_like
(
np
.
array
(
ten
)),
place
)
new_t
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
var
.
name
)
.
get_tensor
())
# make sure all the paramerter or optimzier var have been set to zero
self
.
assertTrue
(
np
.
sum
(
np
.
abs
(
new_t
))
==
0
)
fluid
.
set_program_state
(
test_program
,
program_state_3
)
for
var
in
test_program
.
list_vars
():
if
isinstance
(
var
,
framework
.
Parameter
)
or
var
.
persistable
:
new_t
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
var
.
name
)
.
get_tensor
())
base_t
=
base_map
[
var
.
name
]
self
.
assertTrue
(
np
.
array_equal
(
new_t
,
base_t
))
class
TestVariableInit
(
unittest
.
TestCase
):
def
test_variable_init
(
self
):
...
...
@@ -984,5 +1054,247 @@ class TestLoadFromOldInterfaceSingleFile(unittest.TestCase):
all_var_list
+
[
temp_var
])
class
TestProgramStateOldSave
(
unittest
.
TestCase
):
def
test_ptb_rnn_cpu_float32
(
self
):
seed
=
90
hidden_size
=
10
vocab_size
=
1000
num_layers
=
1
num_steps
=
3
init_scale
=
0.1
batch_size
=
4
batch_num
=
200
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
ptb_model
=
PtbModel
(
"ptb_model"
,
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_steps
=
num_steps
,
init_scale
=
init_scale
)
place
=
fluid
.
CPUPlace
()
if
not
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
sgd
=
Adam
(
learning_rate
=
1e-3
)
x
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
num_steps
],
dtype
=
'int64'
)
y
=
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'float32'
)
init_hidden
=
fluid
.
layers
.
data
(
name
=
"init_hidden"
,
shape
=
[
1
],
dtype
=
'float32'
)
init_cell
=
fluid
.
layers
.
data
(
name
=
"init_cell"
,
shape
=
[
1
],
dtype
=
'float32'
)
static_loss
,
static_last_hidden
,
static_last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
init_cell
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
add_1
=
fluid
.
layers
.
fc
(
static_last_hidden
,
size
=
hidden_size
,
num_flatten_dims
=
2
,
bias_attr
=
False
)
sgd
.
minimize
(
static_loss
)
static_param_updated
=
dict
()
static_param_init
=
dict
()
out
=
exe
.
run
(
framework
.
default_startup_program
())
static_loss_value
=
None
static_last_cell_value
=
None
static_last_hidden_value
=
None
for
i
in
range
(
batch_num
):
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
1
))
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_cell_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
fetch_list
=
[
static_loss
,
static_last_hidden
,
static_last_cell
]
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
x_data
,
"y"
:
y_data
,
"init_hidden"
:
init_hidden_data
,
"init_cell"
:
init_cell_data
},
fetch_list
=
fetch_list
)
static_loss_value
=
out
[
0
]
static_last_hidden_value
=
out
[
1
]
static_last_cell_value
=
out
[
2
]
# get value before save
main_program
=
framework
.
default_main_program
()
base_map
=
{}
for
var
in
main_program
.
list_vars
():
if
isinstance
(
var
,
framework
.
Parameter
)
or
var
.
persistable
:
t
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
var
.
name
)
.
get_tensor
())
# make sure all the paramerter or optimzier var have been update
self
.
assertTrue
(
np
.
sum
(
np
.
abs
(
t
))
!=
0
)
base_map
[
var
.
name
]
=
t
fluid
.
io
.
save_persistables
(
exe
,
"test_program_1"
,
main_program
)
# set var to zero
for
var
in
main_program
.
list_vars
():
if
isinstance
(
var
,
framework
.
Parameter
)
or
var
.
persistable
:
ten
=
fluid
.
global_scope
().
find_var
(
var
.
name
).
get_tensor
()
ten
.
set
(
np
.
zeros_like
(
np
.
array
(
ten
)),
place
)
new_t
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
var
.
name
)
.
get_tensor
())
# make sure all the paramerter or optimzier var have been set to zero
self
.
assertTrue
(
np
.
sum
(
np
.
abs
(
new_t
))
==
0
)
#fluid.load(test_program, "./test_1", None )
program_state
=
fluid
.
load_program_state
(
"test_program_1"
)
fluid
.
set_program_state
(
main_program
,
program_state
)
for
var
in
main_program
.
list_vars
():
if
isinstance
(
var
,
framework
.
Parameter
)
or
var
.
persistable
:
new_t
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
var
.
name
)
.
get_tensor
())
base_t
=
base_map
[
var
.
name
]
self
.
assertTrue
(
np
.
array_equal
(
new_t
,
base_t
))
class
TestProgramStateOldSaveSingleModel
(
unittest
.
TestCase
):
def
test_ptb_rnn_cpu_float32
(
self
):
seed
=
90
hidden_size
=
10
vocab_size
=
1000
num_layers
=
1
num_steps
=
3
init_scale
=
0.1
batch_size
=
4
batch_num
=
200
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
ptb_model
=
PtbModel
(
"ptb_model"
,
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_steps
=
num_steps
,
init_scale
=
init_scale
)
place
=
fluid
.
CPUPlace
()
if
not
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
sgd
=
Adam
(
learning_rate
=
1e-3
)
x
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
num_steps
],
dtype
=
'int64'
)
y
=
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'float32'
)
init_hidden
=
fluid
.
layers
.
data
(
name
=
"init_hidden"
,
shape
=
[
1
],
dtype
=
'float32'
)
init_cell
=
fluid
.
layers
.
data
(
name
=
"init_cell"
,
shape
=
[
1
],
dtype
=
'float32'
)
static_loss
,
static_last_hidden
,
static_last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
init_cell
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
add_1
=
fluid
.
layers
.
fc
(
static_last_hidden
,
size
=
hidden_size
,
num_flatten_dims
=
2
,
bias_attr
=
False
)
sgd
.
minimize
(
static_loss
)
static_param_updated
=
dict
()
static_param_init
=
dict
()
out
=
exe
.
run
(
framework
.
default_startup_program
())
static_loss_value
=
None
static_last_cell_value
=
None
static_last_hidden_value
=
None
for
i
in
range
(
batch_num
):
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
1
))
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_cell_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
fetch_list
=
[
static_loss
,
static_last_hidden
,
static_last_cell
]
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
x_data
,
"y"
:
y_data
,
"init_hidden"
:
init_hidden_data
,
"init_cell"
:
init_cell_data
},
fetch_list
=
fetch_list
)
static_loss_value
=
out
[
0
]
static_last_hidden_value
=
out
[
1
]
static_last_cell_value
=
out
[
2
]
# get value before save
main_program
=
framework
.
default_main_program
()
base_map
=
{}
for
var
in
main_program
.
list_vars
():
if
isinstance
(
var
,
framework
.
Parameter
)
or
var
.
persistable
:
t
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
var
.
name
)
.
get_tensor
())
# make sure all the paramerter or optimzier var have been update
self
.
assertTrue
(
np
.
sum
(
np
.
abs
(
t
))
!=
0
)
base_map
[
var
.
name
]
=
t
fluid
.
io
.
save_persistables
(
exe
,
"test_program_2"
,
main_program
,
filename
=
"model_1"
)
# set var to zero
for
var
in
main_program
.
list_vars
():
if
isinstance
(
var
,
framework
.
Parameter
)
or
var
.
persistable
:
ten
=
fluid
.
global_scope
().
find_var
(
var
.
name
).
get_tensor
()
ten
.
set
(
np
.
zeros_like
(
np
.
array
(
ten
)),
place
)
new_t
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
var
.
name
)
.
get_tensor
())
# make sure all the paramerter or optimzier var have been set to zero
self
.
assertTrue
(
np
.
sum
(
np
.
abs
(
new_t
))
==
0
)
#fluid.load(test_program, "./test_1", None )
program_state
=
fluid
.
load_program_state
(
os
.
path
.
join
(
"test_program_2"
,
"model_1"
),
var_list
=
fluid
.
io
.
get_program_persistable_vars
(
main_program
))
fluid
.
set_program_state
(
main_program
,
program_state
)
for
var
in
main_program
.
list_vars
():
if
isinstance
(
var
,
framework
.
Parameter
)
or
var
.
persistable
:
new_t
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
var
.
name
)
.
get_tensor
())
base_t
=
base_map
[
var
.
name
]
self
.
assertTrue
(
np
.
array_equal
(
new_t
,
base_t
))
with
self
.
assertRaises
(
ValueError
):
fluid
.
load_program_state
(
os
.
path
.
join
(
"test_program_2"
,
"model_1"
))
with
self
.
assertRaises
(
TypeError
):
fluid
.
load_program_state
(
os
.
path
.
join
(
"test_program_2"
,
"model_1"
),
var_list
=
[
"str"
])
with
self
.
assertRaises
(
RuntimeError
):
fluid
.
load_program_state
(
os
.
path
.
join
(
"test_program_2"
,
"model_1"
),
var_list
=
[
main_program
.
global_block
().
create_var
(
name
=
"fake_var_name"
,
persistable
=
True
)
])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录